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Abstract.

A major challenge in the field of Multi-Agent Systems is to kblegsautonomous agents to allocate tasks efficiently. Thpepa
extends previous work on an approach to the collectivetiterallocation problem where a group of agents endeavaurs t
find the best allocations possible through refinements aetladiocations over time. For each iteration, each agemoges an
allocation based on its model of the problem domain, therobtiee proposed allocations is selected and executed whihles
us to assess if subsequent allocations should be refinedif&van efficient algorithm capturing this process, and treport on
theoretical and empirical results that analyse the rolarei conditions in the performance of the algorithm: acguod agents’
estimations of the performance of a task, the degree of égtimand the type of group decision policy that determineskvh
allocation is selected after each proposal phase.
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1. Introduction tational grids, and collaborative student support envi-
ronments [14, 31, 4].

Assigning agents to tasks is a challenging prob- This paper addresses the problem of Collective Iter-

lem in the coordination d¥lulti-Agent Systems (MAS) ative Allocation (CIA) which involves allocating tasks
where each agent is autonomous and has its own to teams (this paper uses the terms “tasks” and “teams”

unique knowledge of the agents and tasks involved [9, .to q§scr|be allc_)cafuons, but_these terms are specific to
. . . . " individual application domains) [20]We assume that
20]. This problem requires efficient solutions as it is L .
. . . . each agent has estimations of the performance of dif-
experienced in a wide range of applications, such as

twork routi - t logisti ferent teams (i.e., they do not know the performance
network routing, crisis management, logistics, compu- accurately). The accuracy of estimations maintained

by each agent is of importance as it influences the

1This research was supported in part by Linkage Grant
LP0774944 from the Australian Research Council. 1This paper extends a previous paper by offering substhntial
“Corresponding author. E-mail: christian.guttmann@grwih. deeper theoretical and empirical results [22].
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quality of allocations found. Knowledge of the perfor-
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ciency of our approach based on [16]: theality of the

mance of a team is acquired after it has been selected allocation calculated by our algorithm; and the number

based on a group decision policy. Following other
work, which argued that estimations of other agents’
performance can improve individual agent decision-
making [18], such estimations are useful in making
collective decisions about allocating tasks to teams.
Our first question concerns the conditions under
which we can guarantee optimal or near optimal al-
locations by testing only few teams. This paper con-

of rounds required to find this solution. We show that
these aspects are influenced by the accuracy of agents’
estimations of the performance of teams; the group’s
optimism; and the type of group decision policy. For
example, we prove that if agents are completely opti-
mistic, then we are guaranteed to converge to an opti-
mal solution. Further, if agents are optimistic and use
particular termination criteria then the algorithm can

siders the case of invariable team performance, i.e., a be significantly faster in finding optimal solutions than
team’s performance is the same every time it performs an exhaustive approach (that tests each possible team).
a particular task (related work often assumes implic- Section 4 consists of empirical studies that determine
itly that the performance of agents is invariable [4]).  the behaviour of the algorithm under empirical condi-
Using various individual agents’ proposals which are  tions. We perform a series of simulation-based exper-
based on their estimations of the performance of dif- jments that show that the maximum policy converges
ferent teams (a phase we cptbposing, we selecta o petter allocations, but when the number of rounds
team to a given task (a phase we clectior). The is limited, then the majority policy outperforms the
selection is based on group decision policies, where maximum policy. Section 5 discusses related literature
each agent contributes (e.g., through proposing) to the gnd Section 6 summarises the contributions offered by

decision as to which team should be selected for a
given task (Section 2). After a team is selected and ex-
ecutes the task, we progressively develop a better un-

this research.

derstanding of the true performance of teams (a phase 2. Formal Definitions and Assignment Algorithm

we calllearning) which is taken into account in sub-

sequent allocations. Our second question concerns the

conditions that determine the number of iterations re-
quired to find allocations. This question is addressed
by studying different criteria that terminate the algo-
rithm. In this context, we also examine three policies:
themajority policywhich selects the team proposed by
the majority of agents; theaximum policyhich se-
lects the team proposed with the highest estimated per-
formance; and theninimum policywhich selects the
team proposed with the lowest estimated performance.
We explore these two questions theoretically as well as
empirically.

This paper extends the&tate of the arty offering
a comprehensive investigation of theoretical and em-
pirical conditions that enable a group of agents to find
optimal solutions in as few iterations as possible. The
main contributions are described in three sections. Sec-
tion 2 offers a formal representation of the approach
and problem domain. This formal representation is re-
quired for the theoretical and empirical studies that fol-
low in Sections 3 and 4. Section 3 offers results that

This section defines the main components of this ap-
proach and an assignment algorithm.

2.1. Definition of Main Components

Our approach to the CIA problem is represented by
the following tuple.

CIA =<T,AT, A = {ay(M,,,RP,,),...},P >

T is a set of Tasks, each taskcan be assigned to
an agent teamt¢; € AT. Each agent; in A maintains
Models M,, and uses Reasoning Processd3,, to
make assignments collectively using a group decision
Policy P. These elements are defined in the following
paragraphs.

Definition 1. A set of Tasks is denoted by
T ={t1,...,ts} withs = |T.

define theoretical boundaries on two aspects of the effi- A task defined iri” can be assigned to an agent team.

2In previous work [23, 21], we presented empirical resultthia
case of variable team performance. But this paper offechgér
analytical properties about the performance of the algarit

Definition 2. A set of Agent Teamsis denoted by
AT = {atq,...,at,} with p |AT|, whereat; €
AT is a team.
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Definition 3. A set of Agents is denoted by is to fully utilise the proposals submitted by the agents

A={a1,...,aq} With g = |A|, wherea; € Ais an A for the selection of a team. To this end, we define a
agent. policy that governs the process of making a group de-
cision. We consider the following three notations that
The true performance of a team; for var- underly the definition of a group decision policy.

ious tasks is referred to as a team’s capabil- o

ity: Cl(at;) = {V(at;,t1),...,V(at;,t,)}, where — A set of (;omblnatlons of pro.posals that could

V : AT x T — R* is a value representing the perfor- be submitted by agentsd is denoted by

mance of a team for a task (the value O corresponds SETPROPOSALSfor a particular group deci-

to being unable to perform a task). The capability of a sion.

team can only be estimated (in this study, a value of ~— Lét PROPOSALS € SETPROPOSALSbe a

team’s true performance is only revealed after a team specific set of proposals, such tRROPOSALS

performed a task, values for the true performance of ={proposal,,, ..., proposal, }, where g = |A|

teams that have not performed a task yet are only (i.e., each agent makes one proposal). As per Def-

specified for illustrative purposes). Each agene A inition 4, proposal,, is an ordered pair of the pro-

maintains modeld/,, to estimate the capabilities of posed team and its proposed performance as spec-

teams and each agent is able to execute Reasoning  ified by an agent;'s PROPOSE process.

Processe®P,, using these models. — Finally, a set of proposed teams is denoted
L by ATproposaLs = {at;|(at;, Va,(at;, tr)) €

Definition 4. M,, are the Models main- PROPOSALS}.

tained by agenta;. Models are expressed by

X ; With these notations, we define the policy as fol-
M,, = {M,,(at1),..., M,,(at,)} with p being the th hes ons, we dett policy as

number of teams iMT. A specific model of a team lows.
at; is defined by a set of estimations Definition 6. A group decision PolicyP is an algo-
. . rithmic process for selecting one proposal from a set of
M, (at;) = {Va,(atj, t1),. .., Va,(at;,ts)}, where proposals, such thaP : SETPROPOSALS— AT.
Then,
- t1,...,ts are the tasks defined ifi" (Defini-
tion 1). atselected:= P(PROPOSALS), where
- at; is a team inAT (Definition 2).
- Va, (at, t) is a value function that maps a team - atselectedS @ team iNATproposALs -
at; and a taskt, to a value that is an estimation - PROPOSALS is a proposal set in
of teamat;’s true task performanc¥ (at;, tx). SETPROPOSALS
Definition 5. RP,, area,’s Reasoning Processes Note that a policy selects a team only from those
that have been proposed, that is, the selected team is in
e For each agenta; and task t;, the INI- ATpRroPOSALS -
TIALISE process returns a set of Modélg, .
e For each agenta; and taskty, the PRO- 2.2. TAP Assignment Algorithm
P OSEprocess returns a proposal defining a team
and its estimated performance: proposal = We now introduce a formal algorithm that coordi-
(atj, Va, (at;)). nates the main processes of the assignment procedure.

e For each agent;, taskt, and teamat;, the o
UPDATE process returns a set of updated mod- 2.2.1. Preliminaries . .
els )M (in this study, we assume that models are ~_Each agent follows the assignment algorithm (de-

updated after a team performs a tagh. picted in Figure 1) to coordinate processes with other
agents and to make collective assignments of a team to

For a given task, the estimations in the models main- a task over multiple rounds of proposing, selecting and
tained by each agent are initialised based on its own learning. The algorithm uses the definitions introduced
unique experience and each agent can propose a par-n the previous section.
ticular team with an estimation of that team'’s perfor- Two more clarifications are required to define the
mance (Definition 5). A central issue in our approach algorithm. First, the algorithm assumes the execution



TAP ASSIGNMENT ALGORITHM .

INPUT: Taskt, € T', TeamsAT', AgentsA, Policy P
OUTPUT: Assignment ofit; € AT tot, € T

ANNOUNCE tasky, € T
INITIALISE,,(M,,, tr) (Va; € A)
Repeat

(a) PROPOSALS = | J PROPOSE (M., t)
a; €A

(b) atse|ected:: P(PROPOSAL)$>

(C) UPDATE% (Ma7,7v(aﬁselected tk)) (Vai € A)

4. Until a termination criterion is satisfied

Fig. 1. A task is repeatedly assigned to different teamd antti-
terion is satisfied (e.g., a team is believed to perform thk keest).

of an ANNOUNCE process that broadcasts the task
t, € T to all agents. Unlike reasoning processeR
executed by a specific agent(Definition 4), the AN-
NOUNCE process can be executed by any party. We
also assume that the policy is applied by agent
apolicy that does not alter proposals or the outcome of
the policy. Note that finding an ageajqicy can be a
difficult problem in MAS, particularly if the MAS en-
courages opportunistic behaviour and the agent modi-
fies the outcome of the policy.

2.2.2. How Does the Assignment Algorithm Work?

The assignment algorithm presented in Figure 1
works as follows. In step 1, a task is announced and
broadcasted to all agent. Upon receiving this an-
nouncement, each agent initialises its models of the
performance of all teams (step 2 in Figure 1).

The loop (steps 3a, 3b, and 3c) is calledaasign-
ment roundr; with i being the:'th iteration of the
loop. A reasoning process or group decision executed
in a particular round is denoted with a lower index
indicating the round. For example, the team that has
been selected in round 3 is denoted d¥ciccted,rs »
and the policy outcome in that round is expressed by
P.,. The estimated performance of the selected team
atsele(:ted,7‘3 is denoted bWai,m (aﬁselected tk)

Each assignment round involves proposing a team
by each agent (step 3a), selecting a team (step 3b) and
learning from the performance of the assigned team
after task execution (step 3c).

— In step 3a, each agent proposes a team for the an-
nounced task and the proposals communicated by
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the agents i are stored iPROPOSALS. For
example, agent;’'s PROPOSE process returns
proposal,,=({a1,a2},0.4) and agenta; PRO-
POSE process returnmoposal,,=({az},0.25).
The proposals communicated by andas, are:
PROPOSALS={proposa),, = ({a1,az2},0.4),
proposal,, = ({az},0.25)}.

In step 3b, an agempoiicy Uses th&® ROPOSALS

and a group decision policy? to select a
team atselecteg fOr the announced task (Defini-
tion 6). The selected teantseiectediS assigned to
the task and will then perform it. For example, a
policy can select the highest proposed team
(consisting of ageni; andas).

In step 3c, each agent updates its models
based on the true performance of the selected
team: V (atselecteaDake. For example, the es-
timated valueV,, . (ats, 1) = 0.4 is replaced
with the true performance of the selected team
Vi risa (ats, t) = V(atselectedbake = 0.2. The
models are now changed and this may alter the
selection of a team for the task in the next round.

An assignment round is repeated until the agent
apolicy terminates the algorithm according to a crite-
rion (step 4). A simple example of a criterion is to
limit the number of assignment roundsite N (e.g.,

a similar criterion is used in [34]). Such a criterion
may be inefficient as it can terminate the algorithm
well before or well after an optimal team has been
selected. Other criteria may terminate the algorithm
more efficiently. For example, the algorithm may ter-
minate when no proposals specifies a team which es-
timated performance is higher than any previously se-
lected team. This paper considers criteria that uses the
proposed estimations and information of each team’s
true performance (as it becomes known). As our stud-
ies unfold in this paper, it will become clear that devel-
oping efficient criteria is a difficult problem.

2.2.3. Solution Computed by Algorithm

Finally, we need to specify the solution returned by
the algorithm when it terminates. We define this solu-
tion to be a team whose actual performance is no worse
than any team that has performed the designated task
in previous assignment rounds. More formally,

— Let ATknownsorar = {atj e AT atj
atr,, ¢ < Teurrent, Where reyrent is the current
round}. That is, if the algorithm is currently in
roundrcyrrens @nd the performance of the selected
teamat becomes known, theATknownsoFar

Tcurrent
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is a set of teams that were selected in rounds
r1,...,Tcurrent 1he performance of these teams
is known accuratelWaromsorr = 1V (at;) :

at; € ATknownsoray. At the beginning of the
algorithm, before the first selection of a team,
ATKnownSoFar: (Z)

Letatgesisorar= argmax V (at;) be the team

aty € ATknownSoFar
with the highest true performandé(atgestsora)

in ATKnownSoFar
Note that more than one team may satisfy this def-

inition, so that the solution returned by the algorithm
may be non-deterministic.

2.3. Formalising the CNET protocol in our
Framework

The contract net protocol is a well known coordina-
tion mechanism for distributed systems [36]. In CNET,

each agent proposes itself for an announced task (us-

ing its estimation of its own task performance) and
the highest bidding agent is selected for the task. The
CNET protocol is a traditional market-based allocation

scheme which assumes that each agent knows its own

performance best. Given its prevalence in many ap-
plication domains, this section briefly shows how the
CNET protocol can be formalised using our formal-
ism.

The algorithm in Figure 1 works similar to the
CNET protocol [36] by specifying the following com-
ponents of our framework.

— Each agent is also a team and vice versa. That is,
the group of agents is self-containedas= AT.

— Each agent proposes itself with a self-estimate of
its own performance (and to this end, each agent
only needs to maintain a model of its own perfor-
mance).

— A maximum policy is used to select a team (which
is similar to a manager selecting the best bid).

— Our algorithm is terminated after one assignment
round.

