
Web Intelligence and Agent Systems: An International Journal 1 (2008) 1 1
IOS Press

Collective Iterative Allocation: Enabling Fast
and Optimal Group Decision Making1
The Role of Group Knowledge, Optimism, and Decision Policies in Distributed Coordination

Christian Guttmanna,∗, Michael Georgeffb and Iyad Rahwanc
a Department of General Practice, Faculty of Medicine, Nursing and Health Sciences, Monash University,
Melbourne, Australia
E-mail: christian.guttmann@gmail.com
b Department of General Practice, Faculty of Medicine, Nursing and Health Sciences, Monash University,
Melbourne, Australia
E-mail: michael.georgeff@med.monash.edu.au
c British University of Dubai, UAE and (Fellow) School of Informatics, University of Edinburgh, UK
E-mail: irahwan@acm.org

Abstract.
A major challenge in the field of Multi-Agent Systems is to enable autonomous agents to allocate tasks efficiently. This paper

extends previous work on an approach to the collective iterative allocation problem where a group of agents endeavours to
find the best allocations possible through refinements of these allocations over time. For each iteration, each agent proposes an
allocation based on its model of the problem domain, then oneof the proposed allocations is selected and executed which enables
us to assess if subsequent allocations should be refined. We offer an efficient algorithm capturing this process, and thenreport on
theoretical and empirical results that analyse the role of three conditions in the performance of the algorithm: accuracy of agents’
estimations of the performance of a task, the degree of optimism, and the type of group decision policy that determines which
allocation is selected after each proposal phase.

Keywords: Distributed Problem Solving, Group Decision Making, Iterative Allocation, Sequential Allocation, Multi-User Multi-
Agent Modelling

1. Introduction

Assigning agents to tasks is a challenging prob-
lem in the coordination ofMulti-Agent Systems (MAS),
where each agent is autonomous and has its own
unique knowledge of the agents and tasks involved [9,
20]. This problem requires efficient solutions as it is
experienced in a wide range of applications, such as
network routing, crisis management, logistics, compu-

1This research was supported in part by Linkage Grant
LP0774944 from the Australian Research Council.

* Corresponding author. E-mail: christian.guttmann@gmail.com.

tational grids, and collaborative student support envi-
ronments [14, 31, 4].

This paper addresses the problem of Collective Iter-
ative Allocation (CIA) which involves allocating tasks
to teams (this paper uses the terms “tasks” and “teams”
to describe allocations, but these terms are specific to
individual application domains) [20].1 We assume that
each agent has estimations of the performance of dif-
ferent teams (i.e., they do not know the performance
accurately). The accuracy of estimations maintained
by each agent is of importance as it influences the

1This paper extends a previous paper by offering substantially
deeper theoretical and empirical results [22].

1570-1263/08/$17.00c© 2008 – IOS Press and the authors. All rights reserved

2 Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making

quality of allocations found. Knowledge of the perfor-
mance of a team is acquired after it has been selected
based on a group decision policy. Following other
work, which argued that estimations of other agents’
performance can improve individual agent decision-
making [18], such estimations are useful in making
collective decisions about allocating tasks to teams.

Our first question concerns the conditions under
which we can guarantee optimal or near optimal al-
locations by testing only few teams. This paper con-
siders the case of invariable team performance, i.e., a
team’s performance is the same every time it performs
a particular task (related work often assumes implic-
itly that the performance of agents is invariable [4]).2

Using various individual agents’ proposals which are
based on their estimations of the performance of dif-
ferent teams (a phase we callproposing), we select a
team to a given task (a phase we callselection). The
selection is based on group decision policies, where
each agent contributes (e.g., through proposing) to the
decision as to which team should be selected for a
given task (Section 2). After a team is selected and ex-
ecutes the task, we progressively develop a better un-
derstanding of the true performance of teams (a phase
we call learning) which is taken into account in sub-
sequent allocations. Our second question concerns the
conditions that determine the number of iterations re-
quired to find allocations. This question is addressed
by studying different criteria that terminate the algo-
rithm. In this context, we also examine three policies:
themajority policywhich selects the team proposed by
the majority of agents; themaximum policywhich se-
lects the team proposed with the highest estimated per-
formance; and theminimum policywhich selects the
team proposed with the lowest estimated performance.
We explore these two questions theoretically as well as
empirically.

This paper extends thestate of the artby offering
a comprehensive investigation of theoretical and em-
pirical conditions that enable a group of agents to find
optimal solutions in as few iterations as possible. The
main contributions are described in three sections. Sec-
tion 2 offers a formal representation of the approach
and problem domain. This formal representation is re-
quired for the theoretical and empirical studies that fol-
low in Sections 3 and 4. Section 3 offers results that
define theoretical boundaries on two aspects of the effi-

2In previous work [23, 21], we presented empirical results inthe
case of variable team performance. But this paper offers stronger
analytical properties about the performance of the algorithm.

ciency of our approach based on [16]: thequalityof the
allocation calculated by our algorithm; and the number
of rounds required to find this solution. We show that
these aspects are influenced by the accuracy of agents’
estimations of the performance of teams; the group’s
optimism; and the type of group decision policy. For
example, we prove that if agents are completely opti-
mistic, then we are guaranteed to converge to an opti-
mal solution. Further, if agents are optimistic and use
particular termination criteria then the algorithm can
be significantly faster in finding optimal solutions than
an exhaustive approach (that tests each possible team).
Section 4 consists of empirical studies that determine
the behaviour of the algorithm under empirical condi-
tions. We perform a series of simulation-based exper-
iments that show that the maximum policy converges
to better allocations, but when the number of rounds
is limited, then the majority policy outperforms the
maximum policy. Section 5 discusses related literature
and Section 6 summarises the contributions offered by
this research.

2. Formal Definitions and Assignment Algorithm

This section defines the main components of this ap-
proach and an assignment algorithm.

2.1. Definition of Main Components

Our approach to the CIA problem is represented by
the following tuple.

CIA =< T, AT, A = {a1(Ma1
, RPa1

), . . .}, P >

T is a set of Tasks, each taskti can be assigned to
an agent teamati ∈ AT. Each agentai in A maintains
ModelsMa1

and uses Reasoning ProcessesRPa1
to

make assignments collectively using a group decision
Policy P. These elements are defined in the following
paragraphs.

Definition 1. A set of Tasks is denoted by
T = {t1, . . . , ts} with s = |T |.

A task defined inT can be assigned to an agent team.

Definition 2. A set of Agent Teamsis denoted by
AT = {at1, . . . , atp} with p = |AT |, whereatj ∈
AT is a team.

Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making 3

Definition 3. A set of Agents is denoted by
A = {a1, . . . , aq} with q = |A|, whereai ∈ A is an
agent.

The true performance of a teamatj for var-
ious tasks is referred to as a team’s capabil-
ity: C(atj) = {V (atj , t1), . . . , V (atj , ts)}, where
V : AT × T → R+ is a value representing the perfor-
mance of a team for a task (the value 0 corresponds
to being unable to perform a task). The capability of a
team can only be estimated (in this study, a value of
team’s true performance is only revealed after a team
performed a task, values for the true performance of
teams that have not performed a task yet are only
specified for illustrative purposes). Each agentai ∈ A
maintains modelsMai

to estimate the capabilities of
teams and each agent is able to execute Reasoning
ProcessesRPai

using these models.

Definition 4. Mai
are the Models main-

tained by agent ai. Models are expressed by
Mai

= {Mai
(at1), . . . , Mai

(atp)} with p being the
number of teams inAT . A specific model of a team
atj is defined by a set of estimations

Mai
(atj) = {V̂ai

(atj , t1), . . . , V̂ai
(atj , ts)}, where

· t1, . . . , ts are the tasks defined inT (Defini-
tion 1).
· atj is a team inAT (Definition 2).
· V̂ai

(atj , tk) is a value function that maps a team
atj and a tasktk to a value that is an estimation
of teamatj ’s true task performanceV (atj , tk).

Definition 5. RPai
areai’s Reasoning Processes.

• For each agentai and task tk, the INI-
TIALISE process returns a set of ModelsMai

.
• For each agentai and task tk, the PRO-
POSEprocess returns a proposal defining a team
and its estimated performance: proposalai

=
〈atj , V̂ai

(atj)〉.
• For each agentai, task tk and teamatj , the
UPDATE process returns a set of updated mod-
elsM ′

ai
(in this study, we assume that models are

updated after a team performs a tasktk).

For a given task, the estimations in the models main-
tained by each agent are initialised based on its own
unique experience and each agent can propose a par-
ticular team with an estimation of that team’s perfor-
mance (Definition 5). A central issue in our approach

is to fully utilise the proposals submitted by the agents
A for the selection of a team. To this end, we define a
policy that governs the process of making a group de-
cision. We consider the following three notations that
underly the definition of a group decision policy.

– A set of combinations of proposals that could
be submitted by agentsA is denoted by
SETPROPOSALSA for a particular group deci-
sion.

– Let PROPOSALSA ∈ SETPROPOSALSA be a
specific set of proposals, such thatPROPOSALSA
={ proposala1

, . . . , proposalaq
}, where q = |A|

(i.e., each agent makes one proposal). As per Def-
inition 4, proposalai

is an ordered pair of the pro-
posed team and its proposed performance as spec-
ified by an agentai’s PROPOSE process.

– Finally, a set of proposed teams is denoted
by ATPROPOSALSA = {atj|〈atj , V̂ai

(atj , tk)〉 ∈
PROPOSALSA}.

With these notations, we define the policy as fol-
lows.

Definition 6. A group decision PolicyP is an algo-
rithmic process for selecting one proposal from a set of
proposals, such thatP : SETPROPOSALSA → AT .
Then,

atselected:= P (PROPOSALSA), where

· atselectedis a team inATPROPOSALSA .
· PROPOSALSA is a proposal set in
SETPROPOSALSA.

Note that a policy selects a team only from those
that have been proposed, that is, the selected team is in
ATPROPOSALSA .

2.2. TAP Assignment Algorithm

We now introduce a formal algorithm that coordi-
nates the main processes of the assignment procedure.

2.2.1. Preliminaries
Each agent follows the assignment algorithm (de-

picted in Figure 1) to coordinate processes with other
agents and to make collective assignments of a team to
a task over multiple rounds of proposing, selecting and
learning. The algorithm uses the definitions introduced
in the previous section.

Two more clarifications are required to define the
algorithm. First, the algorithm assumes the execution

4 Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making

TAP ASSIGNMENT ALGORITHM .

INPUT: Tasktk ∈ T , TeamsAT , AgentsA, PolicyP
OUTPUT: Assignment ofatj ∈ AT to tk ∈ T

1. ANNOUNCE tasktk ∈ T
2. INITIALISEai

(Mai
, tk) (∀ai ∈ A)

3. Repeat

(a) PROPOSALSA =
⋃

ai∈A

PROPOSEai
(Mai

, tk)

(b) atselected:= P (PROPOSALSA)
(c) UPDATEai

(Mai
, V (atselected, tk)) (∀ai ∈ A)

4. Until a termination criterion is satisfied

Fig. 1. A task is repeatedly assigned to different teams until a cri-
terion is satisfied (e.g., a team is believed to perform the task best).

of an ANNOUNCE process that broadcasts the task
tk ∈ T to all agents. Unlike reasoning processesRP
executed by a specific agentai (Definition 4), the AN-
NOUNCE process can be executed by any party. We
also assume that the policy is applied by anagent
apolicy that does not alter proposals or the outcome of
the policy. Note that finding an agentapolicy can be a
difficult problem in MAS, particularly if the MAS en-
courages opportunistic behaviour and the agent modi-
fies the outcome of the policy.

2.2.2. How Does the Assignment Algorithm Work?
The assignment algorithm presented in Figure 1

works as follows. In step 1, a task is announced and
broadcasted to all agentsA. Upon receiving this an-
nouncement, each agent initialises its models of the
performance of all teams (step 2 in Figure 1).

The loop (steps 3a, 3b, and 3c) is called anassign-
ment roundri with i being thei’th iteration of the
loop. A reasoning process or group decision executed
in a particular round is denoted with a lower index
indicating the round. For example, the team that has
been selected in round 3 is denoted byatselected,r3

,
and the policy outcome in that round is expressed by
Pr3

. The estimated performance of the selected team
atselected,r3

is denoted bŷVai,r3
(atselected, tk).

Each assignment round involves proposing a team
by each agent (step 3a), selecting a team (step 3b) and
learning from the performance of the assigned team
after task execution (step 3c).

– In step 3a, each agent proposes a team for the an-
nounced task and the proposals communicated by

the agents inA are stored inPROPOSALSA. For
example, agenta1’s PROPOSE process returns
proposala1

=〈{a1, a2}, 0.4〉 and agenta2 PRO-
POSE process returnsproposala2

=〈{a2}, 0.25〉.
The proposals communicated bya1 anda2 are:
PROPOSALSA={proposala1

= 〈{a1, a2}, 0.4〉,
proposala2

= 〈{a2}, 0.25〉}.
– In step 3b, an agentapolicy uses thePROPOSALSA

and a group decision policyP to select a
team atselected for the announced task (Defini-
tion 6). The selected teamatselectedis assigned to
the task and will then perform it. For example, a
policy can select the highest proposed teamat3
(consisting of agenta1 anda2).

– In step 3c, each agent updates its models
based on the true performance of the selected
team: V (atselected, bake). For example, the es-
timated valueV̂a1,ri

(at3, tk) = 0.4 is replaced
with the true performance of the selected team
V̂a1,ri+1

(at3, tk) = V (atselected, bake) = 0.2. The
models are now changed and this may alter the
selection of a team for the task in the next round.

An assignment round is repeated until the agent
apolicy terminates the algorithm according to a crite-
rion (step 4). A simple example of a criterion is to
limit the number of assignment rounds tok ∈ N (e.g.,
a similar criterion is used in [34]). Such a criterion
may be inefficient as it can terminate the algorithm
well before or well after an optimal team has been
selected. Other criteria may terminate the algorithm
more efficiently. For example, the algorithm may ter-
minate when no proposals specifies a team which es-
timated performance is higher than any previously se-
lected team. This paper considers criteria that uses the
proposed estimations and information of each team’s
true performance (as it becomes known). As our stud-
ies unfold in this paper, it will become clear that devel-
oping efficient criteria is a difficult problem.

2.2.3. Solution Computed by Algorithm
Finally, we need to specify the solution returned by

the algorithm when it terminates. We define this solu-
tion to be a team whose actual performance is no worse
than any team that has performed the designated task
in previous assignment rounds. More formally,

– Let ATKnownSoFar = {atj ∈ AT : atj =
atrt

, rt ≤ rcurrent, where rcurrent is the current
round}. That is, if the algorithm is currently in
roundrcurrent, and the performance of the selected
teamatrcurrent becomes known, thenATKnownSoFar

Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making 5

is a set of teams that were selected in rounds
r1, . . . , rcurrent. The performance of these teams
is known accuratelyVATKnownSoFar = {V (atj) :
atj ∈ ATKnownSoFar}. At the beginning of the
algorithm, before the first selection of a team,
ATKnownSoFar= ∅.

– Let atBestSoFar= argmax
atl∈ATKnownSoFar

V (atl) be the team

with the highest true performanceV (atBestSoFar)
in ATKnownSoFar.

Note that more than one team may satisfy this def-
inition, so that the solution returned by the algorithm
may be non-deterministic.

2.3. Formalising the CNET protocol in our
Framework

The contract net protocol is a well known coordina-
tion mechanism for distributed systems [36]. In CNET,
each agent proposes itself for an announced task (us-
ing its estimation of its own task performance) and
the highest bidding agent is selected for the task. The
CNET protocol is a traditional market-based allocation
scheme which assumes that each agent knows its own
performance best. Given its prevalence in many ap-
plication domains, this section briefly shows how the
CNET protocol can be formalised using our formal-
ism.

The algorithm in Figure 1 works similar to the
CNET protocol [36] by specifying the following com-
ponents of our framework.

– Each agent is also a team and vice versa. That is,
the group of agents is self-contained asA = AT .

– Each agent proposes itself with a self-estimate of
its own performance (and to this end, each agent
only needs to maintain a model of its own perfor-
mance).

– A maximum policy is used to select a team (which
is similar to a manager selecting the best bid).

– Our algorithm is terminated after one assignment
round.

Under this setting, finding an optimal allocation re-
lies on the accuracy of each agent’s estimations of its
own performance. For example, if an optimal agent’s
estimations remain lower than that of other agents, it
will never win the bid, and thus the agent’s true per-
formance will never be known. This paper shows that
our approach substantially extends the CNET protocol
to offer better and faster solutions. Note that [20] uses
this framework and algorithm to represent other well

known assignment processes, such as the process of
aggregating preferences in classical voting.

3. Theoretical Considerations

The previous section introduced a formal framework
and an algorithm that defines our approach to the Col-
lective Iterative Allocation (CIA) problem. This sec-
tion presents a theoretical study of our algorithm fo-
cusing on conditions under which we are guaranteed
to find optimal solutions, and different termination cri-
teria that influence the computational requirement of
the algorithm. Section 3.1 first discusses the underly-
ing assumptions of our study and Section 3.2 discusses
the efficiency aspects of the algorithm. Sections 3.3
and 3.4 then analyse the role of the agents’ estimations
of team performance in the efficiency of the algorithm.
In particular, we are interested in identifying condi-
tions under which the algorithm is guaranteed to find
a team that performs a task optimally, and conditions
that can reduce the computational requirement of the
algorithm.

