
Mechanism Design for Abstract Argumentation

Iyad Rahwan
1(Fellow) School of Informatics, University of

Edinburgh, Edinburgh EH8 9LE, UK
2Faculty of Informatics, British University in

Dubai, P.O.Box 502216, Dubai, UAE

Kate Larson
Cheriton School of Computer Science

University of Waterloo
200 University Avenue West, Waterloo

ON, N2L 3G1, Canada

ABSTRACT
Since their introduction by Dung over a decade ago, ab-
stract argumentation frameworks have received increasing
interest in artificial intelligence as a convenient model for
reasoning about general characteristics of argument. Such
a framework consists of a set of arguments and a binary
defeat relation among them. Various semantic and com-
putational approaches have been developed to characterise
the acceptability of individual arguments in a given argu-
mentation framework. However, little work exists on un-
derstanding the strategic aspects of abstract argumenta-
tion among self-interested agents. In this paper, we in-
troduce (game-theoretic) argumentation mechanism design
(ArgMD), which enables the design and analysis of argu-
mentation mechanisms for self-interested agents. We define
the notion of a direct-revelation argumentation mechanism,
in which agents must decide which arguments to reveal si-
multaneously. We then design a particular direct argumen-
tation mechanism and prove that it is strategy proof under
specific conditions; that is, the strategy profile in which each
agent reveals its arguments truthfully is a dominant strategy
equilibrium.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—multiagent systems, coherence and coordination

General Terms
Theory, Economics

Keywords
Argumentation, Game Theory, Mechanism Design

1. INTRODUCTION
One of the most influential computational models of ar-

gument was presented by Dung [3]. Arguments are viewed
as abstract entities, with a binary defeat relation among
them. This view of argumentation enables high-level anal-
ysis while abstracting away from the internal structure of

Cite as: Mechanism Design for Abstract Argumentation, Iyad Rah-
wan and Kate Larson, Proc. of 7th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2008), Padgham,
Parkes, Müller and Parsons (eds.), May, 12-16., 2008, Estoril, Portugal,
pp. XXX-XXX.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

individual arguments. In Dung’s approach, given a particu-
lar argumentation framework (set of arguments and a binary
defeat relation), a rule specifies which arguments should be
accepted. A variety of such rules have been studied and
compared [1].

However, most research that employs Dung’s approach
discounts the fact that argumentation is often a multi-agent,
adversarial process. Thus, the outcome of argumentation
is determined not only by the rules of argument accept-
ability, but also by the strategies employed by the agents
who present these arguments. As these agents may be self-
interested, they may have conflicting preferences over which
arguments end up being accepted. As such, the design of
the argument acceptability rule should take the mechanism
design perspective [5, Ch 23]: what game rules guarantee a
desirable social outcome when each self-interested agent se-
lects the best strategy for itself? Game-theoretic analysis of
strategic behaviour in argumentation frameworks is scarce
and, to our knowledge, mechanism design has not been ap-
plied to multi-agent abstract argumentation to-date.

In this paper, we introduce argumentation mechanism de-
sign (ArgMD), which enables the design and analysis of ar-
gumentation mechanisms for self-interested agents. We re-
cast Dung’s abstract framework as a (game-theoretic) mech-
anism. We then define a particular class of mechanisms,
namely direct argumentation mechanisms. In these mecha-
nisms, agents must decide which arguments to reveal simul-
taneously, and the mechanism determines the set of accepted
arguments based on some argument acceptability criterion
(e.g. sceptical, credulous [1]). We then study a particular
sceptical direct argumentation mechanism, under a certain
class of agent preferences (namely, agents want to maximise
the number of their own accepted arguments). We examine
whether agents have incentive to lie by hiding arguments in
an attempt to influence the outcome. We prove that the
sceptical mechanism is strategy-proof 1 under specific topo-
logical restrictions on the argument graph. We further prove
that any strategy-proof sceptical argumentation mechanism
must satisfy these topological conditions. Thus we have a
full characterisation of strategy-proof sceptical argumenta-
tion mechanisms, given a certain class of agent preferences.

The paper advances the state-of-the-art in the compu-
tational modelling of argumentation in three major ways.
Firstly, the paper presents the first definition of the problem
of designing argumentation rules in Dung-style frameworks
as a (game-theoretic) mechanism design problem. This new

1That is, the strategy profile in which each agent reveals its
arguments truthfully is a dominant strategy equilibrium.

perspective opens up many possibilities for designing argu-
mentation protocols/rules that have desirable properties in
truly adversarial settings. Such perspective on designing ar-
gumentation rules has not been possible to-date, and most
existing analyses of strategies have been heuristic [6].

The second major contribution of this paper is in demon-
strating the power of the ArgMD approach. We provide the
first comprehensive game-theoretic analysis of agent strate-
gies in a direct abstract argumentation mechanism. We
also characterise conditions under which this mechanism
is strategy-proof (truth-revealing), which is the strongest
game-theoretic solution concept.

Thirdly, our analysis demonstrates that the properties of
argumentation mechanisms depend highly on the form of
agent preferences, and on the structure of the argument
graph. A variety of other preferences and topological struc-
tures are possible, and different ones may be sensible in dif-
ferent application settings. Thus, our work opens new av-
enues of research for analysing argumentation mechanisms
under different conditions.

Next, we present a brief review of abstract argumentation.
In Section 3, we present multi-agent abstract argumentation
as a mechanism design problem. In Section 4, we define
the class of direct abstract argumentation mechanisms and
analyse a sceptical instantiation of such mechanisms, show-
ing conditions under which it is strategy-proof. We discuss
related work in Section 5 and conclude in Section 6.