Under this setting, finding an optimal allocation re-
lies on the accuracy of each agent’s estimations of its
own performance. For example, if an optimal agent’s
estimations remain lower than that of other agents, it
will never win the bid, and thus the agent’s true per-
formance will never be known. This paper shows that
our approach substantially extends the CNET protocol
to offer better and faster solutions. Note that [20] uses
this framework and algorithm to represent other well

known assignment processes, such as the process of
aggregating preferences in classical voting.

3. Theoretical Considerations

The previous section introduced a formal framework
and an algorithm that defines our approach to the Col-
lective Iterative Allocation (CIA) problem. This sec-
tion presents a theoretical study of our algorithm fo-
cusing on conditions under which we are guaranteed
to find optimal solutions, and different termination cri-
teria that influence the computational requirement of
the algorithm. Section 3.1 first discusses the underly-
ing assumptions of our study and Section 3.2 discusses
the efficiency aspects of the algorithm. Sections 3.3
and 3.4 then analyse the role of the agents’ estimations
of team performance in the efficiency of the algorithm.
In particular, we are interested in identifying condi-
tions under which the algorithm is guaranteed to find
a team that performs a task optimally, and conditions
that can reduce the computational requirement of the
algorithm.

3.1. Preliminaries

This theoretical study assumes that the capabil-
ity of each team will not change (it is invariant and
deterministic) when performing the same task under
the same conditions. This assumption is made to fo-
cus our investigations of the efficiency of the algo-
rithm on three aspects: accuracy of estimations, poli-
cies and termination criteria. In related work, the be-
haviour of a team is often implicitly assumed to be
the same whenever it performs the same task, because
the context under which the behaviour occurs does not
change [14, 37, 40].

It is worthwhile noting that the assumption on in-
variant and deterministic performance is not that re-
strictive, as we could in fact modebrmalisedperfor-
mance with respect to the environment or situation. For
example, if we applied this to long distance running,
and each iteration involves a different length race, we
could simply normalise by dividing the length of the
race by the race time and using this as the performance
measure.

For clarity of exposition, we have chosen to sim-
plify two aspects of the notation used in this chapter.
From now on, we assume a fixed tagke T and we
use an abbreviated form of the notation for the pro-
cesses and estimations. For example, instead of notat-
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ing an estimation WitW(atj, tx), we now simply refer
to V' (at;). Analytical results that hold for a tagk also
hold for any task selected froffi if performing this
task does not depend on first performing other tasks.

Finally, values, processes and policy outcomes are as-

sociated with the same round, if not indicated other-
wise. That is, if we have not indicated a value, process
or policy with a lower index of the round, they are as-
sociated with the same round.

3.2. Evaluating the Efficiency of the Assignment
Algorithm

[15, 16] propose three aspects to evaluate the effi-
ciency of allocation algorithmssolution quality— a
value of the solution computed for an allocation prob-
lem,computational requiremenrtthe number of times
a dominant operation is repeated, armnmunication
requirements- total number of messages sent over the
network [15, 16 This paper uses two of these effi-
ciency aspects to evaluate our algorithm.

— Solution quality: performance of the team for a
particular task found by our algorithm.

— Computational requirement: number of assign-
ment rounds required before a solution is found.

The third aspect, communication requirement, can
be derived from the computational requirement by
multiplying the computational requirement with the
number of agents in a group. For example, for three
rounds and two agents, the number of communicated
proposals is: [rounds{ |A| = 3 x 2 = 6. This calcu-
lation underlies the assumption that each agent in
communicates one proposal in each round.

To offer useful theoretical properties of the effi-

of the reasoning processes, estimations and termina-
tion conditions is required to offer theoretical proper-
ties on the efficiency of the algorithm.

Particularly, we show that under certain conditions,
we can guarantee to find aptimal solutionwhich
is a team denoted byt, whose performance is not
lower than the performance of other teamsiin, i.e.,

at, = argmax V(at;) for all at; € AT. Note that if
at;€AT

largmax V'(at;)| > 1, then there are several optimal
at; €EAT
solutions.

3.3. Reaching Optimal Solutions under Complete
Group Optimism

This section examines the efficiency of the algo-
rithm under the assumption that a group of agents is
completely optimistic (i.e., each agent in the group is
optimistic). The next section examines if complete op-
timism is a prerequisite for guaranteeing an optimal
solution.

3.3.1. Policy — Independent Optimality under
Complete Group Optimism

Research on reinforcement learning found that op-
timistic initial estimations have a significant influence
on converging to optimal solutions as they encourage
the exploration of the problem space and eventually
lead to better results [38]. However, this research does
not offer any guarantees on finding optimal solutions
or the computational requirement of finding solutions.
Further, previous research only considers how a single
agent makes individual decisions and how this influ-
ences its own learning behaviour (and not how groups
of agents make decisions together). Research on rein-
forcement learning has notinvestigated the issue of op-

ciency of our algorithm, we need to make assumptions i in collective decision making and learning. We

about the reasoning processes, estimations maintained

by agents and the termination condition of the algo-

rithm. For example, if each agent proposes the same
team in each round and does not update its models, and

the algorithm terminates at some round in the future,
we would not be able to make precise predictions of
the efficiency of the algorithm. Hence, a specification

SNote that the term of computational requirement to descaibe
performance aspect of a coordination mechanism is not rsaire
shared. For example, Endriss and Maudet use the term “coimmun
cation complexity” which refers to the number of deals reegito
find an optimal assignment in the context of negotiation .[Ejo-
nomic literature often refers to the notion of “transactamsts” and
[20] discusses this notion in the context of CIA problems.

extend existing work to address this issue.

For this investigation, we need to define the notion
of complete optimism in a group of agents. To this end,
we first specify two reasoning processes used by each
agent (Definition 5), starting with the INITIALISE
process.

Definition 7. Optimistic Initialiser. An agenta; is
an optimistic initialiser if, and only if, it does not
initialise its estimations of the performance of each
team at; € AT with values lower than the team’s
true performance. That is, the INITIALISE process
(Definition 5) of agent:; returns models\/,, where
Vo, (at;) > V(at;) for all teamsat; € AT.
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Example 1. There might be various situations under
which agents are optimistic initialisers. For example,
assume that we have two agentsand a, and two
teamsat; and aty. Each agent observes each team
running a certain relay for a certain distance, and
records the time they take. Each agent observes the
same teams but over different distances. For example,
a1 observesit; running 1 kilometre (km)» observes
the same team running 2 km; and similady ob-
servesat, running 3 km andiz observesits running

1 km. Now, the task given is to run a marathon of ap-
proximately 42 km. Each agent bases their estimations
of each team’s running performance by linearly ex-
trapolating from their prior observations of the run-
ning performance of teams of shorter distances. As-
sume that teams actually become slower on average
as they run longer distances. In this case, each agent
overestimates the performance of each team, all by dif-
fering amounts as they all observed the teams over dif-
ferent distances.

Definition 8. Optimistic Updater.An agenta; is an
optimistic updater if, and only if, it does not update
its estimations of the performance of each tegme
AT for a task with values lower than the team'’s true
performance. That is, the UPDATE process (Defini-
tion 5) of this agent returns updated mod#fs, where
V., (at;) > V(at;) for all teamsat; € AT.

Example 2. Agents may have several reasons not to
update their models with underestimations. Follow-
ing from the previous example (Example 1), consider
that agents have observed an improvement of each
team’s running performance over a shorter distance
(but the teams have not run a marathon yet). Agents
may therefore believe that a similar improvement is to
be expected for longer distances. For example, assume
that teamat; and aty improved their performance
on shorter distances. Assume that teain requires

4 hours and teamt, requires 4} hours to run a first
marathon and they would have already reached their
peak performance. Now, agents may assume a similar
improvement of the marathon performance as was ob-
served for teams running shorter distances. Then, for
a next marathon, each agent’s updated models will es-
timateat;’s time shorter than 4 hours angt,’s time
shorter than 4 hours.

For clarity of exposition, the following definition
refers to an optimistic agent as being one that is an op-
timistic initialiser and updater.

Remark 1.0ptimistic Agent. We say that an agent is
optimisticif, and only if, the agent is aaptimistic ini-
tialiser (Definition 7) and amoptimistic update(Defi-
nition 8).

Definition 9. Complete Group OptimismA group
of agents A is completely optimistic if, and only
if, each agent in this group is optimistic, so that
V., (at;) > V(at;) for all a; € A and for all at;
AT at all times.

We also define an agent’s PROPOSE process repre-
senting the agent’s contribution to find an optimal so-
lution (which we also refer to asisk rationality. For
this definition, recall the following expressions which
were first introduced in Section 2.2.3.

— Let ATknownsorFar = {atj e AT atj
atr,, Tt < Teurren, Where reyrent is the current
round}. That is, if the algorithm is currently in
roundrcurreny, @nd the performance of the selected
teamat,,, ., becomes known, theATknownsoFar

is a set of teams that were selected in rounds
r1,...,Teurrent 1he performance of these teams
is known accuratelyWargmsorr = 1V (at;) :

at; € ATknownsorap- At the beginning of the
algorithm, before the first selection of a team,
ATKnownSoFar: (Z)
Let atgestsorar=

argmax V(at;) be the team
at; € ATknownsoFar
with the highest true performandé(atgestsora)

in ATknownsoFar

Definition 10. Task Rational ProposeAn agent; is
a task rational proposer if, and only if, its PROPOSE
process (Definition 5) is as follows.

1. if Jat; Vai(atj) >  V(atgesisora), then
a; proposes a team with an estimation higher
than Y(atBestgoFa}, such thatproposal,, =
(atl, Vs (atl)) where V,, (atl) > V (atgestsoFa)

for a teamat; € AT (note thatat; = at;
if V,,(at;) is the only estimation higher than
atBestSoFa)-A

. if =3at; : Vq, (at;) > V(atgestsora), thena; pro-
poses any team.

If an agent has estimations higher tHatutgestsora)
for several teams, a “cautious” task rational proposer
may, for example, propose the next best team to
atestsorar AlSO consistent with this definition is a
“maximal” task rational proposer that specifies a team
with the overall highest estimated performance in the
agent's models.



The first theorem demonstrates that complete group
optimism and task rationality are important premises
for guaranteeing the finding of an optimal solution
with our algorithm. These premises combined with
testing the proposals communicated in each round en-
able us to identify the precise conditions under which
an optimal solution is guaranteed. The importance of
this theorem is that the algorithm identifies an opti-
mal solution (under conditions of complete group op-
timism and task rationality), regardless of the type of
group decision policy used. Hence, we call this theo-
rem the sufficient condition.

Theorem 1. Optimality under Complete Group Opti-
mism and Task Rationality: Sufficient Conditiorif

(A) the group of agentsl is completely optimistic
(Definition 9)#

(B) each agent inA is a task rational pro-
poser (Definition 10), and

(C) the algorithm does not terminate
Y(at;,V(at;)) € PROPOSAL$ such that
V(atj) > V(atBestSoFa}'

then if the algorithm terminates it will terminate with
an optimal solution.

if

Proof. The theorem is proven by contradiction, i.e., we
assume that if the algorithm terminates, then we have
found a suboptimal team¥gesisorar

1. If the teamutgestsoradS NOt an optimal team, then
there must be a teamy,, such thatlV (at.) >
V(aﬁBestSOFa> .

. According to(C), if the algorithm terminates, we
know that3(at;, V (at;)) € PROPOSALS such
thatV (at;) < V (algestsora). ASSUme that’ €
A is the agent that made this proposal.

3. According to (B), we know that
V (atgestsora) > Var (atj) for all at; €
AT. In particular, we know that

V(atBestSOFa> >V (at*)-

According to 1.,V (at.) > V(atestsora), and ac-
cording to 3.V (atgestsora) > Vi (at.). S0, we know
that V(at,) > Vi (at.). However, this is a contra-
diction, because we assumed that no agent has initial
underestimations of the performance of any team nor
does it update its models with underestimations (Con-
dition (A)). O

4The minimum condition for this theorem is that each agent is
optimistic of the performance of only an optimal team. Hoerev
this premise is difficult to prove in many realistic problenaains.
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To illustrate this theorem recall Examples 1 and 2.
The best marathon team is identified as soon as a pro-
posed estimation is not greater than the best marathon
team known so far, if we have a completely optimistic
and task rational group of agents (Definitions 9 and
10).

Note that if all estimations are higher than the true
performance of an optimal team, then we can define a
stronger Conditiol€ enabling an earlier identification
of an optimal solution and thus reducing the compu-
tational requirement of the algorithm (which is further
investigated in Section 3.3.3). This condition is true if
any proposed estimation communicated in any previ-
ous round is not greater thargesisorar IN this case, we
know that, if the algorithm terminates, we have found
an optimal solution.

3.3.2. Optimal Solution with Three Termination
Criteria

We now define three termination criteria and inves-
tigate if they are guaranteed to terminate the algorithm
with an optimal solution. We first prove that an optimal
solution is found with each of these criteria. In Sec-
tion 3.3.3, we order these criteria with respect to their
computational requirement (i.e., the required number
of rounds before the algorithm terminates with an op-
timal solution).

For the following criteria, we assume that the policy
is restricted to not select a team more than once (to
prevent looping), hence the algorithm will eventually
terminate, because the set of tea#B is finite (in the
worst case after all teams have been selected at least
once).

The following criterion terminates the algorithm if
all proposed estimations of the team selectédiected
by the policy are not greater than the best one found so
far: atgestsorar IN Other words, we only terminate the
algorithm if no agent believes that we can find a better
team for the task.

Termination Criterion 1. The algorithm ter-
minates if the following condition is true:
Va; € A : proposa), = (atselected Va, (atselected) SUCh

that Vam (atselected < V(atpestsoFa)-

The next criterion is more restrictive as it termi-
nates the algorithm if only one proposed estimation
of the performance of the selected team is not greater
thanatgestsorar

ter-
true:

Termination Criterion 2. The algorithm

minates if the following condition is
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Ja; € A : proposa),, = (atselected Va, (atselected) SUCh
that Vai (atselectea < V(atBestSoFa}-

The third criterion is most restrictive as it will ter-

Proof. Since SETPROPOSALS C
SETPROPOSAL% 3, SETPROPOSALSZ:. will
also consist of proposal sets which have at least one
proposal, proposal’, with a proposed performance

minate if at least one proposed team has an estimatedthat is not greater thantgestsorar (as specified for

performance not greater th&f( atgestsora)-

Termination Criterion 3. The algorithm ter-
minates if the following condition is true:
Ja; € A : proposa), = (at;, Vs, (at;)) such that

Vai (atj) < V(atBestSoFa}-

We first prove that the most restrictive criterion,
TC 3, will terminate with an optimal solution.

Lemma 1. Optimality under Complete Group Opti-
mism and Task Rationality: Termination Criterion 3.
Under complete group optimism (Definition 9) and un-
der the condition that each agent is task rational (Def-
inition 10), the algorithm terminates with an optimal
solution using Termination Criterion 3.

