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Argumentation is a very fertile area of research in Artificial Intelligence, and various semantics
have been developed to predict when an argument can be accepted, depending on the abstract
structure of its defeaters and defenders. When these semantics make conflicting predictions,
theoretical arbitration typically relies on ad hoc examples and normative intuition about what
prediction ought to be the correct one. We advocate a complementary, descriptive-experimental
method, based on the collection of behavioural data about the way human reasoners handle
these critical cases. We report two studies applying this method to the case of reinstatement
(both in its simple and floating forms). Results speak for the cognitive plausibility of reinstate-
ment, and yet show that it does not yield the full expected recovery of the attacked argument.
Furthermore, results show that floating reinstatement yields comparable effects to that of sim-
ple reinstatement, thus arguing in favour of preferred argumentation semantics, rather than
grounded argumentation semantics. Besides their theoretical value for validating and inspiring
argumentation semantics, these results have applied value for developing artificial agents meant
to argue with human users.
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Introduction

Understanding human reasoning and decision-making is a
key question in cognitive science. There is considerable liter-
ature on understanding whether and why people deviate from
formal, normative models of deductive reasoning (Bonnefon,
2009; Evans & Over, 2004; Johnson-Laird & Byrne, 2002),
decision-theoretic reasoning (Shafir & LeBoeuf, 2002; Tver-
sky & Kahneman, 1981), and defeasible reasoning (Stenning
& Lambalgen, 2008). The latter involves a basic form of rea-
soning in the presence of conflicting information, which can
also be referred to as argumentation (van Eemeren, Grooten-
dorst, & Henkemans, 1996).

Argumentation has become a very fertile area of research
in Artificial Intelligence, as illustrated by recent volumes
and journal special issues (Bench-Capon & Dunne, 2007;
Besnard & Hunter, 2008; Rahwan & McBurney, 2007; Rah-
wan & Simari, 2009). A highly influential framework for
studying argumentation-based reasoning was introduced by
Dung (1995). An argumentation framework is simply a pair
AF = 〈A,⇀〉 whereA is a set of arguments and ⇀⊆ A×A
is a defeat relation between arguments. This approach fo-

cuses on the defeat relations between arguments, leaving
aside their origin or their internal structure. Various seman-
tics have attempted to characterise ‘correct’ argumentation-
based reasoning within such a framework. Given an argu-
mentation framework (that can take the form of a graph), a
semantics assigns a status to each argument, that is, it deter-
mines whether or not the argument can be accepted.1

These semantics typically come from a normative per-
spective, which relies on intuition and ad hoc hypothetical
examples as to what constitutes correct reasoning. We will
argue that there are limits to relying solely on this approach,
and we will advocate the use of psychological experiments as
a methodological tool for informing and validating intuitions
about argumentation-based reasoning.

In this article, we apply this experimental method to the
problem of reinstatement, both in its simple and floating
form. All classical semantics deem simple reinstatement to
be acceptable, but different semantics have different takes on

1 Other semantics (e.g., M. W. A. Caminada, 2006a) introduce
a more fine-grained distinction between accepted, rejected, and un-
decided arguments. A comprehensive review of argumentation se-
mantics is beyond the scope of this article, but excellent reviews can
be found elsewhere, for example in Baroni and Giacomin (2007) or
Rahwan and Simari (2009, Chapter 2).
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the special case of floating reinstatement. We will show that
psychological experiments can help to evaluate these various
semantics, and can provide unique insights even when all for-
mal semantics are in agreement. Not only these insights can
inform current and future semantics, but they are relevant
to the design of software agents that can argue persuasively
with humans, or provide reliable support to human evaluation
of arguments (e.g., on top of argument diagrammating tools).

In the next section, we offer a brief reminder of Dung’s ab-
stract theory of argumentation, focusing on our examples of
choice, simple and floating reinstatement. Then, we discuss
how argumentation semantics are typically evaluated in the
Artificial Intelligence literature, and we motivate the need
for an empirical perspective. We then report two empirical
studies investigating simple and floating reinstatement, re-
spectively.