2. BACKGROUND
In this section, we briefly outline key elements of abstract

argumentation frameworks. We begin with Dung’s abstract
characterisation of an argumentation system [3]:

Definition 1 (Argumentation framework). An ar-
gumentation framework is a pair AF = 〈A,⇀〉 where A is
a set of arguments and ⇀⊆ A×A is a defeat relation. We
say that an argument α defeats an argument β iff (α, β) ∈⇀
(sometimes written α ⇀ β).

In this paper, we restrict ourselves to finite argumentation
frameworks, that is, frameworks with finite sets of argu-
ments. This assumption is widely adopted in the literature
and reflects the reasonable intuition that agents cannot pro-
duce new relevant information forever. An argumentation
framework can be represented as a directed graph (or di-
graph) in which vertices are arguments and directed arcs
characterise defeat among arguments. An example argu-
ment graph is shown in Figure 1. Argument α1 has two
defeaters (i.e. counter-arguments) α2 and α4, which are
themselves defeated by arguments α3 and α5 respectively.
Different semantics for the notion of argument acceptability
have been proposed by Dung [3]. These are stated in the
following definitions.

α3 α2

α4

α1

α5

Figure 1: A simple argument graph

Definition 2 (Conflict-free, Defense). Let 〈A,⇀
〉 be an argumentation framework and let S ⊆ A.

• S is conflict-free iff there exist no α ∈ S and β ∈ S
such that α ⇀ β.

• S defends an argument α iff for each argument β ∈ A,
if β ⇀ α, then there exists an argument γ ∈ S such
that γ ⇀ β. We also say that argument α is acceptable
with respect to S

Intuitively, a set of arguments is conflict free if no argument
in that set defeats another. And a set of arguments defends
a given argument if it defeats all its defeaters.

Example 3. In Figure 1, {α3, α5} defends α1.

We now look at different semantics that characterise the
collective acceptability of a set of arguments.

Definition 4 (Characteristic function). Consider
argumentation framework AF = 〈A,⇀〉. The characteristic
function of AF is FAF : 2A → 2A such that, given S ⊆ A,
we have FAF (S) = {α ∈ A | S defends α}.

When there is no ambiguity about the argumentation frame-
work in question, we will use F instead of FAF .

Definition 5 (Acceptability semantics). Let S be
a conflict-free set of arguments in framework 〈A,⇀〉.

• S is admissible iff it is conflict-free and defends any
element in S (i.e. if S ⊆ F(S)).

• S is a complete extension iff S = F(S).

• S is a grounded extension iff it is the minimal (w.r.t.
set-inclusion) complete extension (or, alternatively, if
S is the least fixed-point of F(.)).

• S is a preferred extension iff it is a maximal (w.r.t.
set-inclusion) complete extension (or, alternatively, if
S is a maximal admissible set).

Let E = {E1, . . . , En} be the set of all possible extensions
under a given semantics.

Intuitively, a set of arguments is admissible if it is a conflict-
free set that defends itself against any defeater –in other
words, if it is a conflict free set in which each argument is
acceptable with respect to the set itself.

Example 6. In Figure 1, the sets ∅, {α3}, {α5}, and
{α3, α5} are all admissible simply because they do not have
any defeaters. The set {α1, α3, α5} is also admissible since
it defends itself against both defeaters α2 and α4.

An admissible set S is a complete extension if and only if
all arguments defended by S are also in S (that is, if S is a
fixed point of the operator F). This captures the attitude of
an agent that accepts everything it can defend. There may
be more than one complete extension, each corresponding
to a particular consistent and self-defending viewpoint.

Example 7. In Figure 1, the admissible set {α3, α5} is
not a complete extension, since it defends α1 but does not in-
clude α1. Similarly, sets {α3}, {α5} are not complete exten-
sions, since F({α3}) = {α3, α5} and F({α5}) = {α3, α5}.
The admissible set {α1, α3, α5} is the only complete exten-
sion, since F({α1, α3, α5}) = {α1, α3, α5}.

α2 α1α3

Figure 2: Graph with three complete extensions

As another example, consider the following.

Example 8. Consider the graph in Figure 2. Here, we
have three complete extensions: {α3}, {α1, α3} and {α2, α3}.

A grounded extension contains all the arguments which are
not defeated, as well as the arguments which are defended
directly or indirectly by non-defeated arguments. This can
be seen as a non-committal view (characterised by the least
fixed point of F). As such, there always exists a unique
grounded extension. Dung [3] showed that in finite argu-
mentation systems, the grounded extension can be obtained
by an iterative application of the characteristic function to
the empty set.

Example 9. In Figure 1, the grounded extension is {α1,
α3, α5}, which is the only complete extension. This can be
also calculated using the iterative application of F as follows:

– F1(∅) = {α3, α5};

– F2(∅) = F(F1(∅)) = {α1, α3, α5};

– F3(∅) = F(F2(∅)) = {α1, α3, α5} = F2(∅);

Similarly, in Figure 2, the grounded extension is {α3}, which
is the minimal complete extension w.r.t set inclusion.

More intuitively, computing arguments in the grounded
extension can be seen as a process of labeling nodes of the
defeat graph. First, nodes that have no defeaters are labeled
‘undefeated’ and the nodes attacked by them are labeled
‘defeated.’ Then, all labeled arguments are suppressed and
the process is repeated on the resulting sub-graph, and so on.
If in some iteration, no initial node is found, all unlabeled
nodes are labeled as ‘defeated’ and the process terminates.