Proof. We will prove optimality by showing that the
algorithm does not terminate before Conditi@) in
Theorem 1 is satisfied. Recall ttRETPROPOSALS

is a set of all possible combinations of proposals that
can be communicated by agents (Definition 6).

1. LetSETPROPOSAL%3 C SETPROPOSALS

PROPOSAL$H-3). Since proposal’ satisfies con-
dition (C) specified in Theorem 1, the algorithm
terminates with an optimal solution using Termination
Criterion 2. O

Lemma 3. Optimality under Complete Group Opti-
mism and Task Rationality: Termination Criterion 1.
Under complete group optimism (Definition 9) and un-
der the condition that each agent is task rational (Def-
inition 10), the algorithm terminates with an optimal
solution using Termination Criterion 1.

Proof. Since SETPROPOSALS C
SETPROPOSALS3;, SETPROPOSALS:  will
also consist of proposal sets which have at least one
proposal, proposal’, with a proposed performance
that is not greater thamtgestsorar (@S specified for
PROPOSAL$H-3). Since proposal’ satisfies con-
dition (C) specified in Theorem 1, the algorithm
that uses Termination Criterion 1 will terminate the

algorithm with an optimal solution. O

3.3.3. Ordering Three Termination Criteria with
respect to Computational Requirement
For comparative purposes, consider an exhaustive

be a set of proposal sets, where each proposal setprocedure that assigns each team at least once and af-

PROPOSALE-3; € SETPROPOSALS 3 will
satisfy TC 3.

2. Let PROPOSALE¢c3 € SETPROPOSALE 3
be an arbitrary set of proposals that will satisfy
TC 3.

3. According to TC 3, when the algorithm ter-
minates, there exists at least one proposal’
PROPOSALS% -3 that does not estimate a team
greater thart/ ((]JtBeS£So|:a), such that proposa#
<atj, V(atj)>whereV(atj) < V(atBestgoFa}.

Since proposal’ also satisfies Conditi¢@) speci-
fied in Theorem 1, the algorithm that uses TC 3 will
terminate with an optimal solution. O

Lemma 2. Optimality under Complete Group Opti-
mism and Task Rationality: Termination Criterion 2.
Under complete group optimism (Definition 9) and un-
der the condition that each agent is task rational (Def-
inition 10), the algorithm terminates with an optimal
solution using Termination Criterion 2.

ter each team has performed a task, the true perfor-
mance of each team is known and an optimal solution
can be determined. By testing each team, one-by-one,
it is possible that an optimal team could be assigned
in the first round, but it will not be known if it is an
optimal team before testing all remaining teams. Our
aim in this section is to determine a ranking of Termi-
nation Criteria 1, 2 and 3 with respect to the number of
required rounds to find an optimal solution.

For the purpose of analysing the computational re-
guirement of the algorithm, the UPDATE and PRO-
POSE processes specified in Definitions 8 and 10 are
too general. For example, according to Definition 10
(task rational proposer), agents may propose any team
as long as they propose one with an estimation higher
than V (atgestsora) (if there is such a team). Assume
thata; is a task rational proposer and has three per-
formance estimation¥, (at;) = 0.6, V,, (at2)
0.7 and V,, (at3) = 0.8, V(atgesssora) = 0.5, and
V(atl) V(atg) =05 andV(atg) = 0.8. Asaq is
task rational it could proposet; first, thenats, and



10

finally ats or it could proposed- first, and themuts. It
could also proposets in the first round. As seen from
this example, we cannot predict how many rounds are
required before the algorithm terminates if agents act
according to Definition 10. Also, if agents use the opti-
mistic UPDATE process specified in Definition 8, each
agent may only make slight changes to its models and
propose different teams before the algorithm termi-
nates.

An assessment of the computational requirement of
the algorithm with a particular criterion requires more
restrictive definitions of the PROPOSE and UPDATE
processes. These definitions will enable us to prove
specific theorems of the computational requirement of
the algorithm.

For Theorem 1, we assumed that each agent is an

optimistic updater — the following definition is a spe-
cial case of such an agent (Definition 8).

Definition 11. Accurate UpdaterAn agenta; is an
accurate updater if, and only if, the UPDATE process
of this agent replaces an estimated value of a team
with the value that represents the observed perfor-
mance of the selected team (after it performs the task):
Vai (atselectea = V(@tselectea-5

The following definition is a special case of a task
rational proposer (Definition 10).

Definition 12. Maximal Task Rational ProposerAn
agent is a maximal task rational proposer if, and only
if, it proposes a team with the highest estimated per-
formance according to the estimations in its mod-
els. That is, an agent; proposes a teanat; with
SR Va, (at;).

We can now rank the Termination Criteria 1, 2 and
3 according to the number of rounds the algorithm re-
quires to find an optimal solution. We say that “TC x
is at least as efficient as TC y”, if the algorithm termi-
nates with TC x in no greater number of rounds than
it would take for the algorithm to terminate with TC y
(in other words, TC y will need at least as many rounds
as TC x). The next theorem states that Criterion 2 is at
least as efficient as Criterion 1.

Theorem 2. Termination Criterion 2 is at least as ef-
ficient as Termination Criterion 1.If each agent in

5Since we assume that the performance of teams is invarthiele,
observed performance equals the true performance of a team.
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A is an optimistic initialiser (Definition 7), a maximal
task rational proposer (Definition 12), and an accurate
updater (Definition 11), then TC 2 will terminate the
algorithm with an optimal solution in at least as many
rounds as TC 1.

Proof. We will prove this theorem by showing that
there is a set of proposals that terminates the algorithm
with TC 2, but not with TC 1.

Let SETPROPOSALS:1 C SETPROPOSALS
be a set of all proposal sets that will satisfy TC 1
and let SETPROPOSALS > C SETPROPOSALS
be a set of proposal sets that will satisfy TC 2
(SETPROPOSALSIs a set of a combination of pro-
posals communicated by agents, Definition 6).

According to Lemma 2, if the algorithm terminates
with TC 2 and finds an optimal solution, then it
will also terminate and find an optimal solution with
TC 1. We also know thaBETPROPOSALS, C
SETPROPOSAL%:. Then, we know that
SETPROPOSALS>/SETPROPOSALS are
proposal sets that will terminate with TC 2, but not
with TC 1. In other words, any sequence of rounds
that terminates with TC 1 will terminate with TC 2
after the same number of rounds, if not earlier. O

Theorem 3. Termination Criterion 3 is at least as ef-
ficient as Termination Criterion 2.If each agent in
A is an optimistic initialiser (Definition 7), a maximal
task rational proposer (Definition 12), and an accurate
updater (Definition 11), then TC 3 will terminate the
algorithm with an optimal solution in at least as many
rounds as TC 2.

Proof. According to Lemma 2, we know that
SETPROPOSALS; are the proposal sets that
terminate the algorithm with an optimal solu-
tion. We also know thatSETPROPOSALS> C
SETPROPOSAL% 3. Hence, this proof is simi-
lar to the proof for Theorem 2. In brief, we have
SETPROPOSALS:3/SETPROPOSALS . which
are the proposal sets that will terminate with TC 3, but
not with TC 2. That is, any sequence of rounds that
terminates with TC 2 will terminate with TC 3 after
the same number of rounds, if not earlier. O

Corollary 1. From Theorems 2 and 3, we can see that
TC 3is at least as efficientas TC 1 and TC 2.

That is, the algorithm with TC 3 never requires more
rounds than with the other two criteria (if agents are
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completely optimistic, accurate updaters and maximal
task rational).
Note that the algorithm may require even fewer

rounds if each agent uses the estimations specified in A7Prorosais = {at;|{at;,
proposals made by other agents, because the lowest es

timation maintained by one agent is still an overesti-

mation and can be used by other agents to update their

models. For example, if a proposed estimation of a
teamat; by agent: is lower than the estimation main-
tained by agent., thenas could improve its models
by usinga; proposed estimation.

3.3.4. Optimal Solutions with Three Policie&yn,
Praxand Ppg;

We now introduce three policies, the minimum pol-
icy Pnmin, the maximum policyPnax and the majority
policy Pngj. To define the first two policiesmin and
Prmax, we will denote a setproposars Which are the
estimations specified RROPOSALg:

Verorosals = {Va, (at;)|(at;, Va, (at;)) € PROPOSALS}

Under complete group optimism, the minimum policy
can be viewed as a conservative group decision pol-
icy as it selects the team proposed with the lowest esti-
mation (but not an underestimation of the true perfor-
mance of a team if each agent is optimistic).

Definition 13. Minimum Policy. Formally, the mini-
mum policy is defined bfmin(PROPOSALS) = at;,
where at; is a random team selected from set
AT i = {atmin| (atmin, Vinin) € PROPOSALS,
whereVmin = argmin (‘A/Z)}
Vi€ VproposaLy,

The maximum policy always selects the team pro-
posed with the highest estimated performance.

Definition 14. Maximum Policy. Formally, the maxi-
mum policy is defined bmaPROPOSALS) = at;,
where at; is a random team selected from set
AT oz = {atmad (atmax Vima) € ~ PROPOSALS,
whereVmax = argmax (‘A/Z)}

Vi € VProposaLs

The third policy is the majority policy which se-
lects the team that is preferred by the largest number of
agents. As opposed to the minimum or maximum pol-
icy, the advantage of the majority policy is that it can
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fine the p0|icmeaj, we use a SeﬂTpRoposALﬁ which
are the teams specified RROPOSALS:

V.. (at;)) € PROPOSALS}

Definition 15. Majority Policy. Formally, the major-
ity policy is defined byPma(PROPOSALS) = at;,
whereat; is the team selected from the s&f,, =

{atma]  argmax  |[{a; (atmaj, Vai (atma)) €

atmaj€ ATPROPOSALS,

PROPOSALS}|}.

We adopt a definition of the term majority which
related literature often refers as “plurality rule”, “first
past the post” and “winner takes all’. Related research
also defines majority such that at least half the agents
have selected a particular team.

Using Theorem 1 and any of the policies, we know
that the algorithm will find an optimal solution under
complete group optimism. Note that this corollary as-
sumes the PROPOSE and UPDATE processes in Defi-
nition 7 and Definition 8.

Corollary 2. Optimality with Prin, Pmax and Prgj.
Under the conditiondA)—C) introduced for Theo-
rem 1, we know that usinBmin, Pmaxand Pmaj will find
an optimal solution, if the algorithm terminates.

Proof. Condition(C) of Theorem 1 states that an op-
timal solution is found if there exists a proposal with
an estimation not greater thafn(atgestsora). The se-
lection of this team is independent of the group deci-
sion policy. O

Example 3. Let us illustrate Corollary 2 by an ex-
ample run of the algorithm using the policax
(depicted in Table 1). We consider a self contained
group of agentsA AT, where three agents
assign a task to each other. Formally, the group
of agents isA {a1,a2,a3} is also a set of
agent teamsAT = {at; = a1, ats = ag, ats = as}.
The true performance (capability C) of each of these
agents is represented by the values specified in the last
row in each round to illustrate the difference to the up-
dated estimations (Table 1).

In this example, ConditioA) is met, because es-
timations of the performance of a team are not ini-
tialised or updated with values lower than that of the
true performance of the team, i.e., the group of agents

prevent the selection of a team that has been proposedis completely optimistic. For example, in round,

based on an unrealistically high estimation which is far
removed from the true performance of a team. To de-

agenta; has an initialised estimation of its own per-
formance (herat; sinceat; = a;) that is far greater



aty atz ats | Proposals  Policy Selection\
0.85 0.5 0.8/at1,0.85)

0.3 0.950.7%at2,0.95) ¢ Pras = at
0.350.55 0.9 (at3,0.9)

02 04 0.7

0.4 | (atBestsoFar= at2)

aty1 atg ats !
0.85 0.6 0.8(at1,0.85)
P’maz = atS

T2

0.3 0.5 0.7%(at3,0.75)

0.35 0.4 0'9J|. (at3,0.9)

AT«nownSoFar 0.4 0.7 I (atBestsoFar= at3)

(If an estimation in any proposaly; < 0.7,
then conditionD in Theorem 1 is true)
(In this example, the next round consists of such a proposa

at1 ate ats ;
0.85 0.6 0.8:(at1,0.85>
0.3 0.5 0.7, (at3,0.7)
0.35 0.4 08 (at3,0.8)
0.2 04 0.7,
0.4 0-7! (tBestsorar= at3)
Table 1

An example run illustrating Theorem 1 with the policy4z (bold-
faced value is the true performance of teatBesisorar— When the
algorithm terminates, the solution will specify this team)

eTKnownSoFar

than its true performance (0.85>0.2). Also, an updated
estimation of a team remains at least as large as its
true performance. For example, in round 2, agent
updates its model of the previously selected team with
values higher than the team'’s true performanae
(Va, . (at2) = 0.5 in roundr; andV,, ., (aty) = 0.6

in roundrs).

According to Condition(B), each agent proposes
a team with an estimation higher than the true per-
formance ofatgestsorar(for the proposals in the first
round, there are no restrictions about which team can
be proposed since no team has performed the task yet).
For example, in round 2, agent proposesits as the
estimation ofit3’s performance is the only one i3’s
models that is not smaller than the true performance
of atgestsorar(0.9>0.4, but 0.4=0.4 and 0.35<0.4).

After task execution in round 2, we know that the
true performance ofitgestsoradS 0.7 which is also the
best performing team known so far. As soon as an esti-
mation in a proposal is not greater than 0.7, then Con-
dition (C) is satisfied. In this example, in roumg, an
estimation is equal to that of the best team selected so
far (at3). As all ConditiongA)—(C) are satisfied after
round 2, we know that if the algorithm terminates af-
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ter round 2 (or any following round) we have found an
optimal solution (as stated by Corollary 2).

In summary, teamst, andats; have been assigned,
but notaty, thus we know thatits is an optimal so-
lution before the algorithm assigasg;. This example
demonstrates how the algorithm is guaranteed to find
an optimal solution, if it terminates in any round. That
is, it is not depending on any termination criterion.
Since the following theorems are proven under more
specific assumptions regarding criteria and processes,
they enable us to make stronger assertions about the
computational requirement. Finally, the algorithm may
run for 5, 10, or 20 rounds as we have assumed an op-
timistic update process that replaces an initial estimate
with a value no smaller than the original estimate. A
special case of this process is when the update process
replaces the estimate with exactly the observed value.

3.4. Reaching Optimal Solutions under Partial Group
Optimism

The theorems in the previous section relied on
the assumption of complete group optimism (Defini-
tion 9). We now consider partially optimisticgroup
of agents, where agents also have underestimations of
the true performance of teams. Under partial group op-
timism, the proof in Theorem 1 does not guarantee an
optimal solution as a proposal that is not greater than
atgestsoFarmay be an underestimation of the perfor-
mance of a team (and this does not satisfy the Con-
ditions(A)—(C), Theorem 1). To guarantee an optimal
solution, we now have to more closely examine the
role of the policies defined in Section 3.3.4.