3.1. Preliminaries

This theoretical study assumes that the capabil-
ity of each team will not change (it is invariant and
deterministic) when performing the same task under
the same conditions. This assumption is made to fo-
cus our investigations of the efficiency of the algo-
rithm on three aspects: accuracy of estimations, poli-
cies and termination criteria. In related work, the be-
haviour of a team is often implicitly assumed to be
the same whenever it performs the same task, because
the context under which the behaviour occurs does not
change [14, 37, 40].

It is worthwhile noting that the assumption on in-
variant and deterministic performance is not that re-
strictive, as we could in fact modelnormalisedperfor-
mance with respect to the environment or situation. For
example, if we applied this to long distance running,
and each iteration involves a different length race, we
could simply normalise by dividing the length of the
race by the race time and using this as the performance
measure.

For clarity of exposition, we have chosen to sim-
plify two aspects of the notation used in this chapter.
From now on, we assume a fixed tasktk ∈ T and we
use an abbreviated form of the notation for the pro-
cesses and estimations. For example, instead of notat-

6 Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making

ing an estimation witĥV (atj , tk), we now simply refer
to V̂ (atj). Analytical results that hold for a tasktk also
hold for any task selected fromT if performing this
task does not depend on first performing other tasks.
Finally, values, processes and policy outcomes are as-
sociated with the same round, if not indicated other-
wise. That is, if we have not indicated a value, process
or policy with a lower index of the round, they are as-
sociated with the same round.

3.2. Evaluating the Efficiency of the Assignment
Algorithm

[15, 16] propose three aspects to evaluate the effi-
ciency of allocation algorithms:solution quality– a
value of the solution computed for an allocation prob-
lem,computational requirement– the number of times
a dominant operation is repeated, andcommunication
requirements– total number of messages sent over the
network [15, 16].3 This paper uses two of these effi-
ciency aspects to evaluate our algorithm.

– Solution quality: performance of the team for a
particular task found by our algorithm.

– Computational requirement: number of assign-
ment rounds required before a solution is found.

The third aspect, communication requirement, can
be derived from the computational requirement by
multiplying the computational requirement with the
number of agents in a group. For example, for three
rounds and two agents, the number of communicated
proposals is: |rounds|× |A| = 3 × 2 = 6. This calcu-
lation underlies the assumption that each agent inA
communicates one proposal in each round.

To offer useful theoretical properties of the effi-
ciency of our algorithm, we need to make assumptions
about the reasoning processes, estimations maintained
by agents and the termination condition of the algo-
rithm. For example, if each agent proposes the same
team in each round and does not update its models, and
the algorithm terminates at some round in the future,
we would not be able to make precise predictions of
the efficiency of the algorithm. Hence, a specification

3Note that the term of computational requirement to describea
performance aspect of a coordination mechanism is not universally
shared. For example, Endriss and Maudet use the term “communi-
cation complexity” which refers to the number of deals required to
find an optimal assignment in the context of negotiation [10]. Eco-
nomic literature often refers to the notion of “transactioncosts” and
[20] discusses this notion in the context of CIA problems.

of the reasoning processes, estimations and termina-
tion conditions is required to offer theoretical proper-
ties on the efficiency of the algorithm.

Particularly, we show that under certain conditions,
we can guarantee to find anoptimal solutionwhich
is a team denoted byat∗ whose performance is not
lower than the performance of other teams inAT , i.e.,
at∗ = argmax

atj∈AT

V (atj) for all atj ∈ AT . Note that if

|argmax
atj∈AT

V (atj)| > 1, then there are several optimal

solutions.

3.3. Reaching Optimal Solutions under Complete
Group Optimism

This section examines the efficiency of the algo-
rithm under the assumption that a group of agents is
completely optimistic (i.e., each agent in the group is
optimistic). The next section examines if complete op-
timism is a prerequisite for guaranteeing an optimal
solution.

3.3.1. Policy – Independent Optimality under
Complete Group Optimism

Research on reinforcement learning found that op-
timistic initial estimations have a significant influence
on converging to optimal solutions as they encourage
the exploration of the problem space and eventually
lead to better results [38]. However, this research does
not offer any guarantees on finding optimal solutions
or the computational requirement of finding solutions.
Further, previous research only considers how a single
agent makes individual decisions and how this influ-
ences its own learning behaviour (and not how groups
of agents make decisions together). Research on rein-
forcement learning has not investigated the issue of op-
timism in collective decision making and learning. We
extend existing work to address this issue.

For this investigation, we need to define the notion
of complete optimism in a group of agents. To this end,
we first specify two reasoning processes used by each
agent (Definition 5), starting with the INITIALISE
process.

Definition 7. Optimistic Initialiser. An agentai is
an optimistic initialiser if, and only if, it does not
initialise its estimations of the performance of each
team atj ∈ AT with values lower than the team’s
true performance. That is, the INITIALISE process
(Definition 5) of agentai returns modelsMai

where
V̂ai

(atj) ≥ V (atj) for all teamsatj ∈ AT .

Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making 7

Example 1. There might be various situations under
which agents are optimistic initialisers. For example,
assume that we have two agentsa1 and a2 and two
teamsat1 and at2. Each agent observes each team
running a certain relay for a certain distance, and
records the time they take. Each agent observes the
same teams but over different distances. For example,
a1 observesat1 running 1 kilometre (km),a2 observes
the same team running 2 km; and similarlya1 ob-
servesat2 running 3 km anda2 observesat2 running
1 km. Now, the task given is to run a marathon of ap-
proximately 42 km. Each agent bases their estimations
of each team’s running performance by linearly ex-
trapolating from their prior observations of the run-
ning performance of teams of shorter distances. As-
sume that teams actually become slower on average
as they run longer distances. In this case, each agent
overestimates the performance of each team, all by dif-
fering amounts as they all observed the teams over dif-
ferent distances.

Definition 8. Optimistic Updater.An agentai is an
optimistic updater if, and only if, it does not update
its estimations of the performance of each teamatj ∈
AT for a task with values lower than the team’s true
performance. That is, the UPDATE process (Defini-
tion 5) of this agent returns updated modelsMai

where
V̂ai

(atj) ≥ V (atj) for all teamsatj ∈ AT .

Example 2. Agents may have several reasons not to
update their models with underestimations. Follow-
ing from the previous example (Example 1), consider
that agents have observed an improvement of each
team’s running performance over a shorter distance
(but the teams have not run a marathon yet). Agents
may therefore believe that a similar improvement is to
be expected for longer distances. For example, assume
that teamat1 and at2 improved their performance
on shorter distances. Assume that teamat1 requires
4 hours and teamat2 requires 41

2
hours to run a first

marathon and they would have already reached their
peak performance. Now, agents may assume a similar
improvement of the marathon performance as was ob-
served for teams running shorter distances. Then, for
a next marathon, each agent’s updated models will es-
timateat1’s time shorter than 4 hours andat2’s time
shorter than 41

2
hours.

For clarity of exposition, the following definition
refers to an optimistic agent as being one that is an op-
timistic initialiser and updater.

Remark 1.Optimistic Agent. We say that an agent is
optimisticif, and only if, the agent is anoptimistic ini-
tialiser (Definition 7) and anoptimistic updater(Defi-
nition 8).

Definition 9. Complete Group Optimism.A group
of agentsA is completely optimistic if, and only
if, each agent in this group is optimistic, so that
V̂ai

(atj) ≥ V (atj) for all ai ∈ A and for all atj ∈
AT at all times.

We also define an agent’s PROPOSE process repre-
senting the agent’s contribution to find an optimal so-
lution (which we also refer to astask rationality). For
this definition, recall the following expressions which
were first introduced in Section 2.2.3.

– Let ATKnownSoFar = {atj ∈ AT : atj =
atrt

, rt ≤ rcurrent, where rcurrent is the current
round}. That is, if the algorithm is currently in
roundrcurrent, and the performance of the selected
teamatrcurrent becomes known, thenATKnownSoFar

is a set of teams that were selected in rounds
r1, . . . , rcurrent. The performance of these teams
is known accuratelyVATKnownSoFar = {V (atj) :
atj ∈ ATKnownSoFar}. At the beginning of the
algorithm, before the first selection of a team,
ATKnownSoFar= ∅.

– Let atBestSoFar= argmax
atl∈ATKnownSoFar

V (atl) be the team

with the highest true performanceV (atBestSoFar)
in ATKnownSoFar.

Definition 10. Task Rational Proposer.An agentai is
a task rational proposer if, and only if, its PROPOSE
process (Definition 5) is as follows.

1. if ∃atj : V̂ai
(atj) > V (atBestSoFar), then

ai proposes a team with an estimation higher
than V (atBestSoFar), such that proposalai

=
〈atl, V̂ai

(atl)〉 where V̂ai
(atl) > V (atBestSoFar)

for a teamatl ∈ AT (note thatatl = atj
if V̂ai

(atj) is the only estimation higher than
atBestSoFar).

2. if ¬∃atj : V̂ai
(atj) > V (atBestSoFar), thenai pro-

poses any team.

If an agent has estimations higher thanV (atBestSoFar)
for several teams, a “cautious” task rational proposer
may, for example, propose the next best team to
atBestSoFar. Also consistent with this definition is a
“maximal” task rational proposer that specifies a team
with the overall highest estimated performance in the
agent’s models.

8 Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making

The first theorem demonstrates that complete group
optimism and task rationality are important premises
for guaranteeing the finding of an optimal solution
with our algorithm. These premises combined with
testing the proposals communicated in each round en-
able us to identify the precise conditions under which
an optimal solution is guaranteed. The importance of
this theorem is that the algorithm identifies an opti-
mal solution (under conditions of complete group op-
timism and task rationality), regardless of the type of
group decision policy used. Hence, we call this theo-
rem the sufficient condition.

Theorem 1. Optimality under Complete Group Opti-
mism and Task Rationality: Sufficient Condition.If

(A) the group of agentsA is completely optimistic
(Definition 9),4

(B) each agent inA is a task rational pro-
poser (Definition 10), and

(C) the algorithm does not terminate if
∀〈atj , V̂ (atj)〉 ∈ PROPOSALSA such that
V̂ (atj) > V (atBestSoFar),

then if the algorithm terminates it will terminate with
an optimal solution.

Proof. The theorem is proven by contradiction, i.e., we
assume that if the algorithm terminates, then we have
found a suboptimal teamatBestSoFar.

1. If the teamatBestSoFaris not an optimal team, then
there must be a teamat∗, such thatV (at∗) >
V (atBestSoFar).

2. According to(C), if the algorithm terminates, we
know that∃〈atj , V̂ (atj)〉 ∈ PROPOSALSA such
that V̂ (atj) ≤ V (atBestSoFar). Assume thata′ ∈
A is the agent that made this proposal.

3. According to (B), we know that
V (atBestSoFar) ≥ V̂a′(atj) for all atj ∈
AT . In particular, we know that
V (atBestSoFar) ≥ V̂a′(at∗).

According to 1.,V (at∗) > V (atBestSoFar), and ac-
cording to 3.V (atBestSoFar) ≥ V̂a′(at∗). So, we know
that V (at∗) > V̂a′ (at∗). However, this is a contra-
diction, because we assumed that no agent has initial
underestimations of the performance of any team nor
does it update its models with underestimations (Con-
dition (A)).

4The minimum condition for this theorem is that each agent is
optimistic of the performance of only an optimal team. However,
this premise is difficult to prove in many realistic problem domains.

To illustrate this theorem recall Examples 1 and 2.
The best marathon team is identified as soon as a pro-
posed estimation is not greater than the best marathon
team known so far, if we have a completely optimistic
and task rational group of agents (Definitions 9 and
10).

Note that if all estimations are higher than the true
performance of an optimal team, then we can define a
stronger ConditionC enabling an earlier identification
of an optimal solution and thus reducing the compu-
tational requirement of the algorithm (which is further
investigated in Section 3.3.3). This condition is true if
any proposed estimation communicated in any previ-
ous round is not greater thanatBestSoFar. In this case, we
know that, if the algorithm terminates, we have found
an optimal solution.

3.3.2. Optimal Solution with Three Termination
Criteria

We now define three termination criteria and inves-
tigate if they are guaranteed to terminate the algorithm
with an optimal solution. We first prove that an optimal
solution is found with each of these criteria. In Sec-
tion 3.3.3, we order these criteria with respect to their
computational requirement (i.e., the required number
of rounds before the algorithm terminates with an op-
timal solution).

For the following criteria, we assume that the policy
is restricted to not select a team more than once (to
prevent looping), hence the algorithm will eventually
terminate, because the set of teamsAT is finite (in the
worst case after all teams have been selected at least
once).

The following criterion terminates the algorithm if
all proposed estimations of the team selectedatselected

by the policy are not greater than the best one found so
far: atBestSoFar. In other words, we only terminate the
algorithm if no agent believes that we can find a better
team for the task.

Termination Criterion 1. The algorithm ter-
minates if the following condition is true:
∀ai ∈ A : proposalai

= 〈atselected, V̂ai
(atselected)〉 such

that V̂ai
(atselected) ≤ V (atBestSoFar).

The next criterion is more restrictive as it termi-
nates the algorithm if only one proposed estimation
of the performance of the selected team is not greater
thanatBestSoFar.

Termination Criterion 2. The algorithm ter-
minates if the following condition is true:

Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making 9

∃ai ∈ A : proposalai
= 〈atselected, V̂ai

(atselected)〉 such

that V̂ai
(atselected) ≤ V (atBestSoFar).

The third criterion is most restrictive as it will ter-
minate if at least one proposed team has an estimated
performance not greater thanV (atBestSoFar).

Termination Criterion 3. The algorithm ter-
minates if the following condition is true:
∃ai ∈ A : proposalai

= 〈atj , V̂ai
(atj)〉 such that

V̂ai
(atj) ≤ V (atBestSoFar).

We first prove that the most restrictive criterion,
TC 3, will terminate with an optimal solution.

Lemma 1. Optimality under Complete Group Opti-
mism and Task Rationality: Termination Criterion 3.
Under complete group optimism (Definition 9) and un-
der the condition that each agent is task rational (Def-
inition 10), the algorithm terminates with an optimal
solution using Termination Criterion 3.

Proof. We will prove optimality by showing that the
algorithm does not terminate before Condition(C) in
Theorem 1 is satisfied. Recall thatSETPROPOSALSA

is a set of all possible combinations of proposals that
can be communicated by agents (Definition 6).

1. LetSETPROPOSALSTC3 ⊆ SETPROPOSALSA

be a set of proposal sets, where each proposal set
PROPOSALSTC3 ∈ SETPROPOSALSTC3 will
satisfy TC 3.

2. Let PROPOSALS’TC3 ∈ SETPROPOSALSTC3

be an arbitrary set of proposals that will satisfy
TC 3.

3. According to TC 3, when the algorithm ter-
minates, there exists at least one proposal’∈
PROPOSALS’TC3 that does not estimate a team
greater thanV (atBestSoFar), such that proposal’=
〈atj , V̂ (atj)〉whereV̂ (atj) ≤ V (atBestSoFar).

Since proposal’ also satisfies Condition(C) speci-
fied in Theorem 1, the algorithm that uses TC 3 will
terminate with an optimal solution.

Lemma 2. Optimality under Complete Group Opti-
mism and Task Rationality: Termination Criterion 2.
Under complete group optimism (Definition 9) and un-
der the condition that each agent is task rational (Def-
inition 10), the algorithm terminates with an optimal
solution using Termination Criterion 2.

Proof. Since SETPROPOSALSTC2 ⊆
SETPROPOSALSTC3, SETPROPOSALSTC2 will
also consist of proposal sets which have at least one
proposal, proposal’, with a proposed performance
that is not greater thanatBestSoFar (as specified for
PROPOSALSTC3). Since proposal’ satisfies con-
dition (C) specified in Theorem 1, the algorithm
terminates with an optimal solution using Termination
Criterion 2.

Lemma 3. Optimality under Complete Group Opti-
mism and Task Rationality: Termination Criterion 1.
Under complete group optimism (Definition 9) and un-
der the condition that each agent is task rational (Def-
inition 10), the algorithm terminates with an optimal
solution using Termination Criterion 1.

Proof. Since SETPROPOSALSTC1 ⊆
SETPROPOSALSTC3, SETPROPOSALSTC1 will
also consist of proposal sets which have at least one
proposal, proposal’, with a proposed performance
that is not greater thanatBestSoFar (as specified for
PROPOSALSTC3). Since proposal’ satisfies con-
dition (C) specified in Theorem 1, the algorithm
that uses Termination Criterion 1 will terminate the
algorithm with an optimal solution.

3.3.3. Ordering Three Termination Criteria with
respect to Computational Requirement

For comparative purposes, consider an exhaustive
procedure that assigns each team at least once and af-
ter each team has performed a task, the true perfor-
mance of each team is known and an optimal solution
can be determined. By testing each team, one-by-one,
it is possible that an optimal team could be assigned
in the first round, but it will not be known if it is an
optimal team before testing all remaining teams. Our
aim in this section is to determine a ranking of Termi-
nation Criteria 1, 2 and 3 with respect to the number of
required rounds to find an optimal solution.