A preferred extension is a bolder, more committed posi-
tion that cannot be extended –by accepting more arguments–
without causing inconsistency. Thus a preferred extension
can be thought of as a maximal consistent set of hypothe-
ses. There may be multiple preferred extensions, and the
grounded extension is included in all of them.

Example 10. In Figure 1, {α1, α3, α5} is the only pre-
ferred extension. But in Figure 2, there are two preferred
extensions: {α1, α3} and {α2, α3}, which are the maximal
complete extension w.r.t. set inclusion.

Now that the acceptability of sets of arguments is defined,
we can define the status of any individual argument.

Definition 11 (Argument status). Let 〈A,⇀〉 be an
argumentation system, and E1, . . . , En its extensions under
a given semantics. Let α ∈ A.

1. α is sceptically accepted iff α ∈ Ei, ∀Ei with i =
1, . . . , n.

2. α is credulously accepted iff ∃Ei such that α ∈ Ei.

3. α is rejected iff @Ei such that α ∈ Ei.

An argument is sceptically accepted if it belongs to all ex-
tensions (equivalently, if it is part of the unique grounded
extension). Intuitively, an argument is sceptically accepted
if it can be accepted without making any hypotheses beyond
what is surely self-defending. On the other hand, an argu-
ment is credulously accepted on the basis that it belongs to at
least one extension. Intuitively, an argument is credulously
accepted if there is a possible consistent set of hypotheses in
which it is consistent. If an argument is neither sceptically
nor credulously accepted, there is no basis for accepting it,
and it is therefore rejected.

Definition 12 (Accepted Arguments). Let 〈A,⇀〉
be an argumentation system under semantics S. We denote
by Acc(〈A,⇀〉,S) ⊆ A the set of acceptable arguments ac-
cording to semantics S.

3. ARGUMENTATION AS A MECHANISM
DESIGN PROBLEM

The contemporary theory of abstract argumentation frame-
works is not concerned with strategic issues in dialogues. In
fact, all argument acceptability semantics mentioned in the
previous section assume that a set of arguments and a de-
feat relation are given, and the argument evaluation criteria
merely computes the set of acceptable arguments. However,
in a multi-agent setting, different arguments are likely to be
presented by different self-interested agents. Thus it is cru-
cial to understand the possible strategic behaviour of these
agents in terms of what arguments they should or would
present. This makes it possible to analyse various argument
evaluation criteria in terms of their manipulability. More im-
portantly, understanding strategic behaviour will allow us to
devise argument evaluation criteria that ensure that certain
desired properties are achieved. To this end, we propose to
apply the tools of game theory and mechanism design to
abstract argumentation frameworks.

3.1 Game Theory and Mechanism Design
Mechanism design studies the problem of how to ensure

that good system-wide decisions or outcomes arise in sit-
uations that involve multiple self-interested agents. Often
the goal is to choose an outcome or make a decision which
reflects the agents’ preferences. The challenge, however, is
that the agents’ preferences are private, and agents may try
to manipulate the system so as to ensure an outcome or
decision which is desirable for themselves, possibly at the
expense of others. In the rest of this section we provide an
overview of key game theory and mechanism design concepts
used in this paper. A more thorough introduction to game
theory and mechanism design can be found elsewhere [5].

3.1.1 Game Theory
The field of game theory studies strategic interactions of

self-interested agents. We assume that there is a set of self-
interested agents, denoted by I. We let θi ∈ Θi denote the
type of agent i which is drawn from some set of possible
types Θi. The type represents the private information and
preferences of the agent. An agent’s preferences are over
outcomes o ∈ O, where O is the set of all possible outcomes.
We assume that an agent’s preferences can be expressed by a
utility function ui(o, θi) which depends on both the outcome,
o, and the agent’s type, θi. Agent i prefers outcome o1 to
o2 when ui(o1, θi) > ui(o2, θi).

When agents interact, we say that they are playing strate-
gies. A strategy for agent i, si(θi), is a plan that describes
what actions the agent will take for every decision that
the agent might be called upon to make, for each possi-
ble piece of information that the agent may have at each
time it is called to act. That is, a strategy can be thought
as a complete contingency plan for an agent. We let Σi de-
note the set of all possible strategies for agent i, and thus
si(θi) ∈ Σi. When it is clear from the context, we will drop
the θi in order to simplify the notation. We let strategy pro-
file s = (s1(θ1), . . . , sI(θI)) denote the outcome that results
when each agent i is playing strategy si(θi). As a notational
convenience we define

s−i(θ−i) = (s1(θi), . . . , si−1(θi−1), si+1(θi+1), . . . , sI(θI))

and thus s = (si, s−i). We then interpret ui((si, s−i), θi) to
be the utility of agent i with type θi when all agents play
strategies specified by strategy profile (si(θi), s−i(θ−i)).

Since the agents are all self-interested, they will try to
choose strategies which maximize their own utility. Since
the strategies of other agents also play a role in determining
the outcome, the agents must take this into account. The
solution concepts in game theory determine the outcomes
that will arise if all agents are rational and strategic. The
most well known solution concept is the Nash equilibrium.
A Nash equilibrium is a strategy profile in which each agent
is following a strategy which maximizes its own utility, given
its type and the strategies of the other agents.

Definition 13 (Nash Equilibrium). A strategy pro-
file s∗ = (s∗1, . . . , s

∗
I) is a Nash equilibrium if no agent has

incentive to change its strategy, given that no other agent
changes. Formally,

∀i, ui(s∗i , s∗−i, θi) ≥ ui(s′i, s∗−i, θi), ∀s′i.