3.4.1. Optimality under Minimal Group Optimism

An optimal solution can be found with the maxi-
mum policy if we know that at least one agent is opti-
mistic about at least one optimal team.

Definition 16. Minimal Group Optimism.We say that
a group of agents is minimal optimistic if, and only if,
at least one agent in that group is optimistic, so that
Ja; € A,Vat; € AT : V,,(at;) > V(at;) atalltimes.

Theorem 4. Maximum Policy: Sufficient Condition.

(A) a group of agents! is minimal optimistic (Def-
inition 16),

(B) optimistic agents are also task rational pro-
posers (Definition 12),
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(C) we use the maximum group decision policy:

Prax (Definition 14), and
(D) the algorithm does not terminate if
3<atsp|ected V(atselected) € PROPOSALS such
thatv(aﬁselectea > V(atBestSoFa}y
then if the algorithm terminates it will terminate with
an optimal solution.

Proof. The theorem is proven by contradiction, i.e., we

3.4.3. Policy: Independent Optimality under Minimal
Group Optimism

The following theorem is an important variation of
Theorem 1 as it does not assume a completely op-
timistic group of agents. Under minimal group opti-
mism, we can still guarantee optimality with a less re-
strictive Condition(C) involving an assessment of the
proposals made by the agents.

assume that if the algorithm terminates, then we have Theorem 5. Minimal Group Optimism: Sufficient

found a suboptimal team¥gesisorar

1. If the teamutgestsoradS NOt an optimal team, then
there must be a teamy,, such thatlV (at.) >
V(atBestSOFa> .

2. According taD), if the algorithm terminates, we
know that¥(atseiected V (atselected) € PROPOS-
ALSy such thall (atselected < V (atgestsora)-

3. Let a be the optimistc and task ra-
tional agent in A. According to (C), if
the algorithm terminates, we know that
V(atselected > Var (at;), Var(at;) € VerorosaLS»
becauset; has not been selected Biax.

4. According to(B), if the algorithm terminates, we
know thatV (atgestsora) > Var (at;) for all at; €
AT and for a’.

According to 1.,V (at.) > V(atgestsora), @and ac-
cording to 3. and 4V (atgestsora) > Vi (at.). S0, we
know thatV/ (at,) > V. (at.). However, this is a con-
tradiction, because we assumed that agéig an op-
timistic initialiser and initial updater with respect td al
teams inAT (Condition(A)). O

3.4.2. Optimality under Majority Group Optimism
Definition 17. Majority Group Optimism We say that

a group of agents is majority optimistic if, and only if,
the majority of agents in that group are optimistic, so
thatV,, (at;) > V (at;) for the majority ofu; € A and
for all at; € AT at all times.

A proof of a theorem stating optimality with a group
of majority optimistic agents is a variation of the proof
for Theorem 4. In brief, the majority policy will se-

Condition. If

(A) a group of agents! is minimal optimistic (Def-
inition 16) 8

(B) optimistic agents are also task rational pro-
posers (Definition 12), and

(C) the algorithm does not terminate if
J(at;,V(at;)) € PROPOSAL$ such that

V(atj) > V(aﬁBestSOFa),
then if the algorithm terminates it will terminate with
an optimal solution.

Proof. The theorem is proven by contradiction, i.e., we
assume that if the algorithm terminates, then we have
found a suboptimal teamigestsorar L€t @’ € A be an
agent that remains optimistic about the performance of
an optimal team (according (8)).

1. Ifthe teanuigestsoradS NOt an optimal team, then
there must be a teamx., such thatV (at.) >
14 (atBestSOFa) .

2. According to(C), if the algorithm terminates,
we know thatv(at;, V(at;)) € PROPOSALS
such thatl,,, (at;) < V (atgestsora) for all agents
a; € A. In particular, we know that’ has made
a proposal, wher&/ (at;) < V (atgestsora)-

3. According to(B), if the algorithm terminates, we
know thatV (atgestsora) > Va, (at;) for all at; e
AT and for alla; € A In particular, we know
thatV(atBestSOFa} >V (atj).

According to 1.,V (at.) > V (atgestsora), and ac-

cording to 3.V (atgestsora) > Vi (at.). So, we know

lect the team that is overestimated by the majority of thatV(at.) > Vi (at.). However, this is a contradic-
agents. By assumption, an optimal team is overesti- tion, because we assumed that agéig an optimistic
mated by the majority of agents. We know that teams initialiser and initial updater with respect to all teams

that are overestimated will be selected until we find
a team whose performance is greater than the estima-

tions of other teams. The algorithm will not terminate

until the majority of agents has estimations about an

in AT (Condition(A)). O

6The minimum condition for this theorem is that there existe o

agent that is optimistic regarding the performance of ot

optimal team which are higher than estimations about team. However, this premise is difficult to prove in many it

other teams.

problem domains.
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Another important variation of Theorem 1 is one is selected before an optimal team, siﬁ@e(atj) >
where we keep the original Conditid (i.e., the al- V(at;),Vat; € AT,. Since these teams have a true
gorithm does not terminate if all proposals are greater performance that is lower than the estimated perfor-
than V' (atgestsora)) and then assume that each agent mance of an optimal team, each of them will be se-
is a maximal task rational proposer (Definition 12). lected once and then not be selected again. The other
Note that in this case, the insights obtained with re- teamsAT, — AT will never be selected as their es-
spect to the computational requirement (Theorems 2 timations are lower than that of an optimal team and
and 3) also apply. We do not prove this statement here the teams iMAT,. Thus, exactly AT | teams perform
as it is similar to the proof provided for Theorems 1 the task, after which the algorithm terminates with an

and 5. optimal team. O
3.4.4. Determining Precise Computational The majority policy will also find an optimal solu-
Requirement under Partial Optimism tion.

Under partial optimism, Termination Criterion 3 is
not guaranteed to terminate the algorithm with an op- Theorem 7. Majority Policy: Assignment Roundslf
timal solution. A proposed estimation of an optimal the majority of agents estimate the performancenof
team could be lower than its true performance, and also teams (of alln teams) higher than the performance
lower than the teamitgesisora@nd this would terminate  of an optimal team, and if the majority of agents esti-
the algorithm with a suboptimal solution. This reason- Mmates the performance of an optimal team higher than
ing applies to Termination Criterion 2 which could also  its true performance, theR,; finds an optimal solu-
terminate with a suboptimal solution. Only Termina- tion inm rounds.
tion Criterion 1 ensures that the algorithm does not ter- ) _
minate with an underestimation. Hence, it is assumed _ Theorems 6 and 7 imply that in the best case an op-
for the theorems in this section. Note also that we as- {imal solution can be found in only one round. The the-
sume that agents are accurate updaters (Definition 11) 0réms also imply that an optimal solution can be found
and maximal task rational proposers (Definition 12). before all teams have been assigned once (i.e., the al-
The following theorem defines conditions which de- gorithm does not require more rounds than the exhaus-
termine the precise number of rounds until the algo- tive procedure). For the maximum policy, we can de-
rithm converges to an optimal solution wiffnax. In- rive the following corollaries (similar corollaries can
formally, if there exists an agent that estimates the per- €asily be derived for the majority policy).
formance ofn teams (of» teams) higher than the true
performance of an optimal team (but whose perfor-
mance is actually lower than that of an optimal team),
and if the performance of an optimal team is higher

Corollary 3. Minimum Number of Assignment
Rounds. If the performance of an optimal team is
estimated to be higher than the performance of the
than the estimated performance of the other m other teams, and if the other estimations are lower
teams, then an optimal solution is found in exaety ~ than the true performance of an optimal team, then
rounds. Letat’ be an optimal team. LedT, C AT we flnd an o_pt|mal solution in one round with the
be a set of teams such thait; € AT., 3a; € A with maximum policymay.

Y . / . /
Va, (at;) = V(at’), but whereV (at;) < V(at'). We can also show that the maximum number of

rounds is not greater than the number of teams, which

Theorem 6. Maximum Policy: Assignment Rounds.  means that the maximum number of rounds for the al-

It maxVi, (at') = V(at’) and V(at') > gorithm is not greater than those required when trying
max V., (at"), then Pra is guaranteed ~ ©ach team atleast once.

ai€A,at" €|AT—AT,|

to find an optimal teamt’ in |AT.| rounds. Corollary 4. Maximum Number of Assignment

Rounds.For n teams, if we have at least one agent that
Proof. Praxselects the team with the highest proposed is optimistic of the performance of an optimal team,
performance, and we know tha#T,| teams have and if the estimations about the other- 1 teams are
higher estimations than the true and estimated perfor- higher than the true and estimated performance of an
mance of an optimal team, but do actually perform a optimal team, then we will find an optimal solution in
task worse than an optimal team. Each teamiif. n rounds with the maximum polidgnax.
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ﬁ:OMPLETE GROUP OPTIMISM Optimality; Computational requirent \
Complete Group Optimism (Definition 9) !
Va; € A Task Rational Proposer (Definition 10) !
Theorem 1 YES
the algorithm does not terminate if
—3(at;, V(at;)) € PROPOSALS, V (at;) < V (atgestsora)

Not Determined

Corollary 1 YES Not Determined
Minimum Policy Pmin (Definition 13)
Maximum Policy Pnax (Definition 14)

Majority Policy Pmaj (Definition 15)

Lemma 1 YES TC1 < |AT)|
TC 1:Va; € A : proposal,, = (atselected Va, (atselected)

such thaﬁ/ai(atselectet) < V(atgestsora)

Lemma 2 YES TC2 < |AT)|
TC 2: E|a¢ c A: pl’OpOS&LI = <atse|ected Vai(atsemclea)

SUCh thaﬁ/ai (atselecte[) S V(atBestSoFa}

Lemma 3 YES TC3 < |AT)|

TC 3:3a; € A : proposa), = (at;, Va, (at;))

such thatf/ai (at;) < V(atgestsora)

Ya, € A,Vat; € AT Accurate Updater (Definition 11)
Ya, € A Maximal Task Rational Proposer (Definition 12)

Theorem 2 YES , TC2 < TC1< |AT|
|
|

Theorem 3 YES 1 TC3 <TC2< |AT|
|
|

Qorollary 2 YES ' TC3 <TC2<TC1< |AT|/
Table 2

Optimality and computational requirement of the algorithmder
complete group optimism

If we know that agents are optimistic in a given team), then we are guaranteed to find an optimal team
domain, we can use the assignment algorithm to ex- with Ppax
ploit the above property in reducing the number of  Note that the computational requirement of the al-

rounds required to find an optimal solution. That is,  gorithm can be reduced if we know that one agent is
Theorems 6 and 7 enable us to make statements aboutyimistic. The algorithm can be terminated more ef-

the computational requirements of our algorithm under
artial optimism. For example, the theorems show that . ; . .
iFf)we ha\?e prior knowledgepof the agents’ estimations, vided in Section 3.3.3 can be adopted to prove this
then we can determine an acceptable upper bound onStatement. o
the number of reassignments required. Another useful ~ 1Nis paper does not offer proofs for variations
insight is that if we know that the majority of agents  Of previous theorems, but instead we outline a few
are not optimistic about an optimal team (but we have ideas. For example, we can order policies according
at least one agent that is optimistic about an optimal to their computational requirement under partial op-

ficiently with Termination Criterion 3. The proof pro-
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/PARTIAL GROUP OPTIMISM

Optimality; Computational requirennt\

Minimum Group Optimism (Definition 16)
Theorem 4

Maximum Policy Prqx

the algorithm does not terminate if

Theorem 5
the algorithm does not terminate if

—3(at;, V(at;)) € PROPOSALS, V (at;) < V (atgestsora)

I(at;, V(at,)) € PROPOSALS, V (at;) > V (atgestsora)

Not Determined

YES Not Determined

Theorem 6
Vat; € ATy, 3a; € A :
V., (at;) > V(at'), whereat' is an optimal team

Theorem 7
3 majority | AT | overestimations

Corollary 3

Corollary 4

YES |AT.|

YES |AT.|

YES |AT,| =1

YES |AT.| = |AT|

Theorem 8
\Group pessimism (Definition 19)

NO Not Determined

)

Table 3
Optimality and computational requirement of the algorithnderpartial group optimism

timism which requires a stricter definition of Defini-
tion 16.

Definition 18. Strict Minimal Group Optimism.We
say that a group of agents is strictly minimal op-
timistic if, and only if, one agent’ in that group

is optimistic and the other agents are pessimistic,
so thata’ € A,Vat; € AT : Vi (at;) > V(at;) and

a' # a; € A\Vat; € AT : V,,(at;) < V(at;) at all
times.

Under strict minimal group optimism, the minimum
policy is no more efficient than the maximum policy.
A proof to this assertion is a variant of proofs in the
previous section.

3.4.5. Suboptimal Solutions under Group Pessimism

In the previous section, we focused on guaranteeing
to find an optimal team with optimistic estimations.
However, it is also important to identify conditions un-
der which an optimal team can not be found.

If all agents have estimations of optimal teams that
are lower than the true performance of other teams,
thenitis called a pessimistic group.

Definition 19. Group PessimismA group of agentst

is pessimistic if, and only if, each agent in this group
initialises its estimation of all optimal teams lower
than that of other teams, so thit, (at;) < V (at;) for

all a; € Aandforallat; € AT at all times.

The following theorem assumes group pessimism
and task rationality, thus preventing the algorithm from
finding an optimal solution.

Theorem 8. If a group of agents is pessimistic, and if
each agent is maximal task rational (Definition 12),
then an optimal solution will never be found (regard-
less of the group decision policy used).

Proof. Since an optimal teanat.. is always estimated
to be lower than other teams by all agents, then an op-
timal team will never be proposed in any round. Recall
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that we defined a group decision policy as one that se- rescue team to the task of rescuing a distressed swim-
lects a team from those that have been proposed, andmer. Each rescue requires a team of individual life-
therefore an optimal team will never be selected, be- savers that perform different roles (and this paper as-
cause it has not been proposed. Thus, an optimal solu- sumes that each team is estimated as a unique object).
tion will never be found. O Each panel member has an initial notion of how a team
would perform the rescue, and the panel can refine res-

If we know that a group of agents is pessimistic and e ajl0cations based on their observations of how well
each agent is task rational, then a different policy may yittarent teams perform a rescue.

be more appropriate, for example, a policy that selects o sr gomain is represented using the formal defini-
a randdom team from teams that have not been pro- yions of our framework presented in Section 2.
posed.
Tables 2 and 3 provide an overview of the theoretical ~ — Taskdomain. We consider a specific rescue task
results. denoted by=rescugDefinition 1). The execution
of a rescue task does not depend on first execut-
ing other tasks (because we assume task indepen-

4. Empirical Study dency). The panel will re-allocate a team to the
rescue on a regular basis.

This section presents an empirical simulation-based — Teams Each rescue team consists of lifesavers
study investigating the influence of model accuracy performing different roles during a rescue. We
and group decision policies on the efficiency of the have a finite number of rescue teams that are con-
TAP algorithm. This study is illustrated by a model of sidered for performing a rescue task.

a domain involving surf rescues, where a group of res-  — Agents Agents are represented as a panel of se-

cue teams endeavours to allocate the best rescue team  nior lifesavers and each agent (or panel member)

to a rescue task (Section 4.1). Section 4.4 defines an actively participates in making an allocation of a

experiment that examines the role of agents’ initial es- team to the rescue task.

timations of the rescue performance of rescue teams  — policy. The policy considers the proposals sub-

and the role of the maximum, minimum and majority mitted by individual panel members to select one

group decision policy in the assignment procedure. of the proposed rescue teams.