For the purpose of analysing the computational re-
quirement of the algorithm, the UPDATE and PRO-
POSE processes specified in Definitions 8 and 10 are
too general. For example, according to Definition 10
(task rational proposer), agents may propose any team
as long as they propose one with an estimation higher
thanV (atBestSoFar) (if there is such a team). Assume
that a1 is a task rational proposer and has three per-
formance estimationŝVa1

(at1) = 0.6, V̂a1
(at2) =

0.7 and V̂a1
(at3) = 0.8, V (atBestSoFar) = 0.5, and

V (at1) = V (at2) = 0.5 andV (at3) = 0.8. As a1 is
task rational it could proposeat1 first, thenat2, and

10 Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making

finally at3 or it could proposeat2 first, and thenat3. It
could also proposeat3 in the first round. As seen from
this example, we cannot predict how many rounds are
required before the algorithm terminates if agents act
according to Definition 10. Also, if agents use the opti-
mistic UPDATE process specified in Definition 8, each
agent may only make slight changes to its models and
propose different teams before the algorithm termi-
nates.

An assessment of the computational requirement of
the algorithm with a particular criterion requires more
restrictive definitions of the PROPOSE and UPDATE
processes. These definitions will enable us to prove
specific theorems of the computational requirement of
the algorithm.

For Theorem 1, we assumed that each agent is an
optimistic updater – the following definition is a spe-
cial case of such an agent (Definition 8).

Definition 11. Accurate Updater.An agentai is an
accurate updater if, and only if, the UPDATE process
of this agent replaces an estimated value of a team
with the value that represents the observed perfor-
mance of the selected team (after it performs the task):
V̂ai

(atselected) = V (atselected).5

The following definition is a special case of a task
rational proposer (Definition 10).

Definition 12. Maximal Task Rational Proposer.An
agent is a maximal task rational proposer if, and only
if, it proposes a team with the highest estimated per-
formance according to the estimations in its mod-
els. That is, an agentai proposes a teamatj with
max

atj∈AT
V̂ai

(atj).

We can now rank the Termination Criteria 1, 2 and
3 according to the number of rounds the algorithm re-
quires to find an optimal solution. We say that “TC x
is at least as efficient as TC y”, if the algorithm termi-
nates with TC x in no greater number of rounds than
it would take for the algorithm to terminate with TC y
(in other words, TC y will need at least as many rounds
as TC x). The next theorem states that Criterion 2 is at
least as efficient as Criterion 1.

Theorem 2. Termination Criterion 2 is at least as ef-
ficient as Termination Criterion 1.If each agent in

5Since we assume that the performance of teams is invariable,the
observed performance equals the true performance of a team.

A is an optimistic initialiser (Definition 7), a maximal
task rational proposer (Definition 12), and an accurate
updater (Definition 11), then TC 2 will terminate the
algorithm with an optimal solution in at least as many
rounds as TC 1.

Proof. We will prove this theorem by showing that
there is a set of proposals that terminates the algorithm
with TC 2, but not with TC 1.

Let SETPROPOSALSTC1 ⊆ SETPROPOSALSA

be a set of all proposal sets that will satisfy TC 1
and let SETPROPOSALSTC2 ⊆ SETPROPOSALSA

be a set of proposal sets that will satisfy TC 2
(SETPROPOSALSA is a set of a combination of pro-
posals communicated by agents, Definition 6).

According to Lemma 2, if the algorithm terminates
with TC 2 and finds an optimal solution, then it
will also terminate and find an optimal solution with
TC 1. We also know thatSETPROPOSALSTC2 ⊆
SETPROPOSALSTC1. Then, we know that
SETPROPOSALSTC2/SETPROPOSALSTC1 are
proposal sets that will terminate with TC 2, but not
with TC 1. In other words, any sequence of rounds
that terminates with TC 1 will terminate with TC 2
after the same number of rounds, if not earlier.

Theorem 3. Termination Criterion 3 is at least as ef-
ficient as Termination Criterion 2.If each agent in
A is an optimistic initialiser (Definition 7), a maximal
task rational proposer (Definition 12), and an accurate
updater (Definition 11), then TC 3 will terminate the
algorithm with an optimal solution in at least as many
rounds as TC 2.

Proof. According to Lemma 2, we know that
SETPROPOSALSTC1 are the proposal sets that
terminate the algorithm with an optimal solu-
tion. We also know thatSETPROPOSALSTC2 ⊆
SETPROPOSALSTC3. Hence, this proof is simi-
lar to the proof for Theorem 2. In brief, we have
SETPROPOSALSTC3/SETPROPOSALSTC2 which
are the proposal sets that will terminate with TC 3, but
not with TC 2. That is, any sequence of rounds that
terminates with TC 2 will terminate with TC 3 after
the same number of rounds, if not earlier.

Corollary 1. From Theorems 2 and 3, we can see that
TC 3 is at least as efficient as TC 1 and TC 2.

That is, the algorithm with TC 3 never requires more
rounds than with the other two criteria (if agents are

Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making 11

completely optimistic, accurate updaters and maximal
task rational).

Note that the algorithm may require even fewer
rounds if each agent uses the estimations specified in
proposals made by other agents, because the lowest es-
timation maintained by one agent is still an overesti-
mation and can be used by other agents to update their
models. For example, if a proposed estimation of a
teamat1 by agenta1 is lower than the estimation main-
tained by agenta2, thena2 could improve its models
by usinga1 proposed estimation.

3.3.4. Optimal Solutions with Three Policies:Pmin,
Pmax andPmaj

We now introduce three policies, the minimum pol-
icy Pmin, the maximum policyPmax and the majority
policy Pmaj. To define the first two policies,Pmin and
Pmax, we will denote a setVPROPOSALSA which are the
estimations specified inPROPOSALSA:

V̂PROPOSALSA = {V̂ai(atj)|〈atj , V̂ai(atj)〉 ∈ PROPOSALSA}

Under complete group optimism, the minimum policy
can be viewed as a conservative group decision pol-
icy as it selects the team proposed with the lowest esti-
mation (but not an underestimation of the true perfor-
mance of a team if each agent is optimistic).

Definition 13. Minimum Policy. Formally, the mini-
mum policy is defined byPmin(PROPOSALSA) = atj ,
where atj is a random team selected from set
ATmin = {atmin|〈atmin, V̂min〉 ∈ PROPOSALSA,
whereV̂min = argmin

V̂i∈V̂PROPOSALSA

(V̂i)}.

The maximum policy always selects the team pro-
posed with the highest estimated performance.

Definition 14. Maximum Policy.Formally, the maxi-
mum policy is defined byPmax(PROPOSALSA) = atj ,
where atj is a random team selected from set
ATmax = {atmax|〈atmax, V̂max〉 ∈ PROPOSALSA,
whereV̂max = argmax

V̂i∈V̂PROPOSALSA

(V̂i)}.

The third policy is the majority policy which se-
lects the team that is preferred by the largest number of
agents. As opposed to the minimum or maximum pol-
icy, the advantage of the majority policy is that it can
prevent the selection of a team that has been proposed
based on an unrealistically high estimation which is far
removed from the true performance of a team. To de-

fine the policyPmaj, we use a setATPROPOSALSA which
are the teams specified inPROPOSALSA:

ATPROPOSALSA = {atj |〈atj , V̂ai(atj)〉 ∈ PROPOSALSA}

Definition 15. Majority Policy. Formally, the major-
ity policy is defined byPmaj(PROPOSALSA) = atj ,
whereatj is the team selected from the setATmaj =

{atmaj| argmax
atmaj∈ATPROPOSALSA

|{ai : 〈atmaj, V̂ai
(atmaj)〉 ∈

PROPOSALSA}|}.

We adopt a definition of the term majority which
related literature often refers as “plurality rule”, “first
past the post” and “winner takes all”. Related research
also defines majority such that at least half the agents
have selected a particular team.

Using Theorem 1 and any of the policies, we know
that the algorithm will find an optimal solution under
complete group optimism. Note that this corollary as-
sumes the PROPOSE and UPDATE processes in Defi-
nition 7 and Definition 8.

Corollary 2. Optimality with Pmin, Pmax and Pmaj.
Under the conditions(A)–(C) introduced for Theo-
rem 1, we know that usingPmin, PmaxandPmaj will find
an optimal solution, if the algorithm terminates.

Proof. Condition(C) of Theorem 1 states that an op-
timal solution is found if there exists a proposal with
an estimation not greater thanV (atBestSoFar). The se-
lection of this team is independent of the group deci-
sion policy.

Example 3. Let us illustrate Corollary 2 by an ex-
ample run of the algorithm using the policyPmax

(depicted in Table 1). We consider a self contained
group of agentsA = AT , where three agents
assign a task to each other. Formally, the group
of agents isA = {a1, a2, a3} is also a set of
agent teamsAT = {at1 = a1, at2 = a2, at3 = a3}.
The true performance (capability C) of each of these
agents is represented by the values specified in the last
row in each round to illustrate the difference to the up-
dated estimations (Table 1).

In this example, Condition(A) is met, because es-
timations of the performance of a team are not ini-
tialised or updated with values lower than that of the
true performance of the team, i.e., the group of agents
is completely optimistic. For example, in roundr1,
agenta1 has an initialised estimation of its own per-
formance (hereat1 sinceat1 = a1) that is far greater

12 Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making

r1 at1 at2 at3 Proposals Policy Selection

Ma1
0.85 0.5 0.8〈at1, 0.85〉

Ma2
0.3 0.950.75〈at2, 0.95〉







Pmax = at2

Ma3
0.350.55 0.9 〈at3, 0.9〉

C 0.2 0.4 0.7

ATKnownSoFar 0.4 (atBestSoFar= at2)

r2 at1 at2 at3

Ma1
0.85 0.6 0.8〈at1, 0.85〉

Ma2
0.3 0.5 0.75〈at3, 0.75〉







Pmax = at3

Ma3
0.35 0.4 0.9 〈at3, 0.9〉

C 0.2 0.4 0.7

ATKnownSoFar 0.4 0.7 (atBestSoFar= at3)

(If an estimation in any proposalr2+i ≤ 0.7,

then conditionD in Theorem 1 is true)

(In this example, the next round consists of such a proposal)

r3 at1 at2 at3

Ma1
0.85 0.6 0.8〈at1, 0.85〉

Ma2
0.3 0.5 0.7 〈at3, 0.7〉

Ma3
0.35 0.4 0.8 〈at3, 0.8〉

C 0.2 0.4 0.7

ATKnownSoFar 0.4 0.7 (atBestSoFar= at3)

Table 1

An example run illustrating Theorem 1 with the policy Pmax (bold-
faced value is the true performance of teamatBestSoFar– when the
algorithm terminates, the solution will specify this team)

than its true performance (0.85>0.2). Also, an updated
estimation of a team remains at least as large as its
true performance. For example, in round 2, agenta1

updates its model of the previously selected team with
values higher than the team’s true performanceat2
(V̂a1,r1

(at2) = 0.5 in roundr1 andV̂a1,r2
(at2) = 0.6

in roundr2).
According to Condition(B), each agent proposes

a team with an estimation higher than the true per-
formance ofatBestSoFar(for the proposals in the first
round, there are no restrictions about which team can
be proposed since no team has performed the task yet).
For example, in round 2, agenta3 proposesat3 as the
estimation ofat3’s performance is the only one ina3’s
models that is not smaller than the true performance
of atBestSoFar(0.9>0.4, but 0.4=0.4 and 0.35<0.4).

After task execution in round 2, we know that the
true performance ofatBestSoFaris 0.7 which is also the
best performing team known so far. As soon as an esti-
mation in a proposal is not greater than 0.7, then Con-
dition (C) is satisfied. In this example, in roundr3, an
estimation is equal to that of the best team selected so
far (at3). As all Conditions(A)–(C) are satisfied after
round 2, we know that if the algorithm terminates af-

ter round 2 (or any following round) we have found an
optimal solution (as stated by Corollary 2).

In summary, teamsat2 andat3 have been assigned,
but notat1, thus we know thatat3 is an optimal so-
lution before the algorithm assignsat1. This example
demonstrates how the algorithm is guaranteed to find
an optimal solution, if it terminates in any round. That
is, it is not depending on any termination criterion.
Since the following theorems are proven under more
specific assumptions regarding criteria and processes,
they enable us to make stronger assertions about the
computational requirement. Finally, the algorithm may
run for 5, 10, or 20 rounds as we have assumed an op-
timistic update process that replaces an initial estimate
with a value no smaller than the original estimate. A
special case of this process is when the update process
replaces the estimate with exactly the observed value.

3.4. Reaching Optimal Solutions under Partial Group
Optimism

The theorems in the previous section relied on
the assumption of complete group optimism (Defini-
tion 9). We now consider apartially optimisticgroup
of agents, where agents also have underestimations of
the true performance of teams. Under partial group op-
timism, the proof in Theorem 1 does not guarantee an
optimal solution as a proposal that is not greater than
atBestSoFarmay be an underestimation of the perfor-
mance of a team (and this does not satisfy the Con-
ditions(A)–(C), Theorem 1). To guarantee an optimal
solution, we now have to more closely examine the
role of the policies defined in Section 3.3.4.

3.4.1. Optimality under Minimal Group Optimism
An optimal solution can be found with the maxi-

mum policy if we know that at least one agent is opti-
mistic about at least one optimal team.

Definition 16. Minimal Group Optimism.We say that
a group of agents is minimal optimistic if, and only if,
at least one agent in that group is optimistic, so that
∃ai ∈ A, ∀atj ∈ AT : V̂ai

(atj) ≥ V (atj) at all times.

Theorem 4. Maximum Policy: Sufficient Condition.
If

(A) a group of agentsA is minimal optimistic (Def-
inition 16),

(B) optimistic agents are also task rational pro-
posers (Definition 12),

Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making 13

(C) we use the maximum group decision policy:
Pmax (Definition 14), and

(D) the algorithm does not terminate if
∃〈atselected, V̂ (atselected)〉 ∈ PROPOSALSA such
that V̂ (atselected) > V (atBestSoFar),

then if the algorithm terminates it will terminate with
an optimal solution.

Proof. The theorem is proven by contradiction, i.e., we
assume that if the algorithm terminates, then we have
found a suboptimal teamatBestSoFar.

1. If the teamatBestSoFaris not an optimal team, then
there must be a teamat∗, such thatV (at∗) >
V (atBestSoFar).

2. According to(D), if the algorithm terminates, we
know that∀〈atselected, V̂ (atselected)〉 ∈ PROPOS-
ALSA such that̂V (atselected) ≤ V (atBestSoFar).

3. Let a’ be the optimistic and task ra-
tional agent in A. According to (C), if
the algorithm terminates, we know that
V̂ (atselected) > V̂a′(atj), V̂a′(atj) ∈ V̂PROPOSALSA ,
becauseatj has not been selected byPmax.

4. According to(B), if the algorithm terminates, we
know thatV (atBestSoFar) ≥ V̂a′(atj) for all atj ∈
AT and for a’.

According to 1.,V (at∗) > V (atBestSoFar), and ac-
cording to 3. and 4.V (atBestSoFar) ≥ V̂a′(at∗). So, we
know thatV (at∗) > V̂a′(at∗). However, this is a con-
tradiction, because we assumed that agenta′ is an op-
timistic initialiser and initial updater with respect to all
teams inAT (Condition(A)).

3.4.2. Optimality under Majority Group Optimism
Definition 17. Majority Group Optimism.We say that
a group of agents is majority optimistic if, and only if,
the majority of agents in that group are optimistic, so
that V̂ai

(atj) ≥ V (atj) for the majority ofai ∈ A and
for all atj ∈ AT at all times.

A proof of a theorem stating optimality with a group
of majority optimistic agents is a variation of the proof
for Theorem 4. In brief, the majority policy will se-
lect the team that is overestimated by the majority of
agents. By assumption, an optimal team is overesti-
mated by the majority of agents. We know that teams
that are overestimated will be selected until we find
a team whose performance is greater than the estima-
tions of other teams. The algorithm will not terminate
until the majority of agents has estimations about an
optimal team which are higher than estimations about
other teams.

3.4.3. Policy: Independent Optimality under Minimal
Group Optimism

The following theorem is an important variation of
Theorem 1 as it does not assume a completely op-
timistic group of agents. Under minimal group opti-
mism, we can still guarantee optimality with a less re-
strictive Condition(C) involving an assessment of the
proposals made by the agents.

Theorem 5. Minimal Group Optimism: Sufficient
Condition. If

(A) a group of agentsA is minimal optimistic (Def-
inition 16),6

(B) optimistic agents are also task rational pro-
posers (Definition 12), and

(C) the algorithm does not terminate if
∃〈atj , V̂ (atj)〉 ∈ PROPOSALSA such that
V̂ (atj) > V (atBestSoFar),

then if the algorithm terminates it will terminate with
an optimal solution.

Proof. The theorem is proven by contradiction, i.e., we
assume that if the algorithm terminates, then we have
found a suboptimal teamatBestSoFar. Let a′ ∈ A be an
agent that remains optimistic about the performance of
an optimal team (according to(A)).