Although the Nash equilibrium is a fundamental concept
in game theory, it does have several weaknesses. First, there
may be multiple Nash equilibria and so agents may be uncer-
tain as to which equilibrium they should play. Second, the
Nash equilibrium implicitly assumes that agents have per-
fect information about all other agents, including the other
agents’ preferences.

A stronger solution concept in game theory is the dominant-
strategy equilibrium. A strategy si is said to be dominant if
by playing it, the utility of agent i is maximized no matter
what strategies the other agents play.

Definition 14 (Dominant Strategy). Strategy s∗i is
dominant if ui(s

∗
i , s−i, θi) ≥ ui(s′i, s−i, θi) ∀s−i, ∀s′i

A dominant-strategy equilibrium is a strategy profile where
each agent is playing a dominant strategy. This is a very
robust solution concept since it makes no assumptions about
what information the agents have available to them, nor does
it assume that all agents know that all other agents are being
rational (i.e. trying to maximize their own expected utility).
However, there are many strategic settings where no agent
has a dominant strategy.

A third solution concept is the Bayes-Nash equilibrium.
In the Bayes-Nash equilibrium the assumption made for the
Nash equilibrium, that all agents know the preferences of
others, is relaxed. Instead, we assume that there is some
common prior F ((Θ1, . . . ,ΘI)), such that the agents’ types

are distributed according to F . Then, in equilibrium, each
agent chooses the strategy that maximizes it’s expected util-
ity given the strategies other agents are playing and the prior
F .

Definition 15 (Bayes-Nash Equilibrium). A strat-
egy profile s∗ = (s∗i , s

∗
−i) is a Bayes-Nash equilibrium if

∀θi, ∀s′i:
Eθ−i [ui((s

∗
i (θi), s

∗
−i(·)), θi)] ≥ Eθ−i [ui((s

′
i(θi), s

∗
−i(·)), θi)]

3.1.2 Mechanism Design
The problem that mechanism design studies is how to

ensure that a desirable system-wide outcome or decision is
made when there are a group of self-interested agents who
have preferences over the outcomes. In particular, we of-
ten want the outcome to depend on the preferences of the
agents. This is captured by a social choice function.

Definition 16 (Social Choice Function). A social
choice function is a rule f : Θ1 × . . .×ΘI → O, that selects
some outcome f(θ) ∈ O, given agent types θ = (θ1, . . . , θI).

The challenge, however, is that the types of the agents
(the θ′is) are private and are known only to the agents them-
selves. Thus, in order to select an outcome with the social
choice function, one has to rely on the agents to reveal their
types. However, for a given social choice function, an agent
may find that it is better off if it does not reveal its type
truthfully, since by lying it may be able to cause the social
choice function to choose an outcome that it prefers. Instead
of trusting the agents to be truthful, we use a mechanism to
try to reach the correct outcome.

A mechanism M = (Σ, g(·)) defines the set of allowable
strategies that agents can chose, with Σ = Σ1 × · · · × ΣI
where Σi is the strategy set for agent i, and an outcome
function g(s) which specifies an outcome o for each possible
strategy profile s = (s1, . . . , sI) ∈ Σ. This defines a game
in which agent i is free to select any strategy in Σi, and,
in particular, will try to select a strategy which will lead to
an outcome that maximizes its own utility. We say that a
mechanism implements social choice function f if the out-
come induced by the mechanism is the same outcome that
the social choice function would have returned if the true
types of the agents were known.

Definition 17 (Implementation). Mechanism M =
(Σ, g(·)) implements social choice function f if there exists
an equilibrium s∗ such that

g(s∗(θ)) = f(θ) ∀θ ∈ Θ.

While the definition of a mechanism puts no restrictions
on the strategy spaces of the agents, an important class of
mechanisms are the direct-revelation mechanisms (or simply
direct mechanisms).

Definition 18 (Direct-Revelation Mechanism). A
direct-revelation mechanism is a mechanism in which Σi =
Θi for all i, and g(θ) = f(θ) for all θ ∈ Θ.

In words, a direct mechanism is one where the strategies of
the agents are to announce a type, θ′i to the mechanism.
While it is not necessary that θ′i = θi, the important Reve-
lation Principle states that if a social choice function, f(·),
can be implemented, then it can be implemented by a direct
mechanism where every agent reveals its true type [5]. In
such a situation, we say that the social choice function is
incentive compatible.

Definition 19 (Incentive Compatible). The social
choice function f(·) is incentive compatible (or truthfully
implementable) if the direct mechanism M = (Θ, g(·)) has
an equilibrium s∗ such that s∗i (θi) = θi.

If the equilibrium concept is the dominant-strategy equilib-
rium, then the social choice function is strategy-proof. In
this paper we will on occasion call a mechanism incentive-
compatible or strategy-proof. This means that the social
choice function that the mechanism implements is incentive-
compatible or strategy-proof.

3.2 Mechanism Design for Argumentation
In this section we define the mechanism design problem

for abstract argumentation. In particular, we specify the
agents’ type spaces and utility functions, what sort of strate-
gic behavior agents might indulge in, as well as the kinds of
social choice functions we are interested in implementing.

We define a mechanism with respect to an argumentation
framework 〈A,⇀〉 with semantics S, and we assume that
there is a set of I self-interested agents. We define an agent’s
type to be its set of arguments.

Definition 20 (Agent Type). Given an argumenta-
tion framework 〈A,⇀〉, the type of agent i, Ai ⊆ A, is the
set of arguments that the agent is capable of putting forward.