4.1. lllustration of Study: A Model of a Surf Rescue Our focus is on finding an optimal team after as-
Domain signing and testing as few teams for the rescue task as

possible.
RoboCup Rescuis a research initiative that offers Each agent maintains models of the rescue per-

many practical domains in which autonomous systems formance of the teams and each agent has processes
perform and coordinate tasks in disaster situations, to use these models (Definitions 4 and 5). In par-
such as bushfires and earthquakes [28, 26, 29]. As partticular, each agent uses a value function that repre-
of this initiative, [26] have been the first to propose a sents how well a team rescues the swimmer (e.g., the
surf rescue domain involving rescues coordinated by faster the distressed swimmer is retrieved, the higher
autonomous robots on remote beaches. The main re-the value returned by this function). The values of
search interest of [26] is on building autonomous res-  this function range from 0 to 1, where O represents
cue teams endowed with specific hardware compo- that a team is not able to perform a rescue and 1
nents. Such components cope with the harsh environ- represents an optimal rescue performance. For exam-
mental conditions in the surf, e.g., coping with noisy ple, agentz; has a model of the rescue performance
sensory input and meeting high power demands. Our of teamat,, i.e., a1's model of ats’s rescue perfor-
interest is in using this domain as a platform to illus-  mance: M, (ats) = {Vi, (ats, rescué = 0.6} (Defi-

trate the main components of a CIA problem. nition 4)7 To illustrate the difference between the

4.2. Formalising the Main Components in a Surf
Rescue Domain using our Framework

"Each agent may have preconceived notions of the performance
of the rescue teams and we assume that agents derive thigge ini
L estimations from prior experience. Since these estimsitare id-

A Surf Rescue (SR) domain involves a panel of se-  josyncratic, building a model about where they come fronmiejaen

nior lifesavers that endeavours to allocate an optimal research issue [6] and is not addressed in this paper.
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models maintained by agents and the capabilities
of rescue teams, we specify each team’s true res-
cue performance by its capability, e.g., forats:
C(ats) = {V (at3, rescue = 0.3}. According to these
two valuesg, overestimatests’s rescue performance
(0.6 > 0.3).

Each agent; has three reasoning processes that
use the estimations stored in its models (Definition 5):
INITIALISE, PROPOSE and UPDATE. Each agent

proposes a team that has the highest estimated res-

cue performance according to the agent’s models (i.e.,
each agent is a maximal task rational proposer, Def-
inition 12). Each agent updates its models accurately
when it observes the rescue performance of a team
(i.e., each agent is an accurate updater, Definition 11).
The process ofinnouncing the tasknd applying

the policy are steps in our algorithm, but they are
not central to the analysis of our experiments. We ex-
plain them briefly for clarity of exposition. The AN-
NOUNCE process is executed once to all agents as
the first step in the assignment procedure (e.g., at the
beginning of a season, the senior lifesavers identify
the rescue as being a central part of patrolling surf

beaches). For the second process, a designated “chair-

man” of the panebpgiicy Will apply a group decision
policy P and will collect proposals by senior life-

savers throughout the assignment rounds. As discussed.

in Section 2.2.1, this paper does not assume specific
features of the entities that execute these processes.

The four components, Tasks — T, Agent Teams — AT
(i.e., rescue teams), Agents — A (i.e., panel of senior
lifesavers), Policy — P, are used as input by the assign-
ment algorithm as described in the next section.

4.3. Sample Run of the Assignment Algorithm in the
Surf Rescue Domain

This section describes a sample run of the assign-
ment algorithm to find a rescue team for a rescue
(based on the algorithm depicted in Figure 1). This
sample run has the following properties.

— Policy Pnax (Definition 14) is used to select the
rescue team with the highest proposed rescue per-
formance.

— Termination Criterion 1 (page 8) is used to termi-
nate the algorithm (i.e., if all estimations of the se-
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— Interactions are confined between agentand
a9 (for clarity of exposition). That is, only agents
a1 and a, maintain models of rescue teams
ats andaty (]\4,11 (at3), Ma1 (at4), ]\4a2 (at3) and
M,,(at4)), propose a rescue team and update
models of selected rescue teams. Only res-
cue teamsits andat, can be assigned to the res-
cue.

The sample run is depicted in Table 4.

— Column 1 indicates the step of the algorithm.

— Column 2 indicates the status of the group.

— Columns 3-4 show the processes executed by
agentse; andas at a particular step of the algo-
rithm.

Columns 5-6 contain values of the true perfor-
mance of the rescue teams. The true performance
of the rescue teams selected for a rescue is bold-
faced.

Columns 7-10 contain the models maintained
by agents (the estimated performance of res-
cue teams proposed by agentis highlighted in
lightgrey and rescue teams proposed by agent

is highlighted in darkgrey).

At the beginning of the run, the rescue task is an-
nounced to all agents, step 1 in Table 4. Upon receiv-
ing the task announcement, the agentandas ini-
tialise their models of the rescue performance of the
rescue teamsats andaty. As a result of initialising
their models, agent; has an estimation of each res-
cue team’s rescue performance (0.6d46y and 0.1 for
aty) as does agent, (0.4 foratsz and 0.5 forat,) . To
illustrate the interaction of each agent's models with
the true rescue performance of rescue teams, we spec-
ify the true rescue performance of the rescue teams
ats (0.3) andat4 (0.6). As seen from step 2, the esti-
mated performance in each agent’s models is not con-
sistent with the true performance of the rescue teams in
guestion. For example, agent overestimates the per-
formance of rescue teaats (0.6>0.3), but underesti-
mates the performance of rescue teatn (0.1<0.6).
Agent a, also overestimates the performance of res-
cue teamuts (0.4>0.3), and underestimates the perfor-
mance of rescue teaat, (0.5<0.6).

In the first allocation round, the rescue task is as-
signed as follows. Agents; and as propose the

lected team contained in proposals are not greater best rescue team according to the estimations stored
than the true performance of the best rescue team in their models (step 3). In particulag;’s pro-
found so far, and the policy is restricted to not se- posal isproposa),, = (ats,0.6), anday's proposal is
lect the same rescue team more than once). proposal,, = (at4,0.5). In this example, agent; is
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True Estimated
Performance Performance
Step of | Group Process | Process & C Mo, Mg, Mo, M,,
Algorithm | Status executed bya; : executed byas (at3) (ats) |(ats) (ats) (ats) (ats)
1 lannouncing ANNOUNCHEeéscug | 0.3 0.6
[ 2 Jinitialising |INITIALISE(M,,, rescug INITIALISE(M,,, rescu¢ | 0.3 06 | 0.6 01 04 05
______ Rownd1 |
3 | proposing PROPOSE®t3,0.6) | PROPOSEZfuts,0.5) 03 0.6 06 01 04 -
[ 4 selecing | ' Pnaw=ats | 03 06 |06 01 04 05
| 5 updating | UPDATE,0.3) ' UPDATE(.,03) |03 06 |03 o1 o8] o5
I Round 2 |
|6 | proposing | PROPOSE#ts,0.3) | PROPOSE#ty,05 |03 06 |08 01 03 |08
| _ 7 _ _yselecting | _______ | _ Pms—ats___ |03 06 |03 01 03 05
8 | updating UPDATEl/,,,0.6) ' UPDATE (M,,,0.6) 0.3 0.6 03 06 03 -
9 terminate (Criterion is satisfied) ‘ 0.3 0.6 0.3 06 03 -

Table 4
A sample run of the assignment algorithm in the Surf Rescueaitowith two assignment rounds

agentapolicy applying the maximum policymax to se-

lect a rescue team for the rescue task. In this round,

rescue teamts is selected and specified in propgsal
(step 4in Table 4). Rescue teatty does not rescue the
swimmer as well ag; had estimated. After observing
the true performance afts, which is 0.3, both agents
update their models afts (step 5).

In the second allocation round, still proposesits,
andas still proposesit, (step 6). However, this time,
the maximum policy selectg, (step 7), since its pro-
posed performance (0.5) is now higher than the pro-
posed performance aft; (0.3). After observing the
true performance aft, (0.6), both agents update their
modelsM,, (at4) and M,, (at4) (step 8). Upon com-
pletion of this step, the models maintaineddyand
as are identical and both agents now believe titatis
the optimal rescue team.

In step 9, the termination criterion of the algorithm

4.4. Setting up the First Experimental Series:
Interaction of Initial Models and the Minimum,
Maximum and Majority Policy

This section addresses the question: How does the
assignment algorithm perform under empirical domain
conditions? This study examines the role of model ac-
curacy (i.e., how accurate each agent knows the perfor-
mance of each rescue team) and three group decision
policies: the minimum, maximum and majority policy.
We are interested in examining the following aspects.

4.4.1. Effect of Model Accuracy on Solution Quality
and Computational Requirement
In Section 3, we have proven that an important con-
dition to guarantee an optimal solution is that agents
are completely or partially optimistic. To further ex-
tend on this insight, we test under which combinations
of initial estimations and group decision policies our

is satisfied and the algorithm terminates (we use Ter- algorithm is likely to find optimal or near optimal so-

mination Criterion 1, page 8). The reason it terminates lutions. We hypothesise that more accurate models in-
is that the policy selects a rescue team whose estimatedcréase the likelihood of finding optimal or near optimal
performance specified in proposals from both agents is Solutions in fewer assignment rounds. Further, we also
not greater than the true performance of the best res- Nypothesise that agents with optimistic estimations are
cue team that is known so far (which, in this exam- More likely to f|nd.opt|mal_or near o_pt|m_al solutions
ple, is rescue teanat,). Note that models are not al- than agents that with pessimistic estimations.

ways identical to the capabilities of teams when the al- 4.4.2. Comparison to Optimal and Random

gorithm terminates — they are only identical if all res- Assignments

cue teams have been selected at least once (as occurred How do the results obtained from the assignment
in this sample run). algorithm compare to those obtained from bench-
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mark settings? To evaluate the efficiency of the algo- poSTT——
rithm, we consider two benchmark allocation proce- 1 Capapilly Infialisation 2
dures (neither use the TAP algorithm and are further 09 //\\
defined in Section 4.6). 08 / \
— An exhaustive procedure is guaranteed to findan £ ZZ / \
optimal solution, but requires knowledge of the § 05 /. \\
true performance of each rescue team which is 04 / \
achieved by assigning each rescue team to the 03 / \
task once. 02 / \
— A random procedure selects a random res- 01
cue team without any assignments and with- oc Py Py oo /
out knowledge of the performance of any res- Mean

(’Tue team. It Or_]ly finds an optlmal solutpn some- Fig. 2. A sketch of two truncated normal distributions usedét the
times depending on the number of optimal res-  experimental parameter Capability Initialisation CI.

cue teams and the total number of rescue team

(no assignments are required as no knowledge is ure 1) and the components defined in the formal
required of a rescue team’s performance). framework (Section 2). We then evaluated the algo-
rithm by varying four experimental parameters: Ca-
pability Initialisation Cl of rescue teams (a distribu-
tion representing the true rescue performance of res-
cue teams), Model Initialisations Ml of agents (a dis-
tribution representing estimated rescue performance of
rescue teams), group decision Policy P, and the Group
Size GS. These experimental parameters are assigned
a range of values in the simulations.

4.4.3. Convergence Characteristics of Group
Decision Policies

How fast does the algorithm converge to a solution?
Our interest is in determining when a group decision
policy enables the algorithm to converge to a solution
faster. This knowledge enables us to select one policy
over the others if the number or rounds is limited or
not accurately known (that is, the algorithm would ter-

minate regardless of when the termination criterionis ~ — Capability Initialisation (ClI) defines two types
satisfied). of distributions that initialise the valués for the

The assumptions introduced for our theoretical true performance of rescue teams. These distribu-
study (Section 3.1) offer a starting point for a first tions are normal and truncated (Figure 2).
empirical experinje_nt. That is_, our experimental study « Capability Initialisaion t N(CI, =
makes three explicit assumptions about the PROPOSE 0.5,CL, = 0.1)
and UPDATE processes executed by the agents and the « Capability Initialisation 2 N(CI, =
rescue performance of each rescue team. 0.5,C1I, = 0.25)

— Agents are maximal task rational (each agent  since the interval of performance values ranges
proposes the rescue team with the hlghest esti- from O (WOfSt performance) to 1 (0pt|ma| perfor-
mated performance according to its models), Def- mance), the mean for both distributions is 0.5. Other
inition 12. values can be used to simulate the performance of

— Each agent updates its model with the observed other types of rescue teams. For example, 0.25 may be
performance of the rescue team that has per- an appropriate mean of a distribution representing low
formed a task, Definition 11. performing rescue teams and 0.75 for high performing

— The rescue performance of each rescue team is rescue teams (or 0.1 for extremely low performing res-
invariant (the rescue performance of a given team cue teams, or 0.9 for extremely high performing res-
will not vary when it performs various rescue), cue teams). A standard deviation of 0.1 represents a

Section 3.1. rescue team population where performance values are
distributed closer around the mean while a standard de-
4.5. Experimental parameters viation of 0.25 represents a wider scattering (Figure 2).

The specification of the mean and standard deviation
To investigate the above issues empirically, we im- will depend on which type of rescue team is considered
plemented the assignment algorithm (specified in Fig- in the simulation.
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Truncation is required so that the performance does
not exceed the [0, 1] thresholds. We have chosen to
truncate the normal distribution by setting an outlier to
its closest threshold (an outlier is a value that lies out-
side the [0, 1] threshold after is has been drawn from
the normal distribution). For example, assume that we
have a value 1.2 that is drawn from a capability distri-
bution, e.g., when CI=2. For Cl=2, this value will be
setto 1.0 —the upper threshold. This truncation method
maintains a normal distribution that represents a pop-
ulation with extremely low or high performance res-
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The degree of group knowledge of agents is speci-
fied by a value K indicating the closenessdil;, to
the true performance of an agent. When K is 1, agents
are knowledgeable and the distribution medd);, is
based on the true performaricéat;) of a rescue team
at; (recall that the true performandé&(at;) is drawn
from the distribution specified by the experimental pa-
rameter Capability Initialisation CI). For example, if
K=1, thenMI;(at;) = V(at;), if we apply no op-
timistic or pessimistic modifications (as explained in
the next section). When K is 0, all agents are (equally)

cue teams. Section 4.10 discusses methods that may beégnorant of the individual performance of each res-

more adequate. s.