1. If the teamatBestSoFaris not an optimal team, then
there must be a teamat∗, such thatV (at∗) >
V (atBestSoFar).

2. According to(C), if the algorithm terminates,
we know that∀〈atj , V̂ (atj)〉 ∈ PROPOSALSA
such that̂Vai

(atj) ≤ V (atBestSoFar) for all agents
ai ∈ A. In particular, we know thata′ has made
a proposal, wherêVa′(atj) ≤ V (atBestSoFar).

3. According to(B), if the algorithm terminates, we
know thatV (atBestSoFar) ≥ V̂ai

(atj) for all atj ∈
AT and for allai ∈ A. In particular, we know
thatV (atBestSoFar) ≥ V̂a′ (atj).

According to 1.,V (at∗) > V (atBestSoFar), and ac-
cording to 3.V (atBestSoFar) ≥ V̂a′(at∗). So, we know
thatV (at∗) > V̂a′(at∗). However, this is a contradic-
tion, because we assumed that agenta′ is an optimistic
initialiser and initial updater with respect to all teams
in AT (Condition(A)).

6The minimum condition for this theorem is that there exists one
agent that is optimistic regarding the performance of one optimal
team. However, this premise is difficult to prove in many realistic
problem domains.

14 Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making

Another important variation of Theorem 1 is one
where we keep the original ConditionC (i.e., the al-
gorithm does not terminate if all proposals are greater
thanV (atBestSoFar)) and then assume that each agent
is a maximal task rational proposer (Definition 12).
Note that in this case, the insights obtained with re-
spect to the computational requirement (Theorems 2
and 3) also apply. We do not prove this statement here
as it is similar to the proof provided for Theorems 1
and 5.

3.4.4. Determining Precise Computational
Requirement under Partial Optimism

Under partial optimism, Termination Criterion 3 is
not guaranteed to terminate the algorithm with an op-
timal solution. A proposed estimation of an optimal
team could be lower than its true performance, and also
lower than the teamatBestSoFarand this would terminate
the algorithm with a suboptimal solution. This reason-
ing applies to Termination Criterion 2 which could also
terminate with a suboptimal solution. Only Termina-
tion Criterion 1 ensures that the algorithm does not ter-
minate with an underestimation. Hence, it is assumed
for the theorems in this section. Note also that we as-
sume that agents are accurate updaters (Definition 11)
and maximal task rational proposers (Definition 12).

The following theorem defines conditions which de-
termine the precise number of rounds until the algo-
rithm converges to an optimal solution withPmax. In-
formally, if there exists an agent that estimates the per-
formance ofm teams (ofn teams) higher than the true
performance of an optimal team (but whose perfor-
mance is actually lower than that of an optimal team),
and if the performance of an optimal team is higher
than the estimated performance of the othern − m
teams, then an optimal solution is found in exactlym
rounds. Letat′ be an optimal team. LetAT∗ ⊆ AT
be a set of teams such that∀atj ∈ AT∗, ∃ai ∈ A with
V̂ai

(atj) ≥ V (at′), but whereV (atj) < V (at′).

Theorem 6. Maximum Policy: Assignment Rounds.
If max

ak∈A
V̂ak

(at′) ≥ V (at′) and V (at′) ≥

max
al∈A,at′′∈|AT−AT∗|

V̂al
(at′′), thenPmax is guaranteed

to find an optimal teamat′ in |AT∗| rounds.

Proof. Pmax selects the team with the highest proposed
performance, and we know that|AT∗| teams have
higher estimations than the true and estimated perfor-
mance of an optimal team, but do actually perform a
task worse than an optimal team. Each team inAT∗

is selected before an optimal team, sinceV̂ai
(atj) >

V (atj), ∀atj ∈ AT∗. Since these teams have a true
performance that is lower than the estimated perfor-
mance of an optimal team, each of them will be se-
lected once and then not be selected again. The other
teamsAT∗ − AT will never be selected as their es-
timations are lower than that of an optimal team and
the teams inAT∗. Thus, exactly|AT∗| teams perform
the task, after which the algorithm terminates with an
optimal team.

The majority policy will also find an optimal solu-
tion.

Theorem 7. Majority Policy: Assignment Rounds.If
the majority of agents estimate the performance ofm
teams (of alln teams) higher than the performance
of an optimal team, and if the majority of agents esti-
mates the performance of an optimal team higher than
its true performance, thenPmaj finds an optimal solu-
tion in m rounds.

Theorems 6 and 7 imply that in the best case an op-
timal solution can be found in only one round. The the-
orems also imply that an optimal solution can be found
before all teams have been assigned once (i.e., the al-
gorithm does not require more rounds than the exhaus-
tive procedure). For the maximum policy, we can de-
rive the following corollaries (similar corollaries can
easily be derived for the majority policy).

Corollary 3. Minimum Number of Assignment
Rounds. If the performance of an optimal team is
estimated to be higher than the performance of the
other teams, and if the other estimations are lower
than the true performance of an optimal team, then
we find an optimal solution in one round with the
maximum policyPmax.

We can also show that the maximum number of
rounds is not greater than the number of teams, which
means that the maximum number of rounds for the al-
gorithm is not greater than those required when trying
each team at least once.

Corollary 4. Maximum Number of Assignment
Rounds.For n teams, if we have at least one agent that
is optimistic of the performance of an optimal team,
and if the estimations about the othern − 1 teams are
higher than the true and estimated performance of an
optimal team, then we will find an optimal solution in
n rounds with the maximum policyPmax.

Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making 15

COMPLETE GROUP OPTIMISM Optimality Computational requirement

Complete Group Optimism (Definition 9)

∀ai ∈ A Task Rational Proposer (Definition 10)

Theorem 1 YES Not Determined

the algorithm does not terminate if

¬∃〈atj , V̂ (atj)〉 ∈ PROPOSALSA, V̂ (atj) ≤ V (atBestSoFar)

Corollary 1 YES Not Determined

Minimum PolicyPmin (Definition 13)

Maximum PolicyPmax (Definition 14)

Majority PolicyPmaj (Definition 15)

Lemma 1 YES T C1 ≤ |AT |

TC 1:∀ai ∈ A : proposalai
= 〈atselected, V̂ai(atselected)〉

such that̂Vai(atselected) ≤ V (atBestSoFar)

Lemma 2 YES T C2 ≤ |AT |

TC 2:∃ai ∈ A : proposalai
= 〈atselected, V̂ai(atselected)〉

such that̂Vai(atselected) ≤ V (atBestSoFar)

Lemma 3 YES T C3 ≤ |AT |

TC 3:∃ai ∈ A : proposalai
= 〈atj , V̂ai(atj)〉

such that̂Vai(atj) ≤ V (atBestSoFar)

∀ai ∈ A,∀atj ∈ AT Accurate Updater (Definition 11)

∀ai ∈ A Maximal Task Rational Proposer (Definition 12)

Theorem 2 YES T C2 ≤ T C1 ≤ |AT |

Theorem 3 YES T C3 ≤ T C2 ≤ |AT |

Corollary 2 YES T C3 ≤ T C2 ≤ T C1 ≤ |AT |

Table 2

Optimality and computational requirement of the algorithmunder
complete group optimism.

If we know that agents are optimistic in a given
domain, we can use the assignment algorithm to ex-
ploit the above property in reducing the number of
rounds required to find an optimal solution. That is,
Theorems 6 and 7 enable us to make statements about
the computational requirements of our algorithm under
partial optimism. For example, the theorems show that
if we have prior knowledge of the agents’ estimations,
then we can determine an acceptable upper bound on
the number of reassignments required. Another useful
insight is that if we know that the majority of agents
are not optimistic about an optimal team (but we have
at least one agent that is optimistic about an optimal

team), then we are guaranteed to find an optimal team
with Pmax.

Note that the computational requirement of the al-
gorithm can be reduced if we know that one agent is
optimistic. The algorithm can be terminated more ef-
ficiently with Termination Criterion 3. The proof pro-
vided in Section 3.3.3 can be adopted to prove this
statement.

This paper does not offer proofs for variations
of previous theorems, but instead we outline a few
ideas. For example, we can order policies according
to their computational requirement under partial op-

16 Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making

PARTIAL GROUP OPTIMISM Optimality Computational requirement

Minimum Group Optimism (Definition 16)

Theorem 4 YES Not Determined

Maximum PolicyPmax

the algorithm does not terminate if

¬∃〈atj , V̂ (atj)〉 ∈ PROPOSALSA, V̂ (atj) ≤ V (atBestSoFar)

Theorem 5 YES Not Determined

the algorithm does not terminate if

∃〈atj , V̂ (atj)〉 ∈ PROPOSALSA, V̂ (atj) > V (atBestSoFar)

Theorem 6 YES |AT∗|

∀atj ∈ AT∗,∃ai ∈ A :

V̂ai(atj) ≥ V (at′), whereat′ is an optimal team

Theorem 7 YES |AT∗|

∃ majority |AT∗| overestimations

Corollary 3 YES |AT∗| = 1

Corollary 4 YES |AT∗| = |AT |

Theorem 8 NO Not Determined

Group pessimism (Definition 19)

Table 3

Optimality and computational requirement of the algorithmunderpartial group optimism.

timism which requires a stricter definition of Defini-
tion 16.

Definition 18. Strict Minimal Group Optimism.We
say that a group of agents is strictly minimal op-
timistic if, and only if, one agenta′ in that group
is optimistic and the other agents are pessimistic,
so that a′ ∈ A, ∀atj ∈ AT : V̂a′(atj) ≥ V (atj) and
a′ 6= ai ∈ A, ∀atj ∈ AT : V̂ai

(atj) < V (atj) at all
times.

Under strict minimal group optimism, the minimum
policy is no more efficient than the maximum policy.
A proof to this assertion is a variant of proofs in the
previous section.

3.4.5. Suboptimal Solutions under Group Pessimism
In the previous section, we focused on guaranteeing

to find an optimal team with optimistic estimations.
However, it is also important to identify conditions un-
der which an optimal team can not be found.

If all agents have estimations of optimal teams that
are lower than the true performance of other teams,
then it is called a pessimistic group.

Definition 19. Group Pessimism.A group of agentsA
is pessimistic if, and only if, each agent in this group
initialises its estimation of all optimal teams lower
than that of other teams, so thatV̂ai

(atj) < V (atj) for
all ai ∈ A and for allatj ∈ AT at all times.

The following theorem assumes group pessimism
and task rationality, thus preventing the algorithm from
finding an optimal solution.

Theorem 8. If a group of agents is pessimistic, and if
each agent is maximal task rational (Definition 12),
then an optimal solution will never be found (regard-
less of the group decision policy used).

Proof. Since an optimal teamat∗ is always estimated
to be lower than other teams by all agents, then an op-
timal team will never be proposed in any round. Recall

Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making 17

that we defined a group decision policy as one that se-
lects a team from those that have been proposed, and
therefore an optimal team will never be selected, be-
cause it has not been proposed. Thus, an optimal solu-
tion will never be found.

If we know that a group of agents is pessimistic and
each agent is task rational, then a different policy may
be more appropriate, for example, a policy that selects
a random team from teams that have not been pro-
posed.

Tables 2 and 3 provide an overview of the theoretical
results.

4. Empirical Study

This section presents an empirical simulation-based
study investigating the influence of model accuracy
and group decision policies on the efficiency of the
TAP algorithm. This study is illustrated by a model of
a domain involving surf rescues, where a group of res-
cue teams endeavours to allocate the best rescue team
to a rescue task (Section 4.1). Section 4.4 defines an
experiment that examines the role of agents’ initial es-
timations of the rescue performance of rescue teams
and the role of the maximum, minimum and majority
group decision policy in the assignment procedure.

4.1. Illustration of Study: A Model of a Surf Rescue
Domain

RoboCup Rescueis a research initiative that offers
many practical domains in which autonomous systems
perform and coordinate tasks in disaster situations,
such as bushfires and earthquakes [28, 26, 29]. As part
of this initiative, [26] have been the first to propose a
surf rescue domain involving rescues coordinated by
autonomous robots on remote beaches. The main re-
search interest of [26] is on building autonomous res-
cue teams endowed with specific hardware compo-
nents. Such components cope with the harsh environ-
mental conditions in the surf, e.g., coping with noisy
sensory input and meeting high power demands. Our
interest is in using this domain as a platform to illus-
trate the main components of a CIA problem.

4.2. Formalising the Main Components in a Surf
Rescue Domain using our Framework

A Surf Rescue (SR) domain involves a panel of se-
nior lifesavers that endeavours to allocate an optimal

rescue team to the task of rescuing a distressed swim-
mer. Each rescue requires a team of individual life-
savers that perform different roles (and this paper as-
sumes that each team is estimated as a unique object).
Each panel member has an initial notion of how a team
would perform the rescue, and the panel can refine res-
cue allocations based on their observations of how well
different teams perform a rescue.

A SR domain is represented using the formal defini-
tions of our framework presented in Section 2.

– Taskdomain. We consider a specific rescue task
denoted byt=rescue(Definition 1). The execution
of a rescue task does not depend on first execut-
ing other tasks (because we assume task indepen-
dency). The panel will re-allocate a team to the
rescue on a regular basis.

– Teams. Each rescue team consists of lifesavers
performing different roles during a rescue. We
have a finite number of rescue teams that are con-
sidered for performing a rescue task.

– Agents. Agents are represented as a panel of se-
nior lifesavers and each agent (or panel member)
actively participates in making an allocation of a
team to the rescue task.

– Policy. The policy considers the proposals sub-
mitted by individual panel members to select one
of the proposed rescue teams.

Our focus is on finding an optimal team after as-
signing and testing as few teams for the rescue task as
possible.

Each agent maintains models of the rescue per-
formance of the teams and each agent has processes
to use these models (Definitions 4 and 5). In par-
ticular, each agent uses a value function that repre-
sents how well a team rescues the swimmer (e.g., the
faster the distressed swimmer is retrieved, the higher
the value returned by this function). The values of
this function range from 0 to 1, where 0 represents
that a team is not able to perform a rescue and 1
represents an optimal rescue performance. For exam-
ple, agenta1 has a model of the rescue performance
of teamat3, i.e., a1’s model of at3’s rescue perfor-
mance:Ma1

(at3) = {V̂a1
(at3, rescue) = 0.6} (Defi-

nition 4).7 To illustrate the difference between the

7Each agent may have preconceived notions of the performance
of the rescue teams and we assume that agents derive these initial
estimations from prior experience. Since these estimations are id-
iosyncratic, building a model about where they come from is an open
research issue [6] and is not addressed in this paper.

18 Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making

models maintained by agents and the capabilities
of rescue teams, we specify each team’s true res-
cue performance by its capabilityC, e.g., for at3:
C(at3) = {V (at3, rescue) = 0.3}. According to these
two values,a1 overestimatesat3’s rescue performance
(0.6 > 0.3).

Each agentai has three reasoning processes that
use the estimations stored in its models (Definition 5):
INITIALISE, PROPOSE and UPDATE. Each agent
proposes a team that has the highest estimated res-
cue performance according to the agent’s models (i.e.,
each agent is a maximal task rational proposer, Def-
inition 12). Each agent updates its models accurately
when it observes the rescue performance of a team
(i.e., each agent is an accurate updater, Definition 11).

The process ofannouncing the taskand applying
the policy are steps in our algorithm, but they are
not central to the analysis of our experiments. We ex-
plain them briefly for clarity of exposition. The AN-
NOUNCE process is executed once to all agents as
the first step in the assignment procedure (e.g., at the
beginning of a season, the senior lifesavers identify
the rescue as being a central part of patrolling surf
beaches). For the second process, a designated “chair-
man” of the panelapolicy will apply a group decision
policy P and will collect proposals by senior life-
savers throughout the assignment rounds. As discussed
in Section 2.2.1, this paper does not assume specific
features of the entities that execute these processes.

The four components, Tasks – T, Agent Teams – AT
(i.e., rescue teams), Agents – A (i.e., panel of senior
lifesavers), Policy – P, are used as input by the assign-
ment algorithm as described in the next section.

4.3. Sample Run of the Assignment Algorithm in the
Surf Rescue Domain

This section describes a sample run of the assign-
ment algorithm to find a rescue team for a rescue
(based on the algorithm depicted in Figure 1). This
sample run has the following properties.

– Policy Pmax (Definition 14) is used to select the
rescue team with the highest proposed rescue per-
formance.

– Termination Criterion 1 (page 8) is used to termi-
nate the algorithm (i.e., if all estimations of the se-
lected team contained in proposals are not greater
than the true performance of the best rescue team
found so far, and the policy is restricted to not se-
lect the same rescue team more than once).

– Interactions are confined between agentsa1 and
a2 (for clarity of exposition). That is, only agents
a1 and a2 maintain models of rescue teams
at3 andat4 (Ma1

(at3), Ma1
(at4), Ma2

(at3) and
Ma2

(at4)), propose a rescue team and update
models of selected rescue teams. Only res-
cue teamsat3 andat4 can be assigned to the res-
cue.

The sample run is depicted in Table 4.

– Column 1 indicates the step of the algorithm.
– Column 2 indicates the status of the group.
– Columns 3–4 show the processes executed by

agentsa1 anda2 at a particular step of the algo-
rithm.