Given the agents’ types (argument sets) a social choice
function f maps a type profile into a subset of arguments;

f : 2A × . . .× 2A → 2A

While our definition of an argumentation mechanism will
allow for generic social choice functions which map type pro-
files into subsets of arguments, we will be particularly inter-
ested in argument acceptability social choice functions.

Definition 21 (Argument Acc. SCF). Given an ar-
gumentation framework 〈A,⇀〉 with semantics S, and given
a type profile (A1, . . . ,AI), the argument acceptability so-
cial choice function f is defined as the set of acceptable ar-
guments given the semantics S. That is,

f(A1, . . . ,AI) = Acc(〈A1 ∪ . . . ∪ AI ,⇀〉,S).

As is standard in the mechanism design literature, we as-
sume that agents have preferences over the outcomes o ∈ 2A,
and we represent these preferences using utility functions
where ui(o,Ai) denotes agent i’s utility for outcome o when
its type is argument set Ai.

Agents may not have incentive to reveal their true type
because they may be able to influence the final argument
status assignment by lying, and thus obtain higher utility.
There are two ways that an agent can lie in our model. On
one hand, an agent might create new arguments that it does
not have in its argument set. In the rest of the paper we
will assume that there is an external verifier that is capable
of checking whether it is possible for a particular agent to
actually make a particular argument. If an agent is caught
making up arguments then it will be removed from the mech-
anism. For example, in a court of law, any act of perjury
by a witness is punished, at the very least, by completely
discrediting all evidence produced by the witness. For all
intents and purposes this assumption (also made by Glazer
and Rubinstein [4]) removes the incentive for an agent to
make up facts.

A more insidious form of lying occurs when an agent de-
cides to hide some of its arguments. By refusing to reveal
certain arguments, an agent might be able to break defeat
chains in the argument framework, thus changing the final
set of acceptable arguments. For example, a witness may
hide evidence that implicates the defendant if the evidence
also undermines the witness’s own character. This type of lie
is almost impossible to detect in practice, and it is this form
of strategic behaviour that we will be the most interested
in.

As mentioned in the previous subsection, a strategy of an
agent specifies a complete plan that describes what action
the agent takes for every decision that a player might be
called upon to take, for every piece of information that the
player might have at each time that it is called upon to
act. In our model, the actions available to an agent involve
announcing sets of arguments. Thus a strategy, si ∈ Σi for
agent i would specify for each possible subset of arguments
that could define its type, what set of arguments to reveal.
For example, a strategy might specify that an agent should
reveal only half of its arguments without waiting to see what
other agents are going to do, while another strategy might
specify that an agent should wait and see what arguments
are revealed by others, before deciding how to respond. In
particular, beyond specifying that agents are not allowed to
make up arguments, we place no restrictions on the allowable
strategy spaces, when we initially define an argumentation
mechanism. Later, when we talk about direct argumentation
mechanisms we will further restrict the strategy space.

We are now ready to define our argumentation mecha-
nism. We first define a generic mechanism, and then specify
a direct argumentation mechanism, which due to the Reve-
lation Principle, is the type of mechanism we will study in
the rest of the paper.

Definition 22 (Argumentation Mechanism). Given
an argumentation framework AF = 〈A,⇀〉 and semantics
S, an argumentation mechanism is defined as

MSAF = (Σ1, . . . ,ΣI , g(·))

where Σi is an argumentation strategy space of agent i and
g : Σ1 × . . .ΣI → 2A.

Note that in the above definition, the notion of argumenta-
tion strategy is broadly construed and would depend on the
protocol used. In a direct mechanism, however, the strat-
egy spaces of the agents are restricted so that they can only
reveal a subset of arguments.

Definition 23 (Dir. Argumentation Mechanism).
Given an argumentation framework AF = 〈A,⇀〉 and se-
mantics S, an argumentation mechanism,

MSAF = (Σ1, . . . ,ΣI , g(·))

where Σi = 2Ai and g : Σ1 × . . .ΣI → 2A.

In Table 1, we summarise the mapping of multi-agent ab-
stract argumentation as a mechanism design problem.

4. A SCEPTICAL DIRECT ARGUMENTA-
TION MECHANISM

In this section, we specify a direct-revelation argumenta-
tion mechanism, in which agents’ strategies are to reveal sets

MD Concept ArgMD Instantiation
Agent type θi ∈ Θi Agent’s arguments θi = Ai ⊆ A
Outcome o ∈ O Accepted arguments Acc(.) ⊆ A
Utility ui(o, θi) Preferences over 2A (what arguments end up being accepted)
Social choice function f : Θ1 × . . .×ΘI → O f(A1, . . . ,AI) = Acc(〈A1 ∪ . . . ∪ AI ,⇀〉,S).

by some argument acceptability criterion
Mechanism M = (Σ, g(·)) where

Σ = Σ1 × · · · × ΣI and g : Σ→ O Σi is an argumentation strategy, g : Σ→ 2A

Direct mechanism: Σi = Θi Σi = 2A (every agent reveals a set of arguments)
Truth revelation Revealing Ai

Table 1: Abstract argumentation as a mechanism

of arguments, and where the mechanism calculates the out-
come using sceptical (grounded) semantics. We show that,
in general, this mechanism gives rise to strategic manipu-
lation. We then prove that under certain conditions, this
mechanism is strategy proof.

As we stated earlier, an agent’s type Ai determines its
preferences over outcomes via a utility function ui(o,Ai).
The utility may be defined in a variety of ways. In this
paper, we only consider one type of preference, in which i
attempts to maximise the number of accepted arguments
from Ai. This criterion holds, for example, in cases where
agents lose credibility when they present arguments that end
up being rejected. Thus an agent must weigh the potential
benefit of presenting an argument against the “loss of face”
resulting from potential rejection. Debates in political cam-
paigns exhibit this kind of characteristics.