Next, we discuss the parameter that initialises the
models maintained by agents. As for the experimental
parameter Cl, models are initialised based on a normal
truncated distribution with a meaW I, and standard
deviationM I;.

There are various methods to simulate model accu-
racy and define values fa¥/1; and M1;. A naive
method is simply to draw random estimates from the
same distribution as used for the parameter CI, and
then add or subtract values to simulate optimism and
pessimism. The problem with this initialisation is that

cue team. In particular, the mean of each estimation
is based on the mean of the capability distribution of
rescue teams (e.gW/ I, (at;) = CI, = 0.5). This ig-
norance may be present when agents assemble in an
ad-hoc manner and initial estimates are not related to
the true performance of each rescue team. Any value
of K between 0 and 1 represents a distribution with a
mean that is close to the true performance of the res-
cue team in question. That is, agents have some esti-
mates of the performance of rescue teams strongly re-
lated to the true value and other estimates which are
far removed from the true value.

the estimates are not related to the true performance To empirically evaluate the implications of opti-
of rescue teams. Hence, there is no reason to expectmistic and pessimistic agents (based on our theoretical

that our algorithm is more likely to choose an opti-

study in Section 3), we define a valiethat modifies

mal rescue team than a random selection. Such a naivethe mean of the model distribution. Since each agentis

method of initialising estimations can be considered a

unlikely to have exactly the same optimistic and pes-

worst case setting for our investigations as it assumes simistic estimations of rescue teards,is also drawn

that agents arignorantof a team'’s true performande.

In other cases, agents have estimations that are re-

from a normal distribution. That is, each rescue team
will under- or overestimate the performance of each

lated to the capabilities of rescue teams, that is, agents rescue team to a different extent.

are knowledgeable about the performance of teams.
For this study, we aim to simulate model initialisation
along a dimension where agents exhibit a certain de-
gree of ignorance.

We have chosen to specify the distribution of mod-
els using four values: group knowledge and group op-
timism specify the mean/ I, of the distribution, and

We also define a standard deviatibhl; that deter-
mines the divergence of the estimations from the mean.
The valueM I; is also drawn from a normal distribu-
tion, where the mean represents the spread of estima-
tions, while the standard deviation represents the ho-
mogeneity of estimations among different agents. As
the spread increases the divergence of estimations in-

spread and homogeneity specify the standard deviation creases. A large degree of homogeneity means that the

M I;. This study focuses on the effect of group knowl-
edge and group optimism which are specified in the
next two paragraphs.

8n this paper, the notion of ignorance is qualified as "nowking
accurately" as opposed to "complete absence of knowleddes.
notion follows from research by [3, 35] who suggested thriée d
ferent types of “ignorance”: incompleteness (e.g., abs@fdacts),
imprecision (e.g., ambiguous information) and uncenefptg., un-
certain information).

spread among different agents is similar. This study
confinesM I; to two settings where agents have a low
and a high spread with moderate homogeneity.

— Model Initialisation (MI) defines a distribution
to simulate the estimations maintained by agents.
The valuesV for the estimated performance of
each rescue team are drawn from a truncated
and normal distribution with a meai/I; and
standard deviationV\/I5, such thatf/(ati) ~
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Nuyr(MIg(at;), MIs) for the estimate of a res-
cue teamut; (we apply the same method for trun-
cation as for the experimental parameter ClI).
The mean of modeldII; of a rescue teamt; is
defined as follows.

MI(at;) = (K« V(at;))+(1—-K)«CI,)+A

- K ranges from 0 to 1 and defines the degree
of closeness of the mean of the estimations
to the true mean of individual rescue teams.
If K is 1 then the estimated meal/ I is
based on the mean of the true performance
of an individual rescue teams (agents are in-
formed). If K is O then the estimated mean
is based on the population mean (and agents
are equally ignorant of the performance of
individual rescue teams). In this study, we
will setKto 0, 0.5 and 1.

- A is a value drawn from one of the fol-
lowing five normal distributions. Each dis-
tribution specifies a different degree of over-
and underestimationsery Pessimistic, Pes-
simistic, Neutral, OptimistiandVery Opti-
mistic

Very PessimisticA ~ Na(—0.25,0.1)

PessimisticA ~ Na(—0.1,0.1)

Neutral A ~ Na(0.0,0.0)

Optimistic A ~ Na(0.1,0.1)

Very Optimistic A ~ N (0.25,0.1)

* X X X ¥

The value for the standard deviation of model ini-
tialisation M1I; is drawn from two normal dis-
tributions representing estimations witbw and
High-Spread(both distribution have a moderate
degree of homogeneity with 0.1).

* Low-SpreadM I; ~ Ny, (0.1,0.1)
x High-Spread M I; ~ Nz, (0.25,0.1)

To illustrate the parameter MI, consider a sit-
uation in which agents are informed and opti-
mistic. Further, agents have estimations that are
closely spread around the mean performance of
rescue teams and have a moderate level of ho-
mogeneity among agents. We can simulate this
situation by setting K to 1, draw the value fax
from Na(0.1,0.1) (optimistic) and draw)M I (at;)
from Njsr,(0.1,0.1) (low-spread). AssumeA is
0.14 and MI; is 0.08. Assume we have a res-
cue teanmut; with V' (at1) = 0.4. Under these settings,
MI(aty) = (1%0.4) + (0% 0.5) + 0.14 = 0.54.
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Hence, an estimation drawn from the distribution
Nyt has a mead!I;(at,) of 0.54 andM I (at;) of
0.08. In this example, the valué(at,) is 0.58 and
overestimates the true performance af by 0.18
(0.58-0.4).

Note that we do not investigate an experimental set-
ting where the meai I, (at;) is equal toV (at;) and
the standard deviatiof/I; is O as this represents a
trivial case where all agents have accurate models (i.e.,
the algorithm will always find an optimal solution after
one assignment round).

We have chosen the following group decision poli-
cies for the experimental study, because under given
theoretical conditions, they are guaranteed to find op-
timal solutions (Sections 3.3 and 3.4).

— Policy (P) defines three types of group decision
policies:minimum, maximurandmajority.

* The minimum policy Pnin selects the res-
cue team with the lowest proposed perfor-
mance of all rescue teams proposed in a given
round (Definition 13, page 1%).

x The maximumpolicy Pnax Selects the res-
cue team with the highest proposed perfor-
mance of all rescue teams proposed in a given
round (Definition 14, page 11).

* The majority policy Pna selects the res-
cue team proposed by the greatest number of
agents (Definition 15, page 11).

Different group sizes are expected to show a trend of
our results with different settings of the experimental
parameters Cl, Ml and P. For example, as group size
becomes larger, we expect that solution quality reaches
a higher, more stable level due to an increased chance
that more agents have more accurate models overall.

— Group Size (GS)defines the number of agents
in a surf rescue domairs, 10, 20, 40 and 50.
GS also specifies the number of rescue teams in
this simulation. So, we have the same number of
agents and rescue teams in every simulation.

The study in this paper simulates a self-contained
group where the number of agents and teams is the
same AT = A). We plan to alter the number of agents
A and AT and will investigate if this has a significant
influence on the efficiency of the algorithm.

9This policy selects a conservative estimate and is expeotbd
particularly efficient in settings where agents are optiimias the
selected estimate is still likely to find an optimal or neatiopl
solution, but with fewer rounds than the other two policies.
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4.6. Benchmark Settings that always predicts the performance of teams accu-
rately and finds optimal solutions without any explicit
To evaluate the outcome of TAP settings, we con- specification of how the performance of teams would
structed two benchmark settings calleBHAUSTIVE be tested. An oracle setting is not useful for our anal-
and RaNDOM. As opposed to TAP settings, these ysis as it requires an explicit measure of the number
benchmark settings do not use the TAP assignment al- ot assignments. An alternative worst-case procedure
gorithm (i.e., agents do not make proposals, update js gne where a worst-performing rescue teams is se-

models, or make a group decision to assign a res- |octaq. This procedure requires as many rounds as the
Cue team to a task). one used in an EHAUSTIVE setting, and finds worse
— An EXHAUSTIVE setting uses a procedure that solutions than those found by the procedure used in a
finds an optimal rescue team for the rescue af- RANDOM setting. This is useful to determine the worst
ter obtaining accurate knowledge of each res- possible average solution quality, but it would be diffi-
cue team’s rescue performance. This requites  cult to find realistic situations that would justify a com-
assignment rounds fon rescue teams (as the  parison with this setting. We decided to use the ran-

performance of these rescue teams will only be  gom setting as it is more suitable than the worst-case
known accurately after each rescue team has per- setting.

formed a rescue). The average result obtained
from an EXHAUSTIVE setting defines a bench-

mark that presents an optimal average solution 4.7. Simulation Run of TAP, Exhaustive and Random

that can be reached when assigning teams, we Settings
also refer to this benchmark as the “upper bench-
mark”. A simulation run of a TAP setting executes the as-

— A RANDOM setting uses a procedure that selects signment algorithm (Section 1) under a particular com-
a random rescue team to a rescue. Assignments bination of the experimental parameters. At the begin-
are not required to find a random solution be- ning of the simulation run, the number of agents (and
cause this procedure does not use knowledge of rescue teams) is instantiated as specified by the param-
the rescue performance of assigned rescue teams.eter group size GS. The simulated true performance of
The procedure is expected to assign an optimal yescye teams is initialised as specified by the CI pa-
rescue team sometimes (i.e., ferrescue teams  ameter (e.g., for Cl=1, values are drawn from a trun-
performing at an optimal value and a total NUM- " cated distribution with a mean of 0.5 and a standard
gﬁrogfti%;ﬁgzﬁuf?gfﬁ th()B l%hfﬁgzvogr:;'?g_mg deviation of 0.1). The agents’ models (that consist of
) n’ ; . estimations of the performance of rescue teams) are
sult obtained from a RNDOM setting defines a N o
lower benchmark, and approximates the mean of initialised as specified by the MI pargmeter (e.g., val-
the capability distribution. ues are drawn from a distribution with a mean equal
to the true performance of each rescue team, K=1 and
We have chosen these benchmark settings, becausea — ), and a standard deviatidv I, of 0.1).
each setting represents an opposing extreme on a scale |pjtjally, each agent’s estimation of a rescue perfor-
that measures the number of assignments required be-4nce s likely to be different to the true performance
fore a solution is calculated. At one extreme is the of each team. Hence, different agents may propose dif-

prqcedure used in theﬂAUST'VE setting which re- ferent rescue teams for a rescue task due to the discrep-
quires as many assignments as there are rescue teams

At the other extreme is the procedure used in th&/R 222: bee;wzer;r:atacheigekrgos Tﬁsefff;rrfarczdc?fe\gg

DOM setting that requires no assignments to provide a geas agentsg winep cams

solution (by applying the update process after task execution).
Other benchmark settings are possible, but not used The capability of each team remains constant over dif-

in this paper. For example, [14] use an “oracle setting” ferentrounds. . .
The parameter P determines the type of group deci-

I , ; , . sion policy used in each assignment round. The simu-
A RANDOM allocation procedure is guaranteed to find an opti- . . . . .
mal solution if all rescue teams have the same rescue peafarn lation run is Comp|6ted if the algorlthm terminates ac-
as there is no benefit in selecting one rescue team over the oth cording to criterion 1 (i.e., the proposed estimations of
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rescue teams are not greater than the true performance — EXHAUSTIVE setting: we measure the rescue

of atBestSoFa)-ll
A simulation run of the procedure in anxEAUS-

TIVE setting works as follows. The procedure selects

performance of an optimal rescue team (a res-
cue team with a rescue performance not lower
than that of any other rescue team).

each rescue team for the rescue task once, stores the — RANDOM setting: we measure the rescue perfor-

rescue performance of each rescue team, and then se-

lects an optimal one. The procedure in aNdOM set-

mance of a rescue team that has been selected ran-
domly.

ting simply selects arandomrescue teamusing theran- 4 g 5. Computational Requirement (CR): Number of

dom function provided by a DGJPP compiler distri-
bution underlying the implementations for our exper-
iments. The DGJPP compiler distribution includes a
complete 32-bit C/C++ development system for Intel

80386, and higher, processors. The random function is

initialised with a different seed in each run based on
the current time and date of the system.

4.8. Efficiency Metrics

Upon termination of a simulation run, we store the
solution quality and computational requirement of the
algorithm.

4.8.1. Solution Quality (SQ): Rescue Performance of
Selected Rescue Team

Assignments
The computational requirement of the algorithm is
measured as follows.

— TAP setting: we store the number of assignment
rounds required until the algorithm terminates.

— EXHAUSTIVE setting: the CR is set to the number
of rescue teams GS (e.g., for a group of 50 res-
cue teams, the EHAUSTIVE procedure requires
50 assignments).

— RANDOM setting: the CR is set to 0.

4.8.3. Average Solution Quality and Average
Computational Requirement
We have simulated each TAP setting (Capability
Initialisation (Cl)x Model Initialisation (Ml)x Pol-
icy (P)x Group Size (GS¥ 2x30x3x5=900) and

The quality of a solution is measured by the rescue ¢3ch penchmark setting ARDOM and EXHAUSTIVE.

performance of the rescue teamiestsorarfound by
the algorithm after termination (Section 2.2), and the

Note thatM I = K x Na Xx MIz =3 x5 x 2 =230
(but owing to space limitations, settings wijth= 0.0

rescue team found by the two benchmark procedures. of N7, and/1; = 0.25 have not been plotted).

This performance is represented by the value obtained  Tq obtain representative results of each of the 902
from the rescue team’s simulated rescue performance sjmulation settings, the solution quality and computa-
(as specified by Capability Initialisation Cf}. tional requirement are averaged over 10000 simulation
runs. We have chosen this number, because the results

— TAP setting: we measure the performance of the
rescue teanutgestsorarcOMputed by the assign-
ment algorithm (Section 2.2).

Termination criteria 2 and 3 defined in Section 3.3.2 will be
investigated in future research. As they guarantee optimiations
when agents are completely optimistic, we expect that theyrmre
efficient in experimental settings where estimations arnogtic
with A > 0.