– Columns 5–6 contain values of the true perfor-
mance of the rescue teams. The true performance
of the rescue teams selected for a rescue is bold-
faced.

– Columns 7–10 contain the models maintained
by agents (the estimated performance of res-
cue teams proposed by agenta1 is highlighted in
lightgrey and rescue teams proposed by agenta2

is highlighted in darkgrey).

At the beginning of the run, the rescue task is an-
nounced to all agents, step 1 in Table 4. Upon receiv-
ing the task announcement, the agentsa1 anda2 ini-
tialise their models of the rescue performance of the
rescue teamsat3 and at4. As a result of initialising
their models, agenta1 has an estimation of each res-
cue team’s rescue performance (0.6 forat3 and 0.1 for
at4) as does agenta2 (0.4 forat3 and 0.5 forat4) . To
illustrate the interaction of each agent’s models with
the true rescue performance of rescue teams, we spec-
ify the true rescue performance of the rescue teams
at3 (0.3) andat4 (0.6). As seen from step 2, the esti-
mated performance in each agent’s models is not con-
sistent with the true performance of the rescue teams in
question. For example, agenta1 overestimates the per-
formance of rescue teamat3 (0.6>0.3), but underesti-
mates the performance of rescue teamat4 (0.1<0.6).
Agent a2 also overestimates the performance of res-
cue teamat3 (0.4>0.3), and underestimates the perfor-
mance of rescue teamat4 (0.5<0.6).

In the first allocation round, the rescue task is as-
signed as follows. Agentsa1 and a2 propose the
best rescue team according to the estimations stored
in their models (step 3). In particular,a1’s pro-
posal isproposala1

= 〈at3, 0.6〉, anda2’s proposal is
proposala2

= 〈at4, 0.5〉. In this example, agenta2 is

Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making 19

True Estimated

Performance Performance
︷ ︸︸ ︷ ︷ ︸︸ ︷

Step of Group Process Process C C Ma1
Ma1

Ma2
Ma2

Algorithm Status executed bya1 executed bya2 (at3) (at4) (at3) (at4) (at3) (at4)

1 announcing ANNOUNCE(rescue) 0.3 0.6

2 initialising INITIALISE(Ma1
, rescue) INITIALISE(Ma2

, rescue) 0.3 0.6 0.6 0.1 0.4 0.5

Round 1

3 proposing PROPOSE=〈at3, 0.6〉 PROPOSE=〈at4, 0.5〉 0.3 0.6 0.6 0.1 0.4 0.5

4 selecting Pmax = at3 0.3 0.6 0.6 0.1 0.4 0.5

5 updating UPDATE (Ma1
,0.3) UPDATE (Ma2

,0.3) 0.3 0.6 0.3 0.1 0.3 0.5

Round 2

6 proposing PROPOSE=〈at3, 0.3〉 PROPOSE=〈at4, 0.5〉 0.3 0.6 0.3 0.1 0.3 0.5

7 selecting Pmax = at4 0.3 0.6 0.3 0.1 0.3 0.5

8 updating UPDATE (Ma1
,0.6) UPDATE (Ma2

,0.6) 0.3 0.6 0.3 0.6 0.3 0.6

9 terminate (Criterion is satisfied) 0.3 0.6 0.3 0.6 0.3 0.6
Table 4

A sample run of the assignment algorithm in the Surf Rescue domain with two assignment rounds

agentapolicy applying the maximum policyPmax to se-
lect a rescue team for the rescue task. In this round,
rescue teamat3 is selected and specified in proposala1

(step 4 in Table 4). Rescue teamat3 does not rescue the
swimmer as well asa1 had estimated. After observing
the true performance ofat3, which is 0.3, both agents
update their models ofat3 (step 5).

In the second allocation round,a1 still proposesat3,
anda2 still proposesat4 (step 6). However, this time,
the maximum policy selectsat4 (step 7), since its pro-
posed performance (0.5) is now higher than the pro-
posed performance ofat3 (0.3). After observing the
true performance ofat4 (0.6), both agents update their
modelsMa1

(at4) andMa2
(at4) (step 8). Upon com-

pletion of this step, the models maintained bya1 and
a2 are identical and both agents now believe thatat4 is
the optimal rescue team.

In step 9, the termination criterion of the algorithm
is satisfied and the algorithm terminates (we use Ter-
mination Criterion 1, page 8). The reason it terminates
is that the policy selects a rescue team whose estimated
performance specified in proposals from both agents is
not greater than the true performance of the best res-
cue team that is known so far (which, in this exam-
ple, is rescue teamat4). Note that models are not al-
ways identical to the capabilities of teams when the al-
gorithm terminates – they are only identical if all res-
cue teams have been selected at least once (as occurred
in this sample run).

4.4. Setting up the First Experimental Series:
Interaction of Initial Models and the Minimum,
Maximum and Majority Policy

This section addresses the question: How does the
assignment algorithm perform under empirical domain
conditions? This study examines the role of model ac-
curacy (i.e., how accurate each agent knows the perfor-
mance of each rescue team) and three group decision
policies: the minimum, maximum and majority policy.
We are interested in examining the following aspects.

4.4.1. Effect of Model Accuracy on Solution Quality
and Computational Requirement

In Section 3, we have proven that an important con-
dition to guarantee an optimal solution is that agents
are completely or partially optimistic. To further ex-
tend on this insight, we test under which combinations
of initial estimations and group decision policies our
algorithm is likely to find optimal or near optimal so-
lutions. We hypothesise that more accurate models in-
crease the likelihood of finding optimal or near optimal
solutions in fewer assignment rounds. Further, we also
hypothesise that agents with optimistic estimations are
more likely to find optimal or near optimal solutions
than agents that with pessimistic estimations.

4.4.2. Comparison to Optimal and Random
Assignments

How do the results obtained from the assignment
algorithm compare to those obtained from bench-

20 Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making

mark settings? To evaluate the efficiency of the algo-
rithm, we consider two benchmark allocation proce-
dures (neither use the TAP algorithm and are further
defined in Section 4.6).

– An exhaustive procedure is guaranteed to find an
optimal solution, but requires knowledge of the
true performance of each rescue team which is
achieved by assigning each rescue team to the
task once.

– A random procedure selects a random res-
cue team without any assignments and with-
out knowledge of the performance of any res-
cue team. It only finds an optimal solution some-
times depending on the number of optimal res-
cue teams and the total number of rescue team
(no assignments are required as no knowledge is
required of a rescue team’s performance).

4.4.3. Convergence Characteristics of Group
Decision Policies

How fast does the algorithm converge to a solution?
Our interest is in determining when a group decision
policy enables the algorithm to converge to a solution
faster. This knowledge enables us to select one policy
over the others if the number or rounds is limited or
not accurately known (that is, the algorithm would ter-
minate regardless of when the termination criterion is
satisfied).

The assumptions introduced for our theoretical
study (Section 3.1) offer a starting point for a first
empirical experiment. That is, our experimental study
makes three explicit assumptions about the PROPOSE
and UPDATE processes executed by the agents and the
rescue performance of each rescue team.

– Agents are maximal task rational (each agent
proposes the rescue team with the highest esti-
mated performance according to its models), Def-
inition 12.

– Each agent updates its model with the observed
performance of the rescue team that has per-
formed a task, Definition 11.

– The rescue performance of each rescue team is
invariant (the rescue performance of a given team
will not vary when it performs various rescue),
Section 3.1.

4.5. Experimental parameters

To investigate the above issues empirically, we im-
plemented the assignment algorithm (specified in Fig-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.25 0.5 0.75 1

P
ro

b
a
b
ili

ty

Mean

Capability Initialisation 1
Capability Initialisation 2

Fig. 2. A sketch of two truncated normal distributions used to set the
experimental parameter Capability Initialisation CI.

ure 1) and the components defined in the formal
framework (Section 2). We then evaluated the algo-
rithm by varying four experimental parameters: Ca-
pability Initialisation CI of rescue teams (a distribu-
tion representing the true rescue performance of res-
cue teams), Model Initialisations MI of agents (a dis-
tribution representing estimated rescue performance of
rescue teams), group decision Policy P, and the Group
Size GS. These experimental parameters are assigned
a range of values in the simulations.

– Capability Initialisation (CI) defines two types
of distributions that initialise the valuesV for the
true performance of rescue teams. These distribu-
tions are normal and truncated (Figure 2).

∗ Capability Initialisation 1: N(CIµ =
0.5, CIσ = 0.1)

∗ Capability Initialisation 2: N(CIµ =
0.5, CIσ = 0.25)

Since the interval of performance values ranges
from 0 (worst performance) to 1 (optimal perfor-
mance), the mean for both distributions is 0.5. Other
values can be used to simulate the performance of
other types of rescue teams. For example, 0.25 may be
an appropriate mean of a distribution representing low
performing rescue teams and 0.75 for high performing
rescue teams (or 0.1 for extremely low performing res-
cue teams, or 0.9 for extremely high performing res-
cue teams). A standard deviation of 0.1 represents a
rescue team population where performance values are
distributed closer around the mean while a standard de-
viation of 0.25 represents a wider scattering (Figure 2).
The specification of the mean and standard deviation
will depend on which type of rescue team is considered
in the simulation.

Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making 21

Truncation is required so that the performance does
not exceed the [0, 1] thresholds. We have chosen to
truncate the normal distribution by setting an outlier to
its closest threshold (an outlier is a value that lies out-
side the [0, 1] threshold after is has been drawn from
the normal distribution). For example, assume that we
have a value 1.2 that is drawn from a capability distri-
bution, e.g., when CI=2. For CI=2, this value will be
set to 1.0 – the upper threshold. This truncation method
maintains a normal distribution that represents a pop-
ulation with extremely low or high performance res-
cue teams. Section 4.10 discusses methods that may be
more adequate. s.

Next, we discuss the parameter that initialises the
models maintained by agents. As for the experimental
parameter CI, models are initialised based on a normal
truncated distribution with a meanMIµ̂ and standard
deviationMIσ̂.

There are various methods to simulate model accu-
racy and define values forMIµ̂ and MIσ̂. A naive
method is simply to draw random estimates from the
same distribution as used for the parameter CI, and
then add or subtract values to simulate optimism and
pessimism. The problem with this initialisation is that
the estimates are not related to the true performance
of rescue teams. Hence, there is no reason to expect
that our algorithm is more likely to choose an opti-
mal rescue team than a random selection. Such a naive
method of initialising estimations can be considered a
worst case setting for our investigations as it assumes
that agents areignorantof a team’s true performance.8

In other cases, agents have estimations that are re-
lated to the capabilities of rescue teams, that is, agents
are knowledgeable about the performance of teams.
For this study, we aim to simulate model initialisation
along a dimension where agents exhibit a certain de-
gree of ignorance.

We have chosen to specify the distribution of mod-
els using four values: group knowledge and group op-
timism specify the meanMIµ̂ of the distribution, and
spread and homogeneity specify the standard deviation
MIσ̂. This study focuses on the effect of group knowl-
edge and group optimism which are specified in the
next two paragraphs.

8In this paper, the notion of ignorance is qualified as "not knowing
accurately" as opposed to "complete absence of knowledge".This
notion follows from research by [3, 35] who suggested three dif-
ferent types of “ignorance”: incompleteness (e.g., absence of facts),
imprecision (e.g., ambiguous information) and uncertainty (e.g., un-
certain information).

The degree of group knowledge of agents is speci-
fied by a value K indicating the closeness ofMIµ̂ to
the true performance of an agent. When K is 1, agents
are knowledgeable and the distribution meanMIµ̂ is
based on the true performanceV (ati) of a rescue team
ati (recall that the true performanceV (ati) is drawn
from the distribution specified by the experimental pa-
rameter Capability Initialisation CI). For example, if
K=1, thenMIµ̂(ati) = V (ati), if we apply no op-
timistic or pessimistic modifications (as explained in
the next section). When K is 0, all agents are (equally)
ignorant of the individual performance of each res-
cue team. In particular, the mean of each estimation
is based on the mean of the capability distribution of
rescue teams (e.g.,MIµ̂(ati) = CIµ = 0.5). This ig-
norance may be present when agents assemble in an
ad-hoc manner and initial estimates are not related to
the true performance of each rescue team. Any value
of K between 0 and 1 represents a distribution with a
mean that is close to the true performance of the res-
cue team in question. That is, agents have some esti-
mates of the performance of rescue teams strongly re-
lated to the true value and other estimates which are
far removed from the true value.

To empirically evaluate the implications of opti-
mistic and pessimistic agents (based on our theoretical
study in Section 3), we define a value∆ that modifies
the mean of the model distribution. Since each agent is
unlikely to have exactly the same optimistic and pes-
simistic estimations of rescue teams,∆ is also drawn
from a normal distribution. That is, each rescue team
will under- or overestimate the performance of each
rescue team to a different extent.

We also define a standard deviationMIσ̂ that deter-
mines the divergence of the estimations from the mean.
The valueMIσ̂ is also drawn from a normal distribu-
tion, where the mean represents the spread of estima-
tions, while the standard deviation represents the ho-
mogeneity of estimations among different agents. As
the spread increases the divergence of estimations in-
creases. A large degree of homogeneity means that the
spread among different agents is similar. This study
confinesMIσ̂ to two settings where agents have a low
and a high spread with moderate homogeneity.

– Model Initialisation (MI) defines a distribution
to simulate the estimations maintained by agents.
The valuesV̂ for the estimated performance of
each rescue team are drawn from a truncated
and normal distribution with a meanMIµ̂ and
standard deviationMIσ̂, such thatV̂ (ati) ∼

22 Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making

NMI(MIµ̂(ati), MIσ̂) for the estimate of a res-
cue teamati (we apply the same method for trun-
cation as for the experimental parameter CI).
The mean of modelsMIµ̂ of a rescue teamati is
defined as follows.

MIµ̂(ati) = (K ∗V (ati)+ (1−K) ∗CIµ) +∆

· K ranges from 0 to 1 and defines the degree
of closeness of the mean of the estimations
to the true mean of individual rescue teams.
If K is 1 then the estimated meanMIµ̂ is
based on the mean of the true performance
of an individual rescue teams (agents are in-
formed). If K is 0 then the estimated mean
is based on the population mean (and agents
are equally ignorant of the performance of
individual rescue teams). In this study, we
will set K to 0, 0.5 and 1.

· ∆ is a value drawn from one of the fol-
lowing five normal distributions. Each dis-
tribution specifies a different degree of over-
and underestimations:Very Pessimistic, Pes-
simistic, Neutral, OptimisticandVery Opti-
mistic.

∗ Very Pessimistic: ∆ ∼ N∆(−0.25, 0.1)
∗ Pessimistic: ∆ ∼ N∆(−0.1, 0.1)
∗ Neutral: ∆ ∼ N∆(0.0, 0.0)
∗ Optimistic: ∆ ∼ N∆(0.1, 0.1)
∗ Very Optimistic: ∆ ∼ N∆(0.25, 0.1)

The value for the standard deviation of model ini-
tialisation MIσ̂ is drawn from two normal dis-
tributions representing estimations withLow and
High-Spread(both distribution have a moderate
degree of homogeneity with 0.1).

∗ Low-Spread: MIσ̂ ∼ NMIσ̂
(0.1, 0.1)

∗ High-Spread: MIσ̂ ∼ NMIσ̂
(0.25, 0.1)

To illustrate the parameter MI, consider a sit-
uation in which agents are informed and opti-
mistic. Further, agents have estimations that are
closely spread around the mean performance of
rescue teams and have a moderate level of ho-
mogeneity among agents. We can simulate this
situation by setting K to 1, draw the value for∆
from N∆(0.1, 0.1) (optimistic) and drawMIσ̂(at1)
from NMIσ̂

(0.1, 0.1) (low-spread). Assume∆ is
0.14 and MIσ̂ is 0.08. Assume we have a res-
cue teamat1 with V (at1) = 0.4. Under these settings,
MIµ̂(at1) = (1 ∗ 0.4) + (0 ∗ 0.5) + 0.14 = 0.54.

Hence, an estimation drawn from the distribution
NMI has a meanMIµ̂(at1) of 0.54 andMIσ̂(at1) of
0.08. In this example, the valuêV (at1) is 0.58 and
overestimates the true performance ofat1 by 0.18
(0.58-0.4).

Note that we do not investigate an experimental set-
ting where the meanMIµ̂(ati) is equal toV (ati) and
the standard deviationMIσ̂ is 0 as this represents a
trivial case where all agents have accurate models (i.e.,
the algorithm will always find an optimal solution after
one assignment round).

We have chosen the following group decision poli-
cies for the experimental study, because under given
theoretical conditions, they are guaranteed to find op-
timal solutions (Sections 3.3 and 3.4).

– Policy (P) defines three types of group decision
policies:minimum, maximumandmajority.

∗ The minimum policy Pmin selects the res-
cue team with the lowest proposed perfor-
mance of all rescue teams proposed in a given
round (Definition 13, page 11).9

∗ The maximumpolicy Pmax selects the res-
cue team with the highest proposed perfor-
mance of all rescue teams proposed in a given
round (Definition 14, page 11).