Definition 24 (Acceptability maximising prefs.).
An agent i has individual acceptability maximising prefer-
ences if and only if ∀o1, o2 ∈ O such that |o1∩Ai| ≥ |o2∩Ai|,
we have ui(o1,Ai) ≥ ui(o2,Ai).

In a direct argumentation mechanism, each agent i’s avail-
able actions are Σi = 2Ai . We will refer to a specific action
(i.e. set of declared arguments) as A◦i ∈ Σi.

We now present a direct mechanism for argumentation
based on the sceptical argument evaluation criteria. The
mechanism then calculates the set of sceptically acceptable
arguments (i.e. it calculates the grounded extension) given
the union of all arguments revealed by agents.

Definition 25 (Sceptical Direct Arg. Mech.). A
sceptical direct argumentation mechanism for argumenta-
tion framework 〈A,⇀〉 is Mgrnd

AF = (Σ1, . . . ,ΣI , g(.)) where:

– Σi ∈ 2A is the set of strategies available to each agent;

– g : Σ1×· · ·×ΣI → 2A is an outcome rule defined as:
g(A◦1, . . . ,A◦I) = Acc(〈A◦1 ∪ · · · ∪ A◦I ,⇀〉,Sgrnd) where
Sgrnd denotes sceptical acceptability semantics.

Let us now consider aspects of incentives using mechanism
Mgrnd

AF through an example.

Example 26. Consider a sceptical direct argumentation
mechanism with three agents x, y and z with types Ax =
{α1, α4, α5}, Ay = {α2} and Az = {α3} respectively. And
suppose that the defeat relation is defined as follows: ⇀=
{(α1, α2), (α2, α3), (α3, α4), (α3, α5)}. If each agent reveals
its true type (i.e. A◦x = Ax; A◦y = Ay; and A◦z = Az),
then we get the argument graph depicted in Figure 3(a). The
mechanism outcome rule produces the outcome o = {α1, α3}.

α1 α2 α3

α4

α5

(a) Full revelation (b) Argument α1 withheld

α2 α3

α4

α5

Figure 3: Hiding an argument is beneficial

If agents have individual acceptability maximising prefer-
ences, with utilities equal to the number of arguments ac-
cepted, then: ux(o, {α1, α4, α5}) = 1; uy(o, {α3}) = 1; and
uz(o, {α2}) = 0.

It turns out that the mechanism is susceptible to strategic
manipulation, even if we suppose that agents do not lie by
making up arguments (i.e. they may only withhold some
arguments). In this case, for both agents y and z, reveal-
ing their true types weakly dominates revealing nothing at
all. However, it turns out that agent x is better off reveal-
ing {α4, α5}. By withholding α1, the resulting argument
network becomes as depicted in Figure 3(b), for which the
output rule produces the outcome o′ = {α2, α4, α5}. This
outcome yields utility 2 to agent x, which is better than the
truth-revealing strategy.

Remark 27. Mechanism Mgrnd
AF is not strategy-proof.

An interesting question, therefore, is whether mechanism
Mgrnd

AF has a truth-revealing property (incentive compati-
bility, or strategy-proofness) under some additional condi-
tion. As we shall demonstrate below, it turns out that
there is a reasonable condition, and that it fully charac-
terises strategy-proof sceptical argumentation mechanisms.
Before we present our main result, we first need to present
a few definitions and lemmas.

Definition 28 (Indirect defeat and defence [3]).
Let α, β ∈ A. We say that α indirectly defeats β, written
α ↪→ β, if and only if there is an odd-length path from α to
β in the argument graph. We say that α indirectly defends
β if and only if there is an even-length path (with non-zero
length) from α to β in the argument graph.

Definition 29 (Parents & initial arguments [1]).
Given an argumentation framework AF = 〈A,⇀〉 and an
argument α ∈ A, the parents of argument α are denoted by
parAF (α) = {β ∈ A | β ↪→ α}. Arguments in AF that have
no parents are called initial arguments, and are denoted by
the set IN (AF) = {α ∈ A | parAF (α) = ∅}.

The following lemma, which is necessary for our subse-
quent proofs, shows that each acceptable argument is indi-
rectly defended by some initial argument. The lemma states
that any acceptable argument is indirectly defended, against
each defeater (i.e. parent), by some initial argument. This
highlights that initial arguments play an important role in
the defence of every other acceptable argument.

Lemma 30. Let AF = 〈A,⇀〉 be an argumentation frame-
work. If argument α ∈ Acc(AF,Sgrnd) then ∀P ∈ parAF (α),
∃β ∈ IN (AF) such that β ↪→ P .

Proof. Omitted due to space limitations.

We now explore what happens when we add a new argu-
ment (and its associated defeats) to a given argumentation
framework, producing a new argumentation framework. In
particular, we are interested in conditions under which ar-
guments acceptable in the first framework are also accepted
in the second. We show that this is true under the condition
that the new argument does not indirectly defeat arguments
acceptable in the first framework. This is stated in the fol-
lowing lemma, the proof of which makes use of Lemma 30.

Lemma 31. Let AF1 = 〈A,⇀1〉 and AF2 = 〈A∪{α′},⇀2

〉 such that ⇀1⊆⇀2 and (⇀2 \ ⇀1) ⊆ ({α′} × A) ∪ (A ×
{α′}). If α is in the grounded extension of AF1 and α′

does not indirectly defeat α, then α is also in the grounded
extension of AF2.