120ther measures are possible, but not used in this paperxFor e
ample, TAP settings can be measured by the sum of the penficema
of each rescue team in each round (and not only the perforenanc
of atgestsora)- This measure can be useful in understanding the effi-
ciency of the algorithm over the entire simulation run. Ar@tmea-
sure is to rank rescue teams according to their capabhilfies ex-
ample, an optimal rescue team found in axHAUSTIVE setting is
ranked 1. Rescue teams selected by a TAP mrBOM setting are
ranked between 1 (optimal rescue team) to the number of &l re
cue teams (e.qg., for 50 rescue teams, the worst rank is 5Q)evtn,
this ranking assumes that we have knowledge of each reszuéste
true performance, but we do not make this assumption.

showed stable patterns and are statistically significant.
The significance test of the results is based on a 95%
confidence interval. This was calculated by multiply-
ing 1.96 with the standard error (the degrees of free-
dom are 10000%3
Each simulation setting is initialised with a differ-

ent random seed based on the time of the system. Fur-
ther, to mitigate the effect of repeating cycles of ran-
dom numbers (as is the case with many standard imple-
mentations of random generators), the random func-
tionis initialised with a different seed value every 1000

13[5] offers a comprehensive introduction to analyse datainbtl
from empirical experiments in artificial intelligence. [@ovide con-
vincing arguments why confidence intervals are adequatesrtea
determine the significance of different data sets. Notedtiwr sta-
tistical means might be more adequate for the analysis aflation
data as significance can be obtained by running a large nuafiber
experiments even if the difference between results is vells
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simulation runs. That is, we have ten trials, each di- The normalised value for solution quality and compu-
vided into 1000 simulation runs. We used a random tational requirement of the>@HAUSTIVE setting is 1.
number function provided by the standard C++ library The average simulation results obtained froanR
“stdlib.h” in the DGJPP compiler distribution. DOM settings averages the rescue performance of ran-
domly assigned rescue teams and requires no selec-
tions. The average performance of rescue teams as-
signed in RNDOM settings is always lower than the
average performance of rescue teams assigned in TAP
and EXHAUSTIVE settings. This is because aAR-

4.8.4. Normalisation

We normalise the solution quality and computa-
tional requirement of the TAP algorithm as this en-
ables a better comparison with the optimal and worst

results of a particular setting. For this normalisation, . . ! .
solution quality is transformed into a range of 0 and DOM setting does not retain any information of the per-
formance of rescue teams as opposed to a TAP setting

1, where O represents the average mean performance h locati fined as th ber of q
of the worst rescue team8Q,.. and 1 represents where allocations are refined as the number of rounds

the average performance of an optimal rescue team increases. _The normaliseq average perform.ance of res-
SQ,.,. (result of the exhaustive setting). In particu- CU€ t€ams in RNDOM settings is 0.5 as this is the ac-
lar, we subtract a result witSQ,... and then divide it U@l mean of the distribution specified by the experi-
by (SQ,... —SQ....,). For example, assume that the av- mental parameter Capability In|t_|al|sat|on (CI). Note
erage optimal mean performance of rescue teams se-thatthe measures forARIDOM settings are not plotted

lected in the exhaustive procedureSg, .. = 0.83, in the figures in this section.
and the average mean performance of rescue teams se4 9.2, Knowledgable Agents (K>0)
lected in the worst case procedureSQ,,;, = 0.17 The essence of this approach is how well agents es-
(in this study, the average of the worst case procedure timate actual performance of rescue teams. This sec-
SQuin = 1 — SQ,.x)- If the average solution quality  tion focuses on results where estimates are based on
of the TAP algorithm has the value 0.67, then the nor-  the mean of the true performance of individual res-
malised value '% = 0.75. This result means  ¢ye teams (K=1). Figures 3(a) and 3(b) shows the SQ
that the algorithm provides an average solution thatis gpq Figures 3(c) and 3(d) shows the CR of the algo-
25% worse than an optimal solution. rithm with the three policies and under different de-
We apply a similar normalisation for the computa- grees of optimism and pessimism when K=1. We ob-
tional requirement. The value assignments are reversedgg e that SQ is less variable and higher when Cl=2
with 0 representing an optimal computational require- (Figure 3(a)), than Cl=1 (Figure 3(b)). The reason for
ment of the algorithm, and 1 representing the worst. (s effect is that the true performance of each res-
That is, when the normalised value of CR is O then ¢ e team becomes more divergent from that of other
we measure one assignment round, while CR being 1 (oqcie teams when the standard deviation becomes
means that GS assignment rounds are required. larger (i.e., wherCI, — 0.25). That is, the distance
of the performance value of an optimal rescue team
is generally larger to that of other rescue teams (com-
i , i ) pared to values based on a smaller standard devia-
The purpose of this experiment is to examine the ef- tion CI, = 0.1). Hence, estimations are more diver-
ficien_cy of t_he TAP_aIgorithm_empirically under differ- gent (and better performing agents more easily identi-
ent simulation settings (Section 4.5). fied compared to a setting with a small standard devi-
4.9.1. Results of Benchmark Settings ation) and the algorithm is more likely to converge to
We first comment on the benchmark results obtained an optimal rescue team. This effect is reinforced by the
from EXHAUSTIVE and RaNDOM settings. The aver- method of truncating the capability distribution (Sec-
age solution quality of the rescue teams assigned in tion 4.5). When CI=2, there are more outliers set to 0
EXHAUSTIVE settings is never worse than that ob- and 1 than with CI=1. In fact, if the capabilities are ini-
tained with TAP and RNDOM settings, because as- tialised based on a distribution with a very large stan-
signments are optimal and based on accurate knowl- dard deviation, SQ will reach 1 and CR will reach 0
edge of the performance of all rescue teams. The num- (we ran the algorithm using'l/, = 0.5 or CI, = 1.0
ber of assignment rounds for arx EAUSTIVE setting with K = 1, which are not shown in this paper, but can
is always equal to GS (the number of rescue teams) be- be found in [20]). Section 4.10 discusses other trunca-
cause each rescue team has to perform the rescue oncetion methods and their effect on the SQ and CR.

4.9. Results and Analysis
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Fig. 3. Model Accuracy: Knowledge (K) = 1, Group Size (GS) =50

We also observe a significant decrease of CR when optimistic agents, the algorithm will continue to select
Cl=2 (Figure 3(d)) compared to CI=1 (Figure 3(c)). agents with a higher estimate.
Again, the reason is that as variability increases, the
modelled performance values are more differentiated role of group decision policies. Consider the setting

and the algorithm is less likely to select suboptimal under Cl=1, where agents are very optimisiof Na
rescue teams (as their values are much lower than in g 0.25) and estimates are low variabledf Ny;;, is
CI=1 on average). 0.1), Figures 3(a) and 3(c). Under this setting, SQ is
As seen from Figures 3(a) and 3(b), settings with near optimal for the minimum, maximum and majority
optimistic agents have a higher SQ than settings with policy as almost all estimates are optimistic for each
pessimistic agents (particularly with the minimum pol-  rescue team. Further, it is likely that an optimal res-
icy). The reason is that optimistic agents will con- cue team is selected first, as on average the estimates
tinue to propose rescue teams as they are not “satis- will be higher for an optimal solution than for others.
fied” with the true performance of a rescue team as Because the true performance will turn out to be less
fast as pessimistic agents. That is, as the true perfor- than the estimates for almost all other rescue teams,
mance is likely to be smaller than the estimations of the algorithm will not terminate until we have (almost)

Policies Let us analyse these results focusing on the
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exhaustively gone through every rescue team for the
majority and maximum policy. In short, for the max-
imum and majority policy, the following observations
are made.

— An optimal solution is found first or early on.
— The CR is close to exhaustive.
— There is no difference between solution quality.

The minimum policy has a significantly lower aver-
age CR than that obtained for the maximum and ma-
jority policy as overestimates of the lowest true per-
formance are lower than an optimal performance and
therefore more likely to terminate the algorithm faster.

Now consider optimistic agentg:(of Na is 0.1)
with low variability (u of Nasr, is 0.1). Again, it is
most likely that an optimal solution is found first or
early on. Recall the termination criterion which ter-
minates the algorithm when no proposed estimation is
higher tharut gesisorar- FOr the maximum policy, the
proposed estimates will continue to be about 0.2 (= 2
xp of Narr,) higher than the mean of the estimates:
M1 (including A). This means that the rescue team
with the lowest true performance is still likely to have
an optimistic estimation. For example, on average we
can expect the lowest true value to be at 0.3 sifi¢g
is0.5and”’, =0.1(0.3 =0.5—2x0.1), and the best
average solution to be at 0.7. Assume that= 0.1
and MI; = 0.1, then a worst rescue teattyorst IS
likely to be overestimated with.3 + A +2 x M 1; =
0.3+ 0.1 +2 x 0.1 = 0.6 on average (note that as
the number of agents increases, it is more likely that
each rescue team is overestimated higher than 0.6).
In short, it is likely that the algorithm, while select-
ing an optimal solution early on, will not terminate
until most rescue teams are tested. For the majority
policy, the estimates of the selected rescue team will
be approximately\/I;; (including A). Again, an op-
timal rescue team will be selected first, but the al-
gorithm will likely terminate earlier than the maxi-
mum policy, as the estimates of selected rescue teams
will be the estimate of the majority (i.e}/I; includ-
ing A) rather than the estimate of the maximum (i.e.,
A + 2 x MI; aboveM I, including A). That is, the
overestimates of the worst performing rescue team are
lower than the true performance of an optimal res-
cue teamV (atworst) + M1z = 0.3+0.1 = 0.4. There-
fore, the majority policy reaches close to the same so-
lution as the maximum policy, but terminates earlier.
In short, we make the following observations.

— An optimal solution is found first or early on for
the maximum and majority policy.
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— The CR is close to exhaustive for maximum, but
lower for majority policy.

— There is no difference between solution quality
for the maximum and majority policy.

Consider a pessimistic setting with = —0.25
(Na) and g = 0.1 (Num1,), Figures 3(a) and 3(c).
Again, the estimates are the highest for an optimal res-
cue team, so it is selected at the beginning of the run
(as in the optimistic case). As opposed to the opti-
mistic settings, the algorithm will terminate after only
few rounds as many estimates are below the true per-
formance of an optimal rescue team. The minimum
and majority policy will terminate even earlier than the
maximum policy, because the average estimates of the
selected rescue team are likely to be below the true per-
formance of the first selected rescue team. We obtained
the following results.

— An optimal solution is found first or early on with
either the maximum or majority policy.

— The maximum policy requires fewer rounds than
in optimistic settings, and majority and minimum
policy require almost no rounds.

— Solution quality for the maximum policy is high-
est followed by that of majority and minimum
policy.

4.9.3. Ignorant Agents (K=0)

This section briefly discusses the results of agents
that have no knowledge of the individual performance
of each rescue teams (K=0). As seen from Figure 4,
when agents are partially ignorant and knowledgeable
with K=0.5, the results are in between those obtained
for K=0 and K=1 in general. As seen from Figures 3,
4, and 5, as agents become more knowledgeable, the
better the solution quality and computational require-
ment. The reason is that there is “more guesswork” in-
volved when agents are ignorant as their estimates are
not related to the true performance of rescue teams. As
seen from these figures, when agents are ignorant, the
order of selection of rescue teamsiiglependentf
actual capabilities. This means that selections are es-
sentially random and “estimations” are independent of
how well they match capabilities. Settings that termi-
nate earlier have on average a lower SQ than those that
terminate later. That is, if we consider a setting with
respect to the termination criterion that terminates ear-
lier than some other setting, then on average the SQ of
the first setting will be worse but found in fewer as-
signment rounds than those for the other settings. In
summary, the longer the algorithm runs the better so-
lution quality.
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Fig. 4. Model Accuracy: Knowledge (K) = 0.5, Group Size (GSP=
4.9.4. Convergence: Performance Measure plotted Figure 6 shows the normalised SQ as a function of
against Assignment Rounds the assignment round. A closer look at the convergence

The previous results show that settings with the behaviour of the algorithm reveals that the majority
maximum policy find better performing rescue teams Policy often selects better rescue teams than those se-
than settings with the majority policy. Also, the ma- lected by the maximum or minimum policy in the first
jority and minimum policy require fewer rounds, but one to ten rounds.

reach worse solutions than those found with the maxi- Figure 6(a_) shows that when agents are ignorant
. . L (K=0), selecting each rescue team one by one as done
mum policy. This behaviour is observed under the con-

” i ) . i with the exhaustive procedure is most efficient in any
dition that the algorithm will run until it meets termina-

i S ) ) ~round. Hence, the SQ obtained when agents are only
tion cr_lterlon 1 (which states the_lt th(_a algorithm termi-  q\vare of the average performance of a rescue team
nates if all agents’ proposed estimations are not greater popylation is not better than selecting a new res-

thanV (atgestsora)). However, does the maximum pol-  cue team in each round (as for the exhaustive proce-
icy always find better solutions in any round during the dure). That is, for ignorant agents, applying the as-
execution of the algorithm? signment algorithm may not offer a benefit and instead



Guttmann et al. / Collective Iterative Allocation:

0.9

0.8

0.7

Solution Quality (normalised)

0.6

0'st
Hof Na: -0.25
Hof Nyt 0.1

-0.25  -0.1
0.25

Maximum P, —
Majority F{:'"a:l —

Minimum P e—

(a) Solution Quality, Cl=1

Computational Requirement (normalised)

0
pofNa: -0.25 -0.25 -0.1 0.1 0.0 0.1 0.1 025 0.25
ot NM\ai 0.1 025 025 0.1 0.1 0.1 025 025 0.1
Maximum P, —
Majority Fpr'naa)j —
Minimum P e—

min

(c) Computational Requirement, Cl=1

Enalgifrast and Optimal Group Decision Making

Solution Quality (normalised)

Computational Requirement (normalised)

29

0.9

0.8

0.7

0.6

o.st
HOfNp: -0.25 0.
Hof Ny : 0.1

0.1
0.25

Maximum F;{nax —

0.25
0.25

Majority
Minimum P,

maj
min

(b) Solution Quality, Cl=2

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

J. ,

0
pofNa: -0.25 -0.25 -0.1 -0.1 0.0 0.1 0.1 025 0.25
l‘°fNM\ai 0.1 025 025 0.1 0.1 0.1 025 025 0.1
Maximum P, —
Majority Fpr'naa)j —
Minimum P e—

min

(d) Computational Requirement, CI=2

Fig. 5. Model Accuracy: Knowledge (K) = 0, Group Size (GS) =50

rescue teams should be allocated one by one (as fortings where the maximum or minimum policy is ap-

the exhaustive procedure). Figure 6(b) shows that un-
der the informed setting an optimal solution is found
quickly for all policies.