∗ The majority policy Pmaj selects the res-
cue team proposed by the greatest number of
agents (Definition 15, page 11).

Different group sizes are expected to show a trend of
our results with different settings of the experimental
parameters CI, MI and P. For example, as group size
becomes larger, we expect that solution quality reaches
a higher, more stable level due to an increased chance
that more agents have more accurate models overall.

– Group Size (GS)defines the number of agents
in a surf rescue domain:5, 10, 20, 40 and 50.
GS also specifies the number of rescue teams in
this simulation. So, we have the same number of
agents and rescue teams in every simulation.

The study in this paper simulates a self-contained
group where the number of agents and teams is the
same (AT = A). We plan to alter the number of agents
A andAT and will investigate if this has a significant
influence on the efficiency of the algorithm.

9This policy selects a conservative estimate and is expectedto be
particularly efficient in settings where agents are optimistic as the
selected estimate is still likely to find an optimal or near optimal
solution, but with fewer rounds than the other two policies.

Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making 23

4.6. Benchmark Settings

To evaluate the outcome of TAP settings, we con-
structed two benchmark settings called EXHAUSTIVE

and RANDOM. As opposed to TAP settings, these
benchmark settings do not use the TAP assignment al-
gorithm (i.e., agents do not make proposals, update
models, or make a group decision to assign a res-
cue team to a task).

– An EXHAUSTIVE setting uses a procedure that
finds an optimal rescue team for the rescue af-
ter obtaining accurate knowledge of each res-
cue team’s rescue performance. This requiresn
assignment rounds forn rescue teams (as the
performance of these rescue teams will only be
known accurately after each rescue team has per-
formed a rescue). The average result obtained
from an EXHAUSTIVE setting defines a bench-
mark that presents an optimal average solution
that can be reached when assigning teams, we
also refer to this benchmark as the “upper bench-
mark”.

– A RANDOM setting uses a procedure that selects
a random rescue team to a rescue. Assignments
are not required to find a random solution be-
cause this procedure does not use knowledge of
the rescue performance of assigned rescue teams.
The procedure is expected to assign an optimal
rescue team sometimes (i.e., form rescue teams
performing at an optimal value and a total num-
ber of n rescue teams, the chance of assigning
an optimal rescue team ism

n
).10 The average re-

sult obtained from a RANDOM setting defines a
lower benchmark, and approximates the mean of
the capability distribution.

We have chosen these benchmark settings, because
each setting represents an opposing extreme on a scale
that measures the number of assignments required be-
fore a solution is calculated. At one extreme is the
procedure used in the EXHAUSTIVE setting which re-
quires as many assignments as there are rescue teams.
At the other extreme is the procedure used in the RAN-
DOM setting that requires no assignments to provide a
solution.

Other benchmark settings are possible, but not used
in this paper. For example, [14] use an “oracle setting”

10A RANDOM allocation procedure is guaranteed to find an opti-
mal solution if all rescue teams have the same rescue performance
as there is no benefit in selecting one rescue team over the other.

that always predicts the performance of teams accu-
rately and finds optimal solutions without any explicit
specification of how the performance of teams would
be tested. An oracle setting is not useful for our anal-
ysis as it requires an explicit measure of the number
of assignments. An alternative worst-case procedure
is one where a worst-performing rescue teams is se-
lected. This procedure requires as many rounds as the
one used in an EXHAUSTIVE setting, and finds worse
solutions than those found by the procedure used in a
RANDOM setting. This is useful to determine the worst
possible average solution quality, but it would be diffi-
cult to find realistic situations that would justify a com-
parison with this setting. We decided to use the ran-
dom setting as it is more suitable than the worst-case
setting.

4.7. Simulation Run of TAP, Exhaustive and Random
Settings

A simulation run of a TAP setting executes the as-
signment algorithm (Section 1) under a particular com-
bination of the experimental parameters. At the begin-
ning of the simulation run, the number of agents (and
rescue teams) is instantiated as specified by the param-
eter group size GS. The simulated true performance of
rescue teams is initialised as specified by the CI pa-
rameter (e.g., for CI=1, values are drawn from a trun-
cated distribution with a mean of 0.5 and a standard
deviation of 0.1). The agents’ models (that consist of
estimations of the performance of rescue teams) are
initialised as specified by the MI parameter (e.g., val-
ues are drawn from a distribution with a mean equal
to the true performance of each rescue team, K=1 and
∆ = 0, and a standard deviationMIσ̂ of 0.1).

Initially, each agent’s estimation of a rescue perfor-
mance is likely to be different to the true performance
of each team. Hence, different agents may propose dif-
ferent rescue teams for a rescue task due to the discrep-
ancy between each agent’s models. The models will
change as agents get to know the performance of teams
(by applying the update process after task execution).
The capability of each team remains constant over dif-
ferent rounds.

The parameter P determines the type of group deci-
sion policy used in each assignment round. The simu-
lation run is completed if the algorithm terminates ac-
cording to criterion 1 (i.e., the proposed estimations of

24 Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making

rescue teams are not greater than the true performance
of atBestSoFar).11

A simulation run of the procedure in an EXHAUS-
TIVE setting works as follows. The procedure selects
each rescue team for the rescue task once, stores the
rescue performance of each rescue team, and then se-
lects an optimal one. The procedure in a RANDOM set-
ting simply selects a random rescue team using the ran-
dom function provided by a DGJPP compiler distri-
bution underlying the implementations for our exper-
iments. The DGJPP compiler distribution includes a
complete 32-bit C/C++ development system for Intel
80386, and higher, processors. The random function is
initialised with a different seed in each run based on
the current time and date of the system.

4.8. Efficiency Metrics

Upon termination of a simulation run, we store the
solution quality and computational requirement of the
algorithm.

4.8.1. Solution Quality (SQ): Rescue Performance of
Selected Rescue Team

The quality of a solution is measured by the rescue
performance of the rescue teamatBestSoFar found by
the algorithm after termination (Section 2.2), and the
rescue team found by the two benchmark procedures.
This performance is represented by the value obtained
from the rescue team’s simulated rescue performance
(as specified by Capability Initialisation CI).12

– TAP setting: we measure the performance of the
rescue teamatBestSoFarcomputed by the assign-
ment algorithm (Section 2.2).

11Termination criteria 2 and 3 defined in Section 3.3.2 will be
investigated in future research. As they guarantee optimalsolutions
when agents are completely optimistic, we expect that they are more
efficient in experimental settings where estimations are optimistic
with ∆ > 0.

12Other measures are possible, but not used in this paper. For ex-
ample, TAP settings can be measured by the sum of the performance
of each rescue team in each round (and not only the performance
of atBestSoFar). This measure can be useful in understanding the effi-
ciency of the algorithm over the entire simulation run. Another mea-
sure is to rank rescue teams according to their capabilities. For ex-
ample, an optimal rescue team found in an EXHAUSTIVE setting is
ranked 1. Rescue teams selected by a TAP or RANDOM setting are
ranked between 1 (optimal rescue team) to the number of all res-
cue teams (e.g., for 50 rescue teams, the worst rank is 50). However,
this ranking assumes that we have knowledge of each rescue team’s
true performance, but we do not make this assumption.

– EXHAUSTIVE setting: we measure the rescue
performance of an optimal rescue team (a res-
cue team with a rescue performance not lower
than that of any other rescue team).

– RANDOM setting: we measure the rescue perfor-
mance of a rescue team that has been selected ran-
domly.

4.8.2. Computational Requirement (CR): Number of
Assignments

The computational requirement of the algorithm is
measured as follows.

– TAP setting: we store the number of assignment
rounds required until the algorithm terminates.

– EXHAUSTIVE setting: the CR is set to the number
of rescue teams GS (e.g., for a group of 50 res-
cue teams, the EXHAUSTIVE procedure requires
50 assignments).

– RANDOM setting: the CR is set to 0.

4.8.3. Average Solution Quality and Average
Computational Requirement

We have simulated each TAP setting (Capability
Initialisation (CI)×Model Initialisation (MI)×Pol-
icy (P)×Group Size (GS)= 2×30×3×5=900) and
each benchmark setting, RANDOM and EXHAUSTIVE.
Note thatMI = K × N∆ × MIσ̂ = 3 × 5 × 2 = 30
(but owing to space limitations, settings withµ = 0.0
of N∆ andMIσ̂ = 0.25 have not been plotted).

To obtain representative results of each of the 902
simulation settings, the solution quality and computa-
tional requirement are averaged over 10000 simulation
runs. We have chosen this number, because the results
showed stable patterns and are statistically significant.
The significance test of the results is based on a 95%
confidence interval. This was calculated by multiply-
ing 1.96 with the standard error (the degrees of free-
dom are 10000).13

Each simulation setting is initialised with a differ-
ent random seed based on the time of the system. Fur-
ther, to mitigate the effect of repeating cycles of ran-
dom numbers (as is the case with many standard imple-
mentations of random generators), the random func-
tion is initialised with a different seed value every 1000

13[5] offers a comprehensive introduction to analyse data obtained
from empirical experiments in artificial intelligence. [8]provide con-
vincing arguments why confidence intervals are adequate means to
determine the significance of different data sets. Note thatother sta-
tistical means might be more adequate for the analysis of simulation
data as significance can be obtained by running a large numberof
experiments even if the difference between results is very small.

Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making 25

simulation runs. That is, we have ten trials, each di-
vided into 1000 simulation runs. We used a random
number function provided by the standard C++ library
“stdlib.h” in the DGJPP compiler distribution.

4.8.4. Normalisation
We normalise the solution quality and computa-

tional requirement of the TAP algorithm as this en-
ables a better comparison with the optimal and worst
results of a particular setting. For this normalisation,
solution quality is transformed into a range of 0 and
1, where 0 represents the average mean performance
of the worst rescue teamsSQmin and 1 represents
the average performance of an optimal rescue team
SQmax (result of the exhaustive setting). In particu-
lar, we subtract a result withSQmin and then divide it
by (SQmax−SQmin). For example, assume that the av-
erage optimal mean performance of rescue teams se-
lected in the exhaustive procedure isSQmax = 0.83,
and the average mean performance of rescue teams se-
lected in the worst case procedure isSQmin = 0.17
(in this study, the average of the worst case procedure
SQmin = 1 − SQmax). If the average solution quality
of the TAP algorithm has the value 0.67, then the nor-
malised value is0.67−0.17

0.83−0.17
= 0.75. This result means

that the algorithm provides an average solution that is
25% worse than an optimal solution.

We apply a similar normalisation for the computa-
tional requirement. The value assignments are reversed
with 0 representing an optimal computational require-
ment of the algorithm, and 1 representing the worst.
That is, when the normalised value of CR is 0 then
we measure one assignment round, while CR being 1
means that GS assignment rounds are required.

4.9. Results and Analysis

The purpose of this experiment is to examine the ef-
ficiency of the TAP algorithm empirically under differ-
ent simulation settings (Section 4.5).

4.9.1. Results of Benchmark Settings
We first comment on the benchmark results obtained

from EXHAUSTIVE and RANDOM settings. The aver-
age solution quality of the rescue teams assigned in
EXHAUSTIVE settings is never worse than that ob-
tained with TAP and RANDOM settings, because as-
signments are optimal and based on accurate knowl-
edge of the performance of all rescue teams. The num-
ber of assignment rounds for an EXHAUSTIVE setting
is always equal to GS (the number of rescue teams) be-
cause each rescue team has to perform the rescue once.

The normalised value for solution quality and compu-
tational requirement of the EXHAUSTIVE setting is 1.

The average simulation results obtained from RAN-
DOM settings averages the rescue performance of ran-
domly assigned rescue teams and requires no selec-
tions. The average performance of rescue teams as-
signed in RANDOM settings is always lower than the
average performance of rescue teams assigned in TAP
and EXHAUSTIVE settings. This is because a RAN-
DOM setting does not retain any information of the per-
formance of rescue teams as opposed to a TAP setting
where allocations are refined as the number of rounds
increases. The normalised average performance of res-
cue teams in RANDOM settings is 0.5 as this is the ac-
tual mean of the distribution specified by the experi-
mental parameter Capability Initialisation (CI). Note
that the measures for RANDOM settings are not plotted
in the figures in this section.

4.9.2. Knowledgable Agents (K>0)
The essence of this approach is how well agents es-

timate actual performance of rescue teams. This sec-
tion focuses on results where estimates are based on
the mean of the true performance of individual res-
cue teams (K=1). Figures 3(a) and 3(b) shows the SQ
and Figures 3(c) and 3(d) shows the CR of the algo-
rithm with the three policies and under different de-
grees of optimism and pessimism when K=1. We ob-
serve that SQ is less variable and higher when CI=2
(Figure 3(a)), than CI=1 (Figure 3(b)). The reason for
this effect is that the true performance of each res-
cue team becomes more divergent from that of other
rescue teams when the standard deviation becomes
larger (i.e., whenCIσ = 0.25). That is, the distance
of the performance value of an optimal rescue team
is generally larger to that of other rescue teams (com-
pared to values based on a smaller standard devia-
tion CIσ = 0.1). Hence, estimations are more diver-
gent (and better performing agents more easily identi-
fied compared to a setting with a small standard devi-
ation) and the algorithm is more likely to converge to
an optimal rescue team. This effect is reinforced by the
method of truncating the capability distribution (Sec-
tion 4.5). When CI=2, there are more outliers set to 0
and 1 than with CI=1. In fact, if the capabilities are ini-
tialised based on a distribution with a very large stan-
dard deviation, SQ will reach 1 and CR will reach 0
(we ran the algorithm usingCIσ = 0.5 or CIσ = 1.0
with K = 1, which are not shown in this paper, but can
be found in [20]). Section 4.10 discusses other trunca-
tion methods and their effect on the SQ and CR.

26 Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.25
0.1

0.25
0.25

0.1
0.25

0.1
0.1

0.0
0.1

-0.1
0.1

-0.1
0.25

-0.25
0.25

-0.25
0.1

µ of N∆:
µ of NMIσ

:

S
o
lu

ti
o
n
 Q

u
a
lit

y
 (

n
o
rm

a
lis

e
d
)

Maximum Pmax
Majority Pmaj

Minimum Pmin

(a) Solution Quality, CI=1

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.25
0.1

0.25
0.25

0.1
0.25

0.1
0.1

0.0
0.1

-0.1
0.1

-0.1
0.25

-0.25
0.25

-0.25
0.1

µ of N∆:
µ of NMIσ

:

S
o
lu

ti
o
n
 Q

u
a
lit

y
 (

n
o
rm

a
lis

e
d
)

Maximum Pmax
Majority Pmaj

Minimum Pmin

(b) Solution Quality, CI=2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.25
0.1

0.25
0.25

0.1
0.25

0.1
0.1

0.0
0.1

-0.1
0.1

-0.1
0.25

-0.25
0.25

-0.25
0.1

µ of N∆:
µ of NMIσ

:

C
o
m

p
u
ta

ti
o
n
a
l
R

e
q
u
ir
e
m

e
n
t
(n

o
rm

a
lis

e
d
)

Maximum Pmax
Majority Pmaj

Minimum Pmin

(c) Computational Requirement, CI=1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.25
0.1

0.25
0.25

0.1
0.25

0.1
0.1

0.0
0.1

-0.1
0.1

-0.1
0.25

-0.25
0.25

-0.25
0.1

µ of N∆:
µ of NMIσ

:

C
o
m

p
u
ta

ti
o
n
a
l
R

e
q
u
ir
e
m

e
n
t
(n

o
rm

a
lis

e
d
)

Maximum Pmax
Majority Pmaj

Minimum Pmin

(d) Computational Requirement, CI=2

Fig. 3. Model Accuracy: Knowledge (K) = 1, Group Size (GS) =50.

We also observe a significant decrease of CR when
CI=2 (Figure 3(d)) compared to CI=1 (Figure 3(c)).
Again, the reason is that as variability increases, the
modelled performance values are more differentiated
and the algorithm is less likely to select suboptimal
rescue teams (as their values are much lower than in
CI=1 on average).

As seen from Figures 3(a) and 3(b), settings with
optimistic agents have a higher SQ than settings with
pessimistic agents (particularly with the minimum pol-
icy). The reason is that optimistic agents will con-
tinue to propose rescue teams as they are not “satis-
fied” with the true performance of a rescue team as
fast as pessimistic agents. That is, as the true perfor-
mance is likely to be smaller than the estimations of

optimistic agents, the algorithm will continue to select
agents with a higher estimate.

Policies Let us analyse these results focusing on the
role of group decision policies. Consider the setting
under CI=1, where agents are very optimistic (µ of N∆

is 0.25) and estimates are low variable (µ of NMIσ̂
is

0.1), Figures 3(a) and 3(c). Under this setting, SQ is
near optimal for the minimum, maximum and majority
policy as almost all estimates are optimistic for each
rescue team. Further, it is likely that an optimal res-
cue team is selected first, as on average the estimates
will be higher for an optimal solution than for others.
Because the true performance will turn out to be less
than the estimates for almost all other rescue teams,
the algorithm will not terminate until we have (almost)

Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making 27

exhaustively gone through every rescue team for the
majority and maximum policy. In short, for the max-
imum and majority policy, the following observations
are made.

– An optimal solution is found first or early on.
– The CR is close to exhaustive.
– There is no difference between solution quality.