Abstract Argumentation
Frameworks

In this section, we summarise key elements of abstract
argumentation frameworks. This section contains techni-
cal background only, whose outline is the following. Fig-
ure 1 displays the canonical graph of simple reinstatement,
whereas Figure 2 displays the canonical graph of floating re-
instatement. The main question is, in both cases, whether A
can be accepted. For simple reinstatement, A is accepted by
preferred as well as grounded semantics. For floating rein-
statement, A is not accepted by grounded semantics, but is
accepted by preferred semantics. Additionally, preferred se-
mantics also accept C and D in the (formally defined) ‘cred-
ulous’ sense, but not in the ‘sceptical’ sense.

We now lay bare the technical background required to ar-
rive at these conclusions. In the following, we adopt the com-
mon assumption that argument sets are finite, and we begin
with Dung’s (1995) abstract definition of an argumentation
framework.

Definition 1 (Argumentation framework) An argumenta-
tion framework is a pair AF = 〈A,⇀〉 where A is a set of
arguments and ⇀⊆ A×A is a defeat relation. An argument
α defeats an argument β iff (α, β) ∈⇀, also written α ⇀ β.

An argumentation framework can be represented as a di-
rected graph in which vertices are arguments and directed
arcs characterise defeat among arguments.

The directed graphs displayed in Figures 1 and 2 will
be our running examples all through the article. These two
graphs display the canonical forms of simple and floating re-
instatement, respectively. As it will appear in the course of
this section, the critical issue with these examples is whether
argument A can be accepted in spite of being defeated by
argument B.

Example 1 The graph in Figure 1 (simple reinstatement)
consists of three arguments A, B, C, and features two de-
feat relations: B ⇀ A and C ⇀ B. The graph in Figure 2
(floating reinstatement) consists of four arguments A, B, C,
and D, and features five defeat relations: B ⇀ A, C ⇀ B,
D ⇀ B, C ⇀ D, and D ⇀ C.

A B C

Figure 1. The canonical graph of defeat and simple reinstatement.
Argument A is defeated by argument B, which is in turn defeated
by argument C.

Note that each node is a complete argument: i.e. a premise
as well as a conclusion. The arrows between the nodes rep-
resent defeats among arguments. To understand how actual
arguments following these graph structures look like, con-
sider the following three arguments that follow the simple
reinstatement structure in Figure 1.

(A) Mary does not limit her phone usage. Therefore, Mary
has a large phone bill.

(B) Mary has a speech disorder. Therefore, Mary limits her
phone usage.

(C) Mary is a singer. Therefore, Mary does not have a
speech disorder.

Clearly, argument (B) is an attempt to defeat argument (A) by
undermining the latter’s main premise –that is, argument (B)
concludes that Mary limits her phone usage, negating (A)’s
premise that she does not do so. In a similar fashion, argu-
ment (C) defeats argument (B) itself by undermining (B)’s
premise.

There are many ways to define defeat (Rahwan & Simari,
2009). To simplify the reasoning problem, we opted to
go with an explicit and simple notion of defeat: the de-
feater’s conclusion explicitly negates the defeated argu-
ment’s premise. This, so-called undercutting defeat, also in-
sures that the defeats are not symmetric.

The following natural language arguments follow the
floating reinstatement structure shown in Figure 2.

(A) Cody does not fly. Therefore, Cody is unable to escape
by flying.

(B) Cody is a bird. Therefore, Cody flies.

(C) Cody is a rabbit. Therefore, Cody is not a bird.

(D) Cody is a cat. Therefore, Cody is not a bird.

Note here that (B) defeats (A) as above. Both (C) and (D)
defeat (B) by undercutting its premise that Cody is a bird.
However, (C) and (D) mutually defeat each other, since their
conclusions are contradictory (so-called rebutting defeat).

We now need to define the two fundamental notions of
conflict-freedom and defence. First, we introduce the nota-
tions S + and α−. For a given set S of arguments, S + is the
set of arguments that are defeated by the arguments in S .
Formally, S + = {β ∈ A | α ⇀ β for α ∈ S }. Conversely, for a
given argument α, the set α− is the set of all arguments that
defeat α. Formally, α− = {β ∈ A | β ⇀ α}.
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C

D

B A

Figure 2. The canonical graph of defeat and floating reinstatement.
Argument A is defeated by B, which is itself defeated by C as well
as D, although C and D are mutual defeaters.