Consider a setting where agents are ignorant and
knowledgable (K=0.5), Figure 6(c). We can observe
that the SQ of rescue teams with the majority policy
reaches a stable level after only 1 round. The mini-
mum and maximum policy require more rounds before
they reach their local maximum. Sindén.x Selects
a rescue team preferred by only a minority of agents
(based on one or a few agents’ proposals), a slightly
better rescue team is selected in each round. In TAP
settings where the majority policy is applied the algo-
rithm converges faster to a local maximum than in set-

plied. This is explained by the fact that the outcome
of the majority policy reflects the preference of many
agents (and not only the preference of one or a few
agents as reflected by the outcome of the maximum
policy). Since the majority policy satisfies the prefer-
ences of the majority of agents it also converges faster
and will provide a better solution quality in settings
where the number of reassignment rounds is limited.
In summary, if the number of assignment rounds is
small, then the majority policy will generally find bet-
ter solutions than the maximum policy, and the max-
imum policy will find better solutions than the mini-
mum policy on average. The reason is that the group
of agents has generally more accurate knowledge than
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an individual agent. Hence, we observe that the max-
imum policy will take longer to converge to a solu-
tion as it only follows the best estimate by one agent
(or sometimes a few agents), while the majority policy
will converge faster as it follows the best estimates of
many agents.

4.9.5. Convergence: Performance Measure plotted
against Assignment Rounds

The previous results show that settings with the
maximum policy find better performing rescue teams
than settings with the majority policy. Also, the ma-
jority and minimum policy require fewer rounds, but
reach worse solutions than those found with the maxi-
mum policy. This behaviour is observed under the con-
dition that the algorithm will run until it meets termina-
tion criterion 1 (which states that the algorithm termi-
nates if all agents’ proposed estimations are not greater

thanV (atgestsora)). However, does the maximum pol-
icy always find better solutions in any round during the
execution of the algorithm?

Figure 6 shows the normalised SQ as a function of
the assignmentround. A closer look at the convergence
behaviour of the algorithm reveals that the majority
policy often selects better rescue teams than those se-
lected by the maximum or minimum policy in the first
one to ten rounds.

Figure 6(a) shows that when agents are ignorant
(K=0), selecting each rescue team one by one as done
with the exhaustive procedure is most efficient in any
round. Hence, the SQ obtained when agents are only
aware of the average performance of a rescue team
population is not better than selecting a new res-
cue team in each round (as for the exhaustive proce-
dure). That is, for ignorant agents, applying the as-
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signment algorithm may not offer a benefit and instead
rescue teams should be allocated one by one (as for
the exhaustive procedure). Figure 6(b) shows that un-
der the informed setting an optimal solution is found
quickly for all policies.

Consider a setting where agents are ignorant and
knowledgable (K=0.5), Figure 6(c). We can observe
that the SQ of rescue teams with the majority policy
reaches a stable level after only 1 round. The mini-
mum and maximum policy require more rounds before
they reach their local maximum. Sindg,.x selects
a rescue team preferred by only a minority of agents
(based on one or a few agents’ proposal), a slightly
better rescue team is selected in each round. In TAP
settings where the majority policy is applied the algo-
rithm converges faster to a local maximum than in set-
tings where the maximum or minimum policy is ap-
plied. This is explained by the fact that the outcome
of the majority policy reflects the preference of many
agents (and not only the preference of one or a few
agents as reflected by the outcome of the maximum
policy). Since the majority policy satisfies the prefer-
ences of the majority of agents it also converges faster
and will provide a better solution quality in settings
where the number of reassignment rounds is limited.

In summary, if the number of assignment rounds is
small, then the majority policy will generally find bet-
ter solutions than the maximum policy, and the max-
imum policy will find better solutions than the mini-
mum policy on average. The reason is that the group
of agents has generally more accurate knowledge than
an individual agent. Hence, we observe that the max-
imum policy will take longer to converge to a solu-
tion as it only follows the best estimate by one agent
(or sometimes a few agents), while the majority policy
will converge faster as it follows the best estimates of
many agents.

4.10. Discussion

This section discusses the issues of truncation
method, alternative methods of empirically investigat-
ing the accuracies of models, and the role of learning.
All these issues turned out to play an important role in
the efficiency of the algorithm.

4.10.1. Truncation of Distributions

The truncation method used in this study sets out-
liers to the nearest threshold value. We have imple-
mented and tested three other methods to obtain a trun-
cated distribution.
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1. Outliers are redrawn from the same distribution
until they are within the threshold [0,1]. This
method maintains the original shape of the nor-
mal distribution. However, this redrawing pro-
cess may never terminate as redrawn values may
also lie outside this threshold. This becomes
more likely with a larger standard deviation.

. Outliers are redrawn from a uniform distribu-
tion from the interval [0,1]. As opposed to (1.),
the redrawing process will specify a new random
value after one iteration. The problem here is that
in pessimistic settings, randomly redrawn values
are often much larger than the mean of the model
distribution)M I,. This has a significantinfluence
on the solution quality and the computational re-
guirement as both are much higher for the maxi-
mum policy than they would be if we use (1.).

. Outliers are set to the original mean of the dis-
tribution (for example, 0.5 for Cl=1 and 2). If
the standard deviation of the distribution is very
large, then many values will be set to the same
mean, and there is little variation in the true and
estimated performance of rescue teams. This is
opposed to the truncation method used in this
study which sets the performance of some res-
cue teams to a very high value and some to a very
low performance.

In future research, we plan to use a beta distribution
or rejection sampling as generated values fit the data
better than the truncation method used in this paper.
Thebeta distributioris a continuous probability distri-
bution defined on the interval [0, 1] and uses two pos-
itive shape parameters denoteddgnd/ [7, 24, 19].

Rejection samplings a mix of (1.) and (2.) as val-
ues are drawn from a distribution function g that is
easier to sample from than from the actual distribution
f (in our case, the truncated normal distribution). We
can sample from g and accept the sampled value with
probability M g/f and sample again until we accept a
value. This method works best if g is close to f and
M is small. [17] have suggested a particularly effective
rejection sampling method.

This issue is referred to as distribution fitting — de-
pending on the distribution that we wish to simulate,
we need to find the values of parameters that maximise
the resemblance between a presumed theoretical dis-
tribution and a given data set [7, 24, 19].
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4.10.2. Designing an Experiment with Model
Accuracy
This study has identified and varied four parame-
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such that it will terminate the algorithm if no propos-
als are made. This has not been done in this paper as
agents would progressively have "no input” to the deci-

ters that represent the accuracy of models maintained sion making process and restricts future work on more

by differentagents: group knowledge, group optimism,
spread, and homogeneity. Model accuracy can be in-
vestigated in many different ways.

For example, the notion of (partial) ignorance inves-
tigated in this study is that estimations are more likely
to move closer to the mean of the distribution of the
rescue teams’ performance (e1,, = 0.5). Another
way of defining this experimental parameter is to re-
place the valu€'l,, with a value that has been drawn
from a normal distribution. This would then represent

complex forms of learning.

Another aspect of learning disregarded in this study
is that each agent could replace its estimates of a res-
cue team’s performance with the highest proposed es-
timate made by other agents. In this case, the solu-
tion quality will stay the same (as in our current set-
ting when using the majority policy), but the computa-
tional requirement is likely to decrease as agents will
have the same estimate of previously proposed res-
cue teams. However, the issue of revising and updating

a situation where agents are also ignorant of the distri-
bution mean of rescue teams. its own right [12, 32, 13, 11].

The investigation of homogeneity among agentscan  Learning becomes a more important issue in fu-
also be approached in different ways. For example, we ture research. For example, it is important when
can set the estimation of a different rescue team to an studying models of the variable performance of res-
accurate level for each agent such that each agent hascue teams [20]. Also, our study implements a model-
one accurate estimation of one rescue team. Extensionsypdating process that only modifies the model of a se-
to our theoretical study would show that in this case, lected team after task execution. A more sophisticated
we are also guaranteed to find optimal solutions. Em- model-update process may also modify the models of
pirically, the overall accuracy of each agent can be ini- other teams at the same time. For example, after an
tialised based on a normal distribution, where some agent observes the performance of a particular team is
agents have highly accurate models of all rescue teams petter than expected, it will increase the estimation of
and some inaccurate models, but most will have mod- the performance of this team, but also could lower the
erately accurate models. estimations of all other teams. We discuss different as-

Under certain settings of homogeneity and model pects of model updating in more detail in [20].
accuracy, our algorithm may likely obtain a similar so-

lution quality than if only one designated agent (or a
small group of designated agents) would make a deci-
sion. An example of such a setting is when an agent
that is more knowledgeable than other agents, may be
able to find optimal solutions faster on its own, than
if it participates in the group decision process. Under
which conditions will our collective algorithm find bet-
ter solution quality and reduce computational require-
ment? One main issue is the identification of agents
that have the most accurate models which is addressed
in [20].

4.10.3. Role of Learning

beliefs if new input is presented is a research field in

5. Related Research

Distributed coordination procedures are often in-
vestigated using the Multi-Agent Systems (MAS)
paradigm, because it makes realistic assumptions of
the autonomous and distributed nature of the compo-
nents in system networks [36, 25, 2, 27, 41, 33, 4].
Many Multi-Agent System approaches do not ade-
guately address the CIA problem as they use each
agent's models separately to improve coordination as
opposed to all agents using their models together. That

Although learning is part of our formal framework, is, each agent uses its own models to decide on allocat-
it is not as important in this study as in related stud- ing ateam to a task even if other, more knowledgeable
ies [20]. In fact, if we remove the learning processes agents would suggest better allocations.
from the algorithm and modify the framework slightly, This section offers a brief overview of well-known
then the algorithm will terminate as it does currently. MAS approaches to allocation problems (note that this
This slight modification can be done as follows. We re- paper considers task or group-rational agentsabht
strict agents to propose a rescue team that has not beerlaboratewhen allocating tasks). These approaches can
selected before and redefine the termination criterion be divided into two classes.
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— Market-driven schemes enable the coordination lution is not found. Our approach enables the use of
of MAS by usingeach agent’s knowledge of its  each contractor’s contribution in a collective manner
own task performandé]. A well-known market- as other contractors may have more accurate estima-
driven scheme is the Contract Net (CNET) pro- tions of optimal contractors than optimal contractors
tocol [36]. The CNET protocol is the first pro-  themselves. Hence, an optimal contractor is no longer
tocol that enables agents to assign tasks au- required to be the only one to have accurate or near ac-
tonomously [42]. This protocol is based on a con- curate estimations to guarantee an optimal allocation.
tract metaphor involving a manager and contrac- A comprehensive review of related research is of-
tors. In the context of a task allocation problem, fered in [20].

a manager announces a task, each contractor pro-

vides a bid specifying how well it can perform the

announced task, an(_j_the manager then selects the6_ Conclusion

contractor that specified a performance no worse
than those specified by other contractors in his
bid (we refer to this as thhighestor bestbid).
Note that agents may have knowledge of the per-

This paper offers an efficient algorithm to the Col-
lective Iterative Allocation (CIA) problem and stud-

formance other agents, but the protocol does not ies theoretical and empirical behaviour of this algo-

. : . rithm. Our theoretical study showed that complete op-
require an agent to use this knowledge for making . . ) :
bids. timism and task rationality of agents are two theoret-

ical premises that guarantee optimal solutions (under
the condition that the team’s performance is invari-
able and deterministic). We verified optimality of three
policies in particular under such conditions: the mini-
mum policy Pyin (Which selects a team with the low-
est proposed performance), the maximum poftx
(which selects a team with the highest proposed per-
formance) and the majority polickmsj (Which selects

a team that has been proposed by most agents). Com-

— Agent-modelling schemes rely ogach agent’s
knowledge of the behaviour of other age[889,
37, 1, 30, 18]. A well-known approach is the Re-
cursive Modelling Method (RMM) where each
agent uses a utility function to make decisions
that estimates utility functions maintained by
other agents [18]. For example, to make a de-
cision, agent; estimates the utility function of
agenta; (a; # aj), and agent; in turn models

the utility function of agent;. Sincea; knows plete optimism is a condition that converges the algo-

that its utility function is estimated by, a;'s rithm to an optimal solution in no greater number of
7 ? . .

utility function will change accordingly, and so asmgnmenF rounds than testing each team once (as for

will a;’s. This type of “recursive nesting” will ~ an exhaustive procedure).

eventually exceed an agent's memory, which is Ve have performed a series of empirical simulation-
prevented by limiting the nesting depth (thus Pased experiments that investigates the influence of
keeping an agent ignorant). An agent will use its model accuracy and group decision policies on the ef-
estimated utility function to assess whether or not ficiency of the assignment algorithm (measured by so-
it should perform the task in question, but RMM lution quality and computational requirement). The ex-

does not involve the consultation of other agents. Periment is illustrated by using a model of a surf res-
) , o cue domain involving a group of rescue teams that en-
The isolated use of each agent's contribution renders ya5vours to find an optimal rescue team for rescues.

a market-driven or agent-modelling approach most T study offers several lessons about the empiri-
useful when each agent has accurate or near accurate, efficiency of the TAP assignment algorithm (under

estimations. For example, in the CNET protocol, the o 45qumption that performance is invariable and de-
bid of each contractor must reflect its true performance

. i . . h terministic).
to find an optimal solution. That is, the bid of an op-
timal contractor should not be lower than that of sub-  — We have investigated two factors that characterise
optimal contractors. If an optimal contractor underes- the accuracy of models: group knowledge and
timates its performance (and underbids) or if a sub- group optimism (we have identified two addi-
optimal contractor overestimates its performance (and tional factors: spread and homogeneity of esti-
overbids optimal contractors), an optimal contractor mations among agents, but not investigated them

will not be selected by the manager and an optimal so- rigourously in this study).
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x Group Knowledge defines how closely the
agent’s estimates match the true performance
of rescue teams. As the knowledge of agents
increases, the efficiency of the algorithm be-
comes better. If agents are knowledgable, so-
lution quality will be near optimal with the
maximum and majority policy. As the true per-
formance of rescue teams becomes more dis-
tinct (i.e., if the spread of the true performance
of rescue teams is larger) or the number of
rescue teams becomes larger, solution quality
and computational requirement reaches opti-
mal levels regardless of the policy used.

Group Optimism defines how the perfor-
mance of individual rescue teams is under- or
overestimated. While solution quality for both
the maximum and majority policy is near opti-
mal when agents are optimistic, the algorithm
terminates earlier with the majority policy than
with the maximum policy, and earlier with the
minimum policy than with the majority policy.
Our study shows that informed, but pessimistic
agents still find optimal solutions with the max-
imum and majority policy, but require fewer as-
signment rounds than in the case of optimistic
agents.

— Convergencdf the computational requirementis
restricted to only a few rounds (i.e., the algorithm
terminates after a constant and small number of
rounds), the majority policy should be selected
over the maximum and minimum policy as the
majority policy offers a better solution quality.

These theoretical and empirical insights form a basis
to explore other dimensions of our approach to the CIA
problem.[20] discusses many dimensions in detail. For
example, currently, our policies do not require agents
to compromise on their preference, but as it might be
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others, thus we need trust mechanisms that will allow
the identifications of the most trusted agent that is least
likely to jeopardise the application of the policy. These
are just some, but important directions for future re-
search that will further elaborate on whether our ap-
proach is successful in more complex domains.
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