Proof. Omitted due to space limitations.

We are now ready to prove the main result, which states
conditions under which Mgrnd

AF is strategy proof.

Theorem 32. Suppose agents have individual acceptabil-
ity maximising preferences. If each agent’s type corresponds
to a conflict-free set of arguments which does not include
indirect/direct defeats (formally ∀i@α1, α2 ∈ Ai such that

α1 ↪→ α2), then Mgrnd
AF is strategy-proof.

Proof. Let A′−i = (A′1, . . . ,A′i−1,A′i+1, . . . ,A′I) be arbi-
trary revelations from all agents not including i. We will
show that agent i is always best off revealing Ai. That is,
no matter what sets of arguments the other agents reveal,
agent i is best off revealing its full set of arguments. For-
mally, we will show that ∀i ∈ I ui(Acc(〈A′1 ∪ · · · ∪Ai ∪ · · · ∪
A′I ,⇀〉,Sgrnd),Ai) ≥ ui(Acc(〈A′1 ∪ · · · ∪ Âi ∪ · · · ∪ A′I ,⇀
〉,Sgrnd),Ai) for any Âi ⊂ Ai.

If Ai = ∅, then trivially the agent has nothing to reveal.
Otherwise, we use induction over the sets of arguments agent
i may reveal, starting from an arbitrary single argument.
We show that, considering any strategy A′′i ⊆ Ai, revealing
one more argument can only increase i’s set of acceptable
arguments, i.e. it (weakly) improves i’ utility.

– Base Step: If Ai = {α} for some arbitrary single argu-
ment α, then revealing Ai weakly dominates revealing
∅. This is because if i does not reveal α, it receives the
worst utility value of zero, while revealing α may result
in utility 1 if α is accepted.

– Induction Step: Suppose that revealing argument set
A′′i ⊆ Ai weakly dominates revealing any subset of
A′′i . We need to prove that revealing any additional
argument can increase, but never decrease the agent’s

utility. In other words, we need to prove that revealing
any set A′i, where A′′i ⊂ A′i ⊆ Ai and |A′i| = |A′′i |+ 1,
weakly dominates revealing A′′i .

Let α′ where {α′} = A′i −A′′i be the new argument.

Let α′′ ∈ A′′i ∩Acc(〈A′1∪· · ·∪A′′i ∪· · ·∪A′I ,⇀〉,Sgrnd)
be an arbitrary argument from A′′i that is found to
be sceptically accepted when revealing A′′i . We need
to show that after adding α′, argument α′′ remains
sceptically accepted. Formally, we need to show that
α′′ ∈ A′i ∩ Acc(〈A′1 ∪ · · · ∪ A′i ∪ · · · ∪ A′I ,⇀〉,Sgrnd).
This is true from Lemma 31, and from the fact that
Ai does not include indirect defeats.

Thus, by induction, revealing the full set Ai weakly domi-
nates revealing any sub-set thereof.

Note that in the theorem, ↪→ is over all arguments in A.
Intuitively, the condition in the theorem states that each
agent’s arguments must be consistent, both explicitly and
implicitly. Explicit consistency implies that no argument
defeats another. Implicit consistency implies that no other
agent can present an argument that reveals an indirect de-
feat among one’s own arguments (in more concrete settings,
this may be interpreted as revealing a fallacy in one’s argu-
ments).

We now prove the converse of the above theorem. That is,
we show that if a mechanism that implements the sceptical
social choice function is strategy proof, then it must satisfy
the condition that individual agents do not have arguments
that indirectly defeat one another.

Theorem 33. Let I be a set of agents with individual
maximising preferences. Let Mgrnd

AF be a mechanism that

implements the sceptical social choice function f . If Mgrnd
AF

is strategy-proof, then no agent type includes indirectly self-
defeating arguments.

Proof. We will prove this by contradiction. We are given
that Mgrnd

AF is a strategy-proof mechanism that implements
the sceptical social choice function f . Assume that agents
have types which include indirectly self-defeating arguments.
In particular, consider the argument graph shown in Fig-
ure 3 and assume that there are three agents such that:
A1 = {α1, α4, α5}, A2 = {α2}, A3 = {α3}.

Since mechanism Mgrnd
AF is strategy-proof then for all Ai

ui(g(Ai,A−i),Ai) ≥ ui(g(A′i,A−i),Ai)

for all i, for all A′i 6= Ai and for all A−i. Thus, the following
constraint must hold:
u1(g({α1, α4, α5},A2,A3), {α1, α4, α5}) ≥
u1(g({α4, α5},A2,A3), {α1, α4, α5}).
Since agents have individual maximising preferences, this

means that |A1∩g(A1,A2,A3)| ≥ |A1∩g({α4, α5},A2,A3)|.
However, for this constraint to hold, it must be the case

that g(·) 6= f(·) where f is the sceptical social choice func-
tion, since

f(A1,A2,A3) = {α1, α3}
f({α4, α5},A2,A3) = {α2, α4, α5}

and so |A1 ∩ f(A1,A2,A3)| < |A1 ∩ f({α4, α5},A2,A3)|.
This implies that the mechanism Mgrnd

AF does not imple-
ment the sceptical social choice function, which is a con-
tradiction. Therefore, no agent type can include indirectly
self-defeating arguments.

From Theorems 32 and 33 above, we see that we have the
full characterisation of strategy-proof mechanisms for scepti-
cal argumentation frameworks in which agents have individ-
ual acceptability maximising preferences. This is formalised
in the following corollary.