The minimum policy has a significantly lower aver-
age CR than that obtained for the maximum and ma-
jority policy as overestimates of the lowest true per-
formance are lower than an optimal performance and
therefore more likely to terminate the algorithm faster.

Now consider optimistic agents (µ of N∆ is 0.1)
with low variability (µ of NMIσ̂

is 0.1). Again, it is
most likely that an optimal solution is found first or
early on. Recall the termination criterion which ter-
minates the algorithm when no proposed estimation is
higher thanatBestSoFar . For the maximum policy, the
proposed estimates will continue to be about 0.2 (= 2
×µ of NMIσ̂

) higher than the mean of the estimates:
MIµ̂ (including∆). This means that the rescue team
with the lowest true performance is still likely to have
an optimistic estimation. For example, on average we
can expect the lowest true value to be at 0.3 sinceCIµ

is 0.5 andCσ = 0.1 (0.3 = 0.5−2×0.1), and the best
average solution to be at 0.7. Assume that∆ = 0.1
andMIσ̂ = 0.1, then a worst rescue teamatworst is
likely to be overestimated with0.3 + ∆ + 2×MIσ̂ =
0.3 + 0.1 + 2 × 0.1 = 0.6 on average (note that as
the number of agents increases, it is more likely that
each rescue team is overestimated higher than 0.6).
In short, it is likely that the algorithm, while select-
ing an optimal solution early on, will not terminate
until most rescue teams are tested. For the majority
policy, the estimates of the selected rescue team will
be approximatelyMIµ̂ (including∆). Again, an op-
timal rescue team will be selected first, but the al-
gorithm will likely terminate earlier than the maxi-
mum policy, as the estimates of selected rescue teams
will be the estimate of the majority (i.e.,MIµ̂ includ-
ing ∆) rather than the estimate of the maximum (i.e.,
∆ + 2 × MIσ̂ aboveMIµ̂ including∆). That is, the
overestimates of the worst performing rescue team are
lower than the true performance of an optimal res-
cue team:V (atworst)+MIσ̂ = 0.3+0.1 = 0.4. There-
fore, the majority policy reaches close to the same so-
lution as the maximum policy, but terminates earlier.
In short, we make the following observations.

– An optimal solution is found first or early on for
the maximum and majority policy.

– The CR is close to exhaustive for maximum, but
lower for majority policy.

– There is no difference between solution quality
for the maximum and majority policy.

Consider a pessimistic setting withµ = −0.25
(N∆) and µ = 0.1 (NMIµ̂

), Figures 3(a) and 3(c).
Again, the estimates are the highest for an optimal res-
cue team, so it is selected at the beginning of the run
(as in the optimistic case). As opposed to the opti-
mistic settings, the algorithm will terminate after only
few rounds as many estimates are below the true per-
formance of an optimal rescue team. The minimum
and majority policy will terminate even earlier than the
maximum policy, because the average estimates of the
selected rescue team are likely to be below the true per-
formance of the first selected rescue team. We obtained
the following results.

– An optimal solution is found first or early on with
either the maximum or majority policy.

– The maximum policy requires fewer rounds than
in optimistic settings, and majority and minimum
policy require almost no rounds.

– Solution quality for the maximum policy is high-
est followed by that of majority and minimum
policy.

4.9.3. Ignorant Agents (K=0)
This section briefly discusses the results of agents

that have no knowledge of the individual performance
of each rescue teams (K=0). As seen from Figure 4,
when agents are partially ignorant and knowledgeable
with K=0.5, the results are in between those obtained
for K=0 and K=1 in general. As seen from Figures 3,
4, and 5, as agents become more knowledgeable, the
better the solution quality and computational require-
ment. The reason is that there is “more guesswork” in-
volved when agents are ignorant as their estimates are
not related to the true performance of rescue teams. As
seen from these figures, when agents are ignorant, the
order of selection of rescue teams isindependentof
actual capabilities. This means that selections are es-
sentially random and “estimations” are independent of
how well they match capabilities. Settings that termi-
nate earlier have on average a lower SQ than those that
terminate later. That is, if we consider a setting with
respect to the termination criterion that terminates ear-
lier than some other setting, then on average the SQ of
the first setting will be worse but found in fewer as-
signment rounds than those for the other settings. In
summary, the longer the algorithm runs the better so-
lution quality.

28 Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.25
0.1

0.25
0.25

0.1
0.25

0.1
0.1

0.0
0.1

-0.1
0.1

-0.1
0.25

-0.25
0.25

-0.25
0.1

µ of N∆:
µ of NMIσ

:

S
o
lu

ti
o
n
 Q

u
a
lit

y
 (

n
o
rm

a
lis

e
d
)

Maximum Pmax
Majority Pmaj

Minimum Pmin

(a) Solution Quality, CI=1

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.25
0.1

0.25
0.25

0.1
0.25

0.1
0.1

0.0
0.1

-0.1
0.1

-0.1
0.25

-0.25
0.25

-0.25
0.1

µ of N∆:
µ of NMIσ

:

S
o
lu

ti
o
n
 Q

u
a
lit

y
 (

n
o
rm

a
lis

e
d
)

Maximum Pmax
Majority Pmaj

Minimum Pmin

(b) Solution Quality, CI=2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.25
0.1

0.25
0.25

0.1
0.25

0.1
0.1

0.0
0.1

-0.1
0.1

-0.1
0.25

-0.25
0.25

-0.25
0.1

µ of N∆:
µ of NMIσ

:

C
o
m

p
u
ta

ti
o
n
a
l
R

e
q
u
ir
e
m

e
n
t
(n

o
rm

a
lis

e
d
)

Maximum Pmax
Majority Pmaj

Minimum Pmin

(c) Computational Requirement, CI=1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.25
0.1

0.25
0.25

0.1
0.25

0.1
0.1

0.0
0.1

-0.1
0.1

-0.1
0.25

-0.25
0.25

-0.25
0.1

µ of N∆:
µ of NMIσ

:

C
o
m

p
u
ta

ti
o
n
a
l
R

e
q
u
ir
e
m

e
n
t
(n

o
rm

a
lis

e
d
)

Maximum Pmax
Majority Pmaj

Minimum Pmin

(d) Computational Requirement, CI=2

Fig. 4. Model Accuracy: Knowledge (K) = 0.5, Group Size (GS) =50.

4.9.4. Convergence: Performance Measure plotted
against Assignment Rounds

The previous results show that settings with the
maximum policy find better performing rescue teams
than settings with the majority policy. Also, the ma-
jority and minimum policy require fewer rounds, but
reach worse solutions than those found with the maxi-
mum policy. This behaviour is observed under the con-
dition that the algorithm will run until it meets termina-
tion criterion 1 (which states that the algorithm termi-
nates if all agents’ proposed estimations are not greater
thanV (atBestSoFar)). However, does the maximum pol-
icy always find better solutions in any round during the
execution of the algorithm?

Figure 6 shows the normalised SQ as a function of
the assignment round. A closer look at the convergence
behaviour of the algorithm reveals that the majority
policy often selects better rescue teams than those se-
lected by the maximum or minimum policy in the first
one to ten rounds.

Figure 6(a) shows that when agents are ignorant
(K=0), selecting each rescue team one by one as done
with the exhaustive procedure is most efficient in any
round. Hence, the SQ obtained when agents are only
aware of the average performance of a rescue team
population is not better than selecting a new res-
cue team in each round (as for the exhaustive proce-
dure). That is, for ignorant agents, applying the as-
signment algorithm may not offer a benefit and instead

Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making 29

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.25
0.1

0.25
0.25

0.1
0.25

0.1
0.1

0.0
0.1

-0.1
0.1

-0.1
0.25

-0.25
0.25

-0.25
0.1

µ of N∆:
µ of NMIσ

:

S
o
lu

ti
o
n
 Q

u
a
lit

y
 (

n
o
rm

a
lis

e
d
)

Maximum Pmax
Majority Pmaj

Minimum Pmin

(a) Solution Quality, CI=1

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.25
0.1

0.25
0.25

0.1
0.25

0.1
0.1

0.0
0.1

-0.1
0.1

-0.1
0.25

-0.25
0.25

-0.25
0.1

µ of N∆:
µ of NMIσ

:

S
o
lu

ti
o
n
 Q

u
a
lit

y
 (

n
o
rm

a
lis

e
d
)

Maximum Pmax
Majority Pmaj

Minimum Pmin

(b) Solution Quality, CI=2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.25
0.1

0.25
0.25

0.1
0.25

0.1
0.1

0.0
0.1

-0.1
0.1

-0.1
0.25

-0.25
0.25

-0.25
0.1

µ of N∆:
µ of NMIσ

:

C
o
m

p
u
ta

ti
o
n
a
l
R

e
q
u
ir
e
m

e
n
t
(n

o
rm

a
lis

e
d
)

Maximum Pmax
Majority Pmaj

Minimum Pmin

(c) Computational Requirement, CI=1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.25
0.1

0.25
0.25

0.1
0.25

0.1
0.1

0.0
0.1

-0.1
0.1

-0.1
0.25

-0.25
0.25

-0.25
0.1

µ of N∆:
µ of NMIσ

:

C
o
m

p
u
ta

ti
o
n
a
l
R

e
q
u
ir
e
m

e
n
t
(n

o
rm

a
lis

e
d
)

Maximum Pmax
Majority Pmaj

Minimum Pmin

(d) Computational Requirement, CI=2

Fig. 5. Model Accuracy: Knowledge (K) = 0, Group Size (GS) =50.

rescue teams should be allocated one by one (as for
the exhaustive procedure). Figure 6(b) shows that un-
der the informed setting an optimal solution is found
quickly for all policies.

Consider a setting where agents are ignorant and
knowledgable (K=0.5), Figure 6(c). We can observe
that the SQ of rescue teams with the majority policy
reaches a stable level after only 1 round. The mini-
mum and maximum policy require more rounds before
they reach their local maximum. SincePmax selects
a rescue team preferred by only a minority of agents
(based on one or a few agents’ proposals), a slightly
better rescue team is selected in each round. In TAP
settings where the majority policy is applied the algo-
rithm converges faster to a local maximum than in set-

tings where the maximum or minimum policy is ap-
plied. This is explained by the fact that the outcome
of the majority policy reflects the preference of many
agents (and not only the preference of one or a few
agents as reflected by the outcome of the maximum
policy). Since the majority policy satisfies the prefer-
ences of the majority of agents it also converges faster
and will provide a better solution quality in settings
where the number of reassignment rounds is limited.

In summary, if the number of assignment rounds is
small, then the majority policy will generally find bet-
ter solutions than the maximum policy, and the max-
imum policy will find better solutions than the mini-
mum policy on average. The reason is that the group
of agents has generally more accurate knowledge than

30 Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40 45 50

S
o
lu

ti
o
n
 Q

u
a
lit

y
 (

n
o
rm

a
lis

e
d
)

Round

Maximum Pmax
Majority Pmaj
Minority Pmin

Exhaustive

(a) K=0, MI=Realistic, L-Variable

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40 45 50

S
o
lu

ti
o
n
 Q

u
a
lit

y
 (

n
o
rm

a
lis

e
d
)

Round

Maximum Pmax
Majority Pmaj
Minority Pmin

Exhaustive

(b) K=1, MI=Realistic, L-Variable

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40 45 50

S
o

lu
ti
o

n
 Q

u
a

lit
y
 (

n
o

rm
a

lis
e

d
)

Round

Maximum Pmax
Majority Pmaj
Minority Pmin

Exhaustive
(c) K=0.5, MI=Realistic, L-Variable

Fig. 6. Model Accuracy – Solution Quality (average task performance): Knowledge (K) = 0.5, Group Size (GS) = 50, Capability Initialisation
(CI) = 2.

an individual agent. Hence, we observe that the max-
imum policy will take longer to converge to a solu-
tion as it only follows the best estimate by one agent
(or sometimes a few agents), while the majority policy
will converge faster as it follows the best estimates of
many agents.

4.9.5. Convergence: Performance Measure plotted
against Assignment Rounds

The previous results show that settings with the
maximum policy find better performing rescue teams
than settings with the majority policy. Also, the ma-
jority and minimum policy require fewer rounds, but
reach worse solutions than those found with the maxi-
mum policy. This behaviour is observed under the con-
dition that the algorithm will run until it meets termina-
tion criterion 1 (which states that the algorithm termi-
nates if all agents’ proposed estimations are not greater

thanV (atBestSoFar)). However, does the maximum pol-
icy always find better solutions in any round during the
execution of the algorithm?

Figure 6 shows the normalised SQ as a function of
the assignment round. A closer look at the convergence
behaviour of the algorithm reveals that the majority
policy often selects better rescue teams than those se-
lected by the maximum or minimum policy in the first
one to ten rounds.

Figure 6(a) shows that when agents are ignorant
(K=0), selecting each rescue team one by one as done
with the exhaustive procedure is most efficient in any
round. Hence, the SQ obtained when agents are only
aware of the average performance of a rescue team
population is not better than selecting a new res-
cue team in each round (as for the exhaustive proce-
dure). That is, for ignorant agents, applying the as-

Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making 31

signment algorithm may not offer a benefit and instead
rescue teams should be allocated one by one (as for
the exhaustive procedure). Figure 6(b) shows that un-
der the informed setting an optimal solution is found
quickly for all policies.

Consider a setting where agents are ignorant and
knowledgable (K=0.5), Figure 6(c). We can observe
that the SQ of rescue teams with the majority policy
reaches a stable level after only 1 round. The mini-
mum and maximum policy require more rounds before
they reach their local maximum. SincePmax selects
a rescue team preferred by only a minority of agents
(based on one or a few agents’ proposal), a slightly
better rescue team is selected in each round. In TAP
settings where the majority policy is applied the algo-
rithm converges faster to a local maximum than in set-
tings where the maximum or minimum policy is ap-
plied. This is explained by the fact that the outcome
of the majority policy reflects the preference of many
agents (and not only the preference of one or a few
agents as reflected by the outcome of the maximum
policy). Since the majority policy satisfies the prefer-
ences of the majority of agents it also converges faster
and will provide a better solution quality in settings
where the number of reassignment rounds is limited.

In summary, if the number of assignment rounds is
small, then the majority policy will generally find bet-
ter solutions than the maximum policy, and the max-
imum policy will find better solutions than the mini-
mum policy on average. The reason is that the group
of agents has generally more accurate knowledge than
an individual agent. Hence, we observe that the max-
imum policy will take longer to converge to a solu-
tion as it only follows the best estimate by one agent
(or sometimes a few agents), while the majority policy
will converge faster as it follows the best estimates of
many agents.

4.10. Discussion

This section discusses the issues of truncation
method, alternative methods of empirically investigat-
ing the accuracies of models, and the role of learning.
All these issues turned out to play an important role in
the efficiency of the algorithm.

4.10.1. Truncation of Distributions
The truncation method used in this study sets out-

liers to the nearest threshold value. We have imple-
mented and tested three other methods to obtain a trun-
cated distribution.

1. Outliers are redrawn from the same distribution
until they are within the threshold [0,1]. This
method maintains the original shape of the nor-
mal distribution. However, this redrawing pro-
cess may never terminate as redrawn values may
also lie outside this threshold. This becomes
more likely with a larger standard deviation.

2. Outliers are redrawn from a uniform distribu-
tion from the interval [0,1]. As opposed to (1.),
the redrawing process will specify a new random
value after one iteration. The problem here is that
in pessimistic settings, randomly redrawn values
are often much larger than the mean of the model
distributionMIµ̂. This has a significant influence
on the solution quality and the computational re-
quirement as both are much higher for the maxi-
mum policy than they would be if we use (1.).

3. Outliers are set to the original mean of the dis-
tribution (for example, 0.5 for CI=1 and 2). If
the standard deviation of the distribution is very
large, then many values will be set to the same
mean, and there is little variation in the true and
estimated performance of rescue teams. This is
opposed to the truncation method used in this
study which sets the performance of some res-
cue teams to a very high value and some to a very
low performance.

In future research, we plan to use a beta distribution
or rejection sampling as generated values fit the data
better than the truncation method used in this paper.
Thebeta distributionis a continuous probability distri-
bution defined on the interval [0, 1] and uses two pos-
itive shape parameters denoted byα andβ [7, 24, 19].

Rejection samplingis a mix of (1.) and (2.) as val-
ues are drawn from a distribution function g that is
easier to sample from than from the actual distribution
f (in our case, the truncated normal distribution). We
can sample from g and accept the sampled value with
probability M g/f and sample again until we accept a
value. This method works best if g is close to f and
M is small. [17] have suggested a particularly effective
rejection sampling method.

This issue is referred to as distribution fitting – de-
pending on the distribution that we wish to simulate,
we need to find the values of parameters that maximise
the resemblance between a presumed theoretical dis-
tribution and a given data set [7, 24, 19].

32 Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making

4.10.2. Designing an Experiment with Model
Accuracy

This study has identified and varied four parame-
ters that represent the accuracy of models maintained
by different agents: group knowledge, group optimism,
spread, and homogeneity. Model accuracy can be in-
vestigated in many different ways.