Definition 2 (Conflict-freedom) Let 〈A,⇀〉 be an argu-
mentation framework and let S ⊆ A. S is conflict-free iff
S ∩ S + = ∅.

In other terms, a set of arguments is conflict free if and only
if no argument in that set defeats another.

Definition 3 (Defence) Let 〈A,⇀〉 be an argumentation
framework, let S ⊆ A, and let α ∈ A. S defends α if and
only if α− ⊆ S +. We also say that argument α is acceptable
with respect to S .

In other terms, a set of arguments defends a given argument
if and only if it defeats all its defeaters.

Example 2 In the graph displayed in Figure 1, the set {A,C}
is conflict free, but the set {A, B} is not, and neither is the
set {B,C}. Because the set {C} defeats all the defeaters of
A, we can say that the set {C} defends argument A. In the
graph displayed in Figure 2, the only conflict-free sets (apart
from trivial ones containing single arguments) are {A,C} and
{A,D}. Either one of the sets {C}, {D}, or {C,D}, defends A
against all its defeaters.

We now define the characteristic function of an argumenta-
tion framework.

Definition 4 (Characteristic function) Let AF = 〈A,⇀〉
be an argumentation framework. The characteristic function
of AF is FAF: 2A → 2A such that, given S ⊆ A, we have
FAF(S ) = {α ∈ A | S defends α}.

Applied to an argument set S , the characteristic function re-
turns the set of all arguments defended by S . Because we are
only dealing in this article with one argumentation frame-
work at a time, we will use the notation F instead of FAF .

We now turn to various so-called extensions that can char-
acterise the collective acceptability of a set of arguments. Es-
sentially, these extensions provide different possible ways to
group self-defending arguments together. These extensions
will be used subsequently to define the argument evaluation
criteria that we study empirically in this paper.

Definition 5 (Complete/grounded/preferred extensions)
Let S be a conflict-free set of arguments in framework
〈A,⇀〉.

A B C

Figure 3. Single (complete, grounded, and preferred) extension in
simple reinstatement. Accepted arguments are shaded.

C

D

B A

C

D

B A

Figure 4. The two (complete, preferred) extensions in floating
reinstatement. Accepted arguments are shaded.

• S is a complete extension iff S = F (S ).
• S is a grounded extension iff it is the minimal complete

extension with respect to set inclusion.
• S is a preferred extension iff it is a maximal complete

extension with respect to set inclusion.

S is a complete extension if and only if all arguments de-
fended by S are also in S (that is, if S is a fixed point of the
operator F ). There may be more than one complete exten-
sion, each corresponding to a particular consistent and self-
defending viewpoint.

Example 3 In the graph displayed in Figure 1, the set {C}
is not a complete extension, because it defends A without in-
cluding it. The set {B} is not a complete extension because
it includes B without defending it against C –see Figure 3.
The only complete extension is {A,C}. The graph displayed
in Figure 2 has two complete extensions, {A,C} and {A,D}
–see Figure 4.

A grounded extension contains all the arguments in the
graph that are not defeated, as well as all the arguments
which are defended directly or indirectly by non-defeated ar-
guments. This can be seen as a non-committal view (charac-
terised by the least fixed point of F ). As such, there always
exists a unique grounded extension.

More intuitively, computing arguments in the grounded
extension can be seen as a process of labelling nodes of the
graph. First, nodes that have no defeaters are labelled ‘un-
defeated’ (and included in the extension) and the nodes at-
tacked by them are labelled ‘defeated’ (and discarded of the
extension). Then, all labelled arguments are suppressed and
the process is repeated on the resulting sub-graph, and so
forth. If no initial, undefeated node can be found for some
iteration, all unlabelled nodes are labelled as ‘defeated’ and
the process is terminated.

Example 4 The graph displayed in Figure 1 has only one
complete extension, {A,C}, which is also its grounded ex-
tension. The graph displayed in Figure 2 has two complete
extensions {A,C} and {A,D}, but none of this is the grounded
extension, because there is no node in the graph that is ini-
tially undefeated. In that case, the grounded extension is the
empty set.
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A preferred extension is a bolder, more committed position
that cannot be extended