Corollary 34. Let I be a set of agents with individual
maximising preferences. Let Mgrnd

AF be a mechanism that

implements the sceptical social choice function f . Mgrnd
AF is

strategy-proof if and only if none of the argument sets of the
agents in I contain indirectly self-defeating arguments.

Thus, we have presented a sceptical direct argumentation
mechanism. We showed that this mechanism is strategy-
proof under the condition that individual agents do not have
arguments that indirectly defeat one another. This means
that the mechanism has an important property: it max-
imises the use of the information available. This property
is particularly important in settings where a decision-maker
wants to make the most informed decision possible.

5. RELATED WORK
Analysis of strategies in argumentation is scarce, and much

of it addresses heuristic strategies (e.g. assertion attitudes
[6]). When compared with this approach (where only a
handful of heuristic strategies are analysed), game-theoretic
analysis is more thorough. Not only does it take into ac-
count the full spectrum of possible agent behaviour, includ-
ing heuristic strategies, it also provides us with the tools, via
mechanism design, to begin designing argumentation frame-
works that guarantee certain desirable properties.

To our knowledge, the only other game-theoretic analy-
sis of Dung-style argumentation is by Procaccia and Rosen-
schein [7]. The authors are interested in the dynamics of ar-
gument, while we are interested in its outcomes. They map
Dung’s frameworks into extensive-form games of perfect in-
formation, and present algorithms for determining equilibria
for the argumentation games that are guaranteed to termi-
nate. While the motivation and goals behind their approach
is quite different from ours, we believe that it provides a
complement to our mechanism-design framework.

In economics, Glazer and Rubinstein [4] explored the mech-
anism design problem of constructing rules of debate that
maximise the probability that a listener reaches the right
conclusion given arguments presented by two debaters. They
discuss a very restricted setting with 5 possible arguments
(with no explicit relationship between them) and 2 out-
comes. Most related to our work is the simultaneous debate
in which the two debaters simultaneously reveal one argu-
ment each, with arbitrary rules deciding the outcome. Our
approach is more general as it enables simultaneous revela-
tion of an arbitrary number of arguments by an arbitrary
number of agents. Moreover, our sceptical mechanism pro-
vides a more natural criterion for argument evaluation that
exploits the explicit defeat relation among arguments.

It is worthwhile referring to recent work on merging multi-
ple Dung-style argumentation graphs presented by multiple
agents [2]. The authors use a combination of graph expan-
sion, distance calculation and voting in order to arrive at
a single argumentation framework. The key difference be-
tween this work and ours is that agents in the former are
cooperative: they do not have conflicting preferences over
what the final framework should look like. As such, the
possibility of hiding arguments is not discussed.

6. DISCUSSION AND CONCLUSION
We introduced argumentation mechanism design (ArgMD),

which enables the design and analysis of argumentation mech-
anisms for self-interested agents. We did this by casting
the standard abstract argumentation framework as a (game-
theoretic) mechanism. We then defined a particular class
of argumentation mechanisms, namely direct argumenta-
tion mechanisms. In these mechanisms, agents must decide
which arguments to reveal simultaneously, and the mecha-
nism calculates the set of accepted arguments based on some
argument acceptability criterion. We then studied a partic-
ular sceptical direct argumentation mechanism, under a cer-
tain class of agent preferences (namely, agents that want to
maximise the number of their own accepted arguments). We
showed that, in general, agents may have incentive to lie by
hiding arguments in an attempt to influence the outcome.
We then demonstrated that, under meaningful topological
restrictions on the argument graph, the sceptical mechanism
becomes strategy-proof. We proved that these restrictions
are necessary and sufficient to ensure strategy-proofness.

The work presented in this paper is just the beginning of
what we envisage to be a growing area at the intersection
of game-theory and formal argumentation theory. For the
first time in the literature on argumentation frameworks, we
can now take the study of strategies seriously when design-
ing argument acceptability rules (or semantics). Without
this game-theoretic perspective, using argumentation in real
(open) agent systems has been a far-fetched prospect. We
envisage that our work, with its new approach to design-
ing argumentation rules, will help bridge the gap between
theory and application.

Acknowledgments
The authors are grateful to Pietro Baroni, Andrew Clausen
and Sherief Abdallah for useful discussions.

7. REFERENCES
[1] P. Baroni and M. Giacomin. On principle-based

evaluation of extension-based argumentation semantics.
Artificial Intelligence, 171(10–15):675–700, 2007.

[2] S. Coste-Marquis, C. Devred, S. Konieczny, M.-C.
Lagasquie-Schiex, and P. Marquis. On the merging of
Dung’s argumentation systems. Artificial Intelligence,
171(10–15):730–753, 2007.

[3] P. M. Dung. On the acceptability of arguments and its
fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial
Intelligence, 77(2):321–358, 1995.

[4] J. Glazer and A. Rubinstein. Debates and decisions:
On a rationale of argumentation rules. Games and
Economic Behavior, 36:158–173, 2001.

[5] A. Mas-Colell, M. D. Whinston, and J. R. Green.
Microeconomic Theory. Oxford University Press, New
York NY, USA, 1995.

[6] S. Parsons, M. J. Wooldridge, and L. Amgoud.
Properties and complexity of formal inter-agent
dialogues. Journal of Logic and Computation,
13(3):347–376, 2003.

[7] A. D. Procaccia and J. S. Rosenschein. Extensive-form
argumentation games. In Proceedings of the Third
European Workshop on Multi-Agent Systems
(EUMAS-05), Brussels, Belgium, pages 312–322, 2005.