For example, the notion of (partial) ignorance inves-
tigated in this study is that estimations are more likely
to move closer to the mean of the distribution of the
rescue teams’ performance (e.g.,CIµ = 0.5). Another
way of defining this experimental parameter is to re-
place the valueCIµ with a value that has been drawn
from a normal distribution. This would then represent
a situation where agents are also ignorant of the distri-
bution mean of rescue teams.

The investigation of homogeneity among agents can
also be approached in different ways. For example, we
can set the estimation of a different rescue team to an
accurate level for each agent such that each agent has
one accurate estimation of one rescue team. Extensions
to our theoretical study would show that in this case,
we are also guaranteed to find optimal solutions. Em-
pirically, the overall accuracy of each agent can be ini-
tialised based on a normal distribution, where some
agents have highly accurate models of all rescue teams
and some inaccurate models, but most will have mod-
erately accurate models.

Under certain settings of homogeneity and model
accuracy, our algorithm may likely obtain a similar so-
lution quality than if only one designated agent (or a
small group of designated agents) would make a deci-
sion. An example of such a setting is when an agent
that is more knowledgeable than other agents, may be
able to find optimal solutions faster on its own, than
if it participates in the group decision process. Under
which conditions will our collective algorithm find bet-
ter solution quality and reduce computational require-
ment? One main issue is the identification of agents
that have the most accurate models which is addressed
in [20].

4.10.3. Role of Learning
Although learning is part of our formal framework,

it is not as important in this study as in related stud-
ies [20]. In fact, if we remove the learning processes
from the algorithm and modify the framework slightly,
then the algorithm will terminate as it does currently.
This slight modification can be done as follows. We re-
strict agents to propose a rescue team that has not been
selected before and redefine the termination criterion

such that it will terminate the algorithm if no propos-
als are made. This has not been done in this paper as
agents would progressively have "no input" to the deci-
sion making process and restricts future work on more
complex forms of learning.

Another aspect of learning disregarded in this study
is that each agent could replace its estimates of a res-
cue team’s performance with the highest proposed es-
timate made by other agents. In this case, the solu-
tion quality will stay the same (as in our current set-
ting when using the majority policy), but the computa-
tional requirement is likely to decrease as agents will
have the same estimate of previously proposed res-
cue teams. However, the issue of revising and updating
beliefs if new input is presented is a research field in
its own right [12, 32, 13, 11].

Learning becomes a more important issue in fu-
ture research. For example, it is important when
studying models of the variable performance of res-
cue teams [20]. Also, our study implements a model-
updating process that only modifies the model of a se-
lected team after task execution. A more sophisticated
model-update process may also modify the models of
other teams at the same time. For example, after an
agent observes the performance of a particular team is
better than expected, it will increase the estimation of
the performance of this team, but also could lower the
estimations of all other teams. We discuss different as-
pects of model updating in more detail in [20].

5. Related Research

Distributed coordination procedures are often in-
vestigated using the Multi-Agent Systems (MAS)
paradigm, because it makes realistic assumptions of
the autonomous and distributed nature of the compo-
nents in system networks [36, 25, 2, 27, 41, 33, 4].
Many Multi-Agent System approaches do not ade-
quately address the CIA problem as they use each
agent’s models separately to improve coordination as
opposed to all agents using their models together. That
is, each agent uses its own models to decide on allocat-
ing a team to a task even if other, more knowledgeable
agents would suggest better allocations.

This section offers a brief overview of well-known
MAS approaches to allocation problems (note that this
paper considers task or group-rational agents thatcol-
laboratewhen allocating tasks). These approaches can
be divided into two classes.

Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making 33

– Market-driven schemes enable the coordination
of MAS by usingeach agent’s knowledge of its
own task performance[4]. A well-known market-
driven scheme is the Contract Net (CNET) pro-
tocol [36]. The CNET protocol is the first pro-
tocol that enables agents to assign tasks au-
tonomously [42]. This protocol is based on a con-
tract metaphor involving a manager and contrac-
tors. In the context of a task allocation problem,
a manager announces a task, each contractor pro-
vides a bid specifying how well it can perform the
announced task, and the manager then selects the
contractor that specified a performance no worse
than those specified by other contractors in his
bid (we refer to this as thehighestor bestbid).
Note that agents may have knowledge of the per-
formance other agents, but the protocol does not
require an agent to use this knowledge for making
bids.

– Agent-modelling schemes rely oneach agent’s
knowledge of the behaviour of other agents[39,
37, 1, 30, 18]. A well-known approach is the Re-
cursive Modelling Method (RMM) where each
agent uses a utility function to make decisions
that estimates utility functions maintained by
other agents [18]. For example, to make a de-
cision, agentai estimates the utility function of
agentaj (ai 6= aj), and agentaj in turn models
the utility function of agentai. Sinceai knows
that its utility function is estimated byaj, ai’s
utility function will change accordingly, and so
will aj ’s. This type of “recursive nesting” will
eventually exceed an agent’s memory, which is
prevented by limiting the nesting depth (thus
keeping an agent ignorant). An agent will use its
estimated utility function to assess whether or not
it should perform the task in question, but RMM
does not involve the consultation of other agents.

The isolated use of each agent’s contribution renders
a market-driven or agent-modelling approach most
useful when each agent has accurate or near accurate
estimations. For example, in the CNET protocol, the
bid of each contractor must reflect its true performance
to find an optimal solution. That is, the bid of an op-
timal contractor should not be lower than that of sub-
optimal contractors. If an optimal contractor underes-
timates its performance (and underbids) or if a sub-
optimal contractor overestimates its performance (and
overbids optimal contractors), an optimal contractor
will not be selected by the manager and an optimal so-

lution is not found. Our approach enables the use of
each contractor’s contribution in a collective manner
as other contractors may have more accurate estima-
tions of optimal contractors than optimal contractors
themselves. Hence, an optimal contractor is no longer
required to be the only one to have accurate or near ac-
curate estimations to guarantee an optimal allocation.

A comprehensive review of related research is of-
fered in [20].

6. Conclusion

This paper offers an efficient algorithm to the Col-
lective Iterative Allocation (CIA) problem and stud-
ies theoretical and empirical behaviour of this algo-
rithm. Our theoretical study showed that complete op-
timism and task rationality of agents are two theoret-
ical premises that guarantee optimal solutions (under
the condition that the team’s performance is invari-
able and deterministic). We verified optimality of three
policies in particular under such conditions: the mini-
mum policyPmin (which selects a team with the low-
est proposed performance), the maximum policyPmax

(which selects a team with the highest proposed per-
formance) and the majority policyPmaj (which selects
a team that has been proposed by most agents). Com-
plete optimism is a condition that converges the algo-
rithm to an optimal solution in no greater number of
assignment rounds than testing each team once (as for
an exhaustive procedure).

We have performed a series of empirical simulation-
based experiments that investigates the influence of
model accuracy and group decision policies on the ef-
ficiency of the assignment algorithm (measured by so-
lution quality and computational requirement). The ex-
periment is illustrated by using a model of a surf res-
cue domain involving a group of rescue teams that en-
deavours to find an optimal rescue team for rescues.

This study offers several lessons about the empiri-
cal efficiency of the TAP assignment algorithm (under
the assumption that performance is invariable and de-
terministic).

– We have investigated two factors that characterise
the accuracy of models: group knowledge and
group optimism (we have identified two addi-
tional factors: spread and homogeneity of esti-
mations among agents, but not investigated them
rigourously in this study).

34 Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making

∗ Group Knowledge defines how closely the
agent’s estimates match the true performance
of rescue teams. As the knowledge of agents
increases, the efficiency of the algorithm be-
comes better. If agents are knowledgable, so-
lution quality will be near optimal with the
maximum and majority policy. As the true per-
formance of rescue teams becomes more dis-
tinct (i.e., if the spread of the true performance
of rescue teams is larger) or the number of
rescue teams becomes larger, solution quality
and computational requirement reaches opti-
mal levels regardless of the policy used.

∗ Group Optimism defines how the perfor-
mance of individual rescue teams is under- or
overestimated. While solution quality for both
the maximum and majority policy is near opti-
mal when agents are optimistic, the algorithm
terminates earlier with the majority policy than
with the maximum policy, and earlier with the
minimum policy than with the majority policy.
Our study shows that informed, but pessimistic
agents still find optimal solutions with the max-
imum and majority policy, but require fewer as-
signment rounds than in the case of optimistic
agents.

– ConvergenceIf the computational requirement is
restricted to only a few rounds (i.e., the algorithm
terminates after a constant and small number of
rounds), the majority policy should be selected
over the maximum and minimum policy as the
majority policy offers a better solution quality.

These theoretical and empirical insights form a basis
to explore other dimensions of our approach to the CIA
problem. [20] discusses many dimensions in detail. For
example, currently, our policies do not require agents
to compromise on their preference, but as it might be
necessary in many domains that all agents agree on the
direction, we need to develop algorithms that allow an
individual agent to assess conditions that will allow it
to relinquish its preferences. Further, a policy receives
as input several proposals specifying one team and its
estimated performance, but the efficiency of the algo-
rithm may improve if an agent proposes a list of pre-
ferred teams. This requires more sophisticated policies
as well as an evaluation of the communication require-
ment of the algorithm. Also, the agentapolicy is cur-
rently assumed to be task rational and capable when
applying the policy. However, many domains would
encourage some agents to be more opportunistic than

others, thus we need trust mechanisms that will allow
the identifications of the most trusted agent that is least
likely to jeopardise the application of the policy. These
are just some, but important directions for future re-
search that will further elaborate on whether our ap-
proach is successful in more complex domains.

References

[1] R. Alterman and A. Garland. Convention in joint
activity. Cognitive Science, 25(4):611–657, July–
August 2001.

[2] A. H. Bond and L. Gasser.Distributed Artificial
Intelligence. Morgan Kaufmann publishers Inc.,
1988.

[3] P. Bonissone and R. M. Tong. Reasoning with un-
certainty in expert systems.International journal
of man-machine studies, 22(3):241–250, 1985.

[4] Y. Chevaleyre, P. E. Dunne, U. Endriss, J. Lang,
M. Lemaître, N. Maudet, J. Padget, S. Phelps,
J. A. Rodríguez-Aguilar, and P. Sousa. Issues
in multiagent resource allocation.Informatica,
30:3–31, 2006.

[5] P. R. Cohen. Empirical methods for artificial in-
telligence. IEEE expert: Intelligent systems and
their applications, 11(6):88, 1996.

[6] V. Conitzer and T. Sandholm. Common voting
rules as maximum likelihood estimators.Pro-
ceedings of the twenty-first Annual Conference on
Uncertainty in Artificial Intelligence (UAI), pages
145–152, 2005.

[7] H. Cramér. Mathematical Methods of Statistics.
Princeton University Press, 1946.

[8] G. Cumming and S. Finch. Inference by eye:
Confidence intervals and how to read pictures
of data. American Psychologist, 60(2):170–180,
2005.

[9] E. H. Durfee, V. R. Lesser, and D. D. Corkill.
Trends in cooperative distributed problem solv-
ing. IEEE Transactions on Knowledge and Data
Engineering, 1(1):63–83, 1989.

[10] U. Endriss and N. Maudet. On the commu-
nication complexity of multilateral trading: Ex-
tended report.Journal of Autonomous Systems
and Multi-Agent Systems, 11(1):91–107, 2005.

[11] J. Galliers. Autonomous belief revision and com-
munication. In P. Gärdenfors, editor,Belief revi-
sion, pages 220–246, Cambridge, Massachusetts,
United States of America (USA), 1992. Cam-
bridge University Press.

Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making 35

[12] P. Gärdenfors.Knowledge in flux: Modeling the
dynamics of epistemic states. Cambridge Uni-
versity Press, Cambridge, Massachusetts, United
States of America (USA), 1988.

[13] P. Gärdenfors. Belief revision. In P. Gärden-
fors, editor, Belief revision, Cambridge, Mas-
sachusetts, United States of America (USA),
1992. Cambridge University Press.

[14] L. Garrido, K. Sycara, and R. Brena. Quantifying
the utility of building agents models: An experi-
mental study. InAgents-00/ECML-00 Workshop
on Learning Agents, Barcelona, Spain, 2000.

[15] B. Gerkey and M. Mataric. A framework for
studying multi-robot task allocation.Multi-robot
systems: From swarms to intelligent automata,
2:15–26, 2003.

[16] B. Gerkey and M. Mataric. A formal analy-
sis and taxonomy of task allocation in multi-
robot systems. Robotics Research, 23(9):939–
954, September 2004.

[17] W. R. Gilks and P. Wild. Adaptive rejection
sampling for gibbs sampling.Applied Statistics,
41(2):337–348, 1992.

[18] P. J. Gmytrasiewicz and E. H. Durfee. Ratio-
nal communication in multi-agent environments.
Autonomous Agents and Multi-Agent Systems,
4(3):233–272, 2001.

[19] A. Gupta and S. Nadarajah.Handbook of Beta
Distribution and Its Applications. Marcel Dekker
Inc, 2004.

[20] C. Guttmann. Collective Iterative Allocation.
PhD thesis, Monash University, 2008.

[21] C. Guttmann. Making allocations collectively:
Iterative group decision making under uncer-
tainty. In R. Bergmann, G. Lindemann, S. Kirn,
and M. Pechoucek, editors,Proceedings of the
sixth German Conference on Multi-Agent system
TEchnologieS (MATES), volume 5244 ofLec-
ture Notes in Computer Science, pages 73–85.
Springer, 2008.

[22] C. Guttmann, I. Rahwan, and M. Georgeff. An
approach to the collective iterative task alloca-
tion problem. InProceedings of the Interna-
tional Conference of Intelligent Agent Technology
(IAT), pages 363–369, United States of America
(USA), 2007. IEEE Press.

[23] C. Guttmann and I. Zukerman. Agents with lim-
ited modeling abilities: Implications on collab-
orative problem solving. International Journal
of Computer Science and Software Engineering
(CSSE), 21(3):183–196, 2006.

[24] G. Hahn and S. Shapiro.Statistical models in en-
gineering. John Wiley & Sons, 1967.

[25] C. Hewitt. The challenge of open systems.Byte,
4(10), 1985.

[26] A. Jennings and D. Bradby. Lifebots for surf
rescue. Unpublished Manuscript, Royal Mel-
bourne Institute of Technology, Melbourne, Aus-
tralia, 2000.

[27] N. Jennings, K. Sycara, and M. Wooldridge.
A roadmap of agent research and development.
Autonomous Agents and Multi-Agent Systems,
1(1):7–38, 1998.

[28] H. Kitano. Robocup rescue: A grand challenge
for multi-agent systems. InProceedings of the In-
ternational Conference on Multi-Agent Systems,
page 5, Washington, DC, United States of Amer-
ica (USA), 2000. IEEE Press.

[29] H. Kitano and S. Tadokoro. Robocup rescue:
A grand challenge for multiagent and intelligent
systems.AI Magazine, 22(1):39–52, 2001.

[30] J. R. Kok and N. Vlassis. Mutual modeling
of teammate behavior. Technical Report UVA-
02-04, Computer Science Institute, University of
Amsterdam, Netherland, August 2001.

[31] X. Li. Hybrid negotiation for resource coordina-
tion in multiagent systems. volume 3, pages 231–
259. IOS Press, 2005.

[32] A. S. Rao. Dynamics of belief systems: A philo-
sophical, logical, and ai perspective. Technical
Report 02, Australian Artificial Intelligence Insti-
tute, Melbourne, Australia, July 1989.

[33] W. R. Scott. Organizations: Rational, Natural,
and Open Systems. Prentice-Hall, Upper Sad-
dle River, New Jersey, United States of America
(USA), 2002.

[34] O. Shehory and S. Kraus. Methods for task al-
location via agent coalition formation.Artificial
Intelligence, 101(1–2):165–200, 1998.

[35] P. Smets. Varieties of ignorance and the need
for well-founded theories.Information Sciences,
57(58):135–144, 1991.

[36] R. G. Smith. The contract net protocol: High-
level communication and control in a distributed
problem solver.IEEE Transactions on Comput-
ers, 29(12):1104–1113, 1980.

[37] P. Stone, P. Riley, and M. M. Veloso. Defin-
ing and using ideal teammate and opponent agent
models. InProceedings of the Innovative Ap-
plications of Artificial Intelligence Conference
(IAAI), pages 1040–1045, 2000.

36 Guttmann et al. / Collective Iterative Allocation: Enabling Fast and Optimal Group Decision Making

[38] R. S. Sutton and A. G. Barto.Introduction to
Reinforcement Learning. The MIT Press, Cam-
bridge, Massachusetts, United States of America
(USA), 1998.

[39] M. Tambe. Towards flexible teamwork.Jour-
nal of Artificial Intelligence Research, 7:83–124,
1997.

[40] J. Vassileva, G. I. McCalla, and J. E. Greer.
Multi-agent multi-user modeling in I-Help.User

Modeling and User-Adapted Interaction, 13(1–
2):179–210, 2003.

[41] G. Weiß. Multiagent systems: A modern ap-
proach to distributed artificial intelligence. The
MIT Press, Cambridge, Massachusetts, United
States of America (USA), 1999.

[42] M. Wooldridge and N. Jennings. Intelligent
agents: Theory and practice.Knowledge Engi-
neering Review, 10(2):115–152, June 1995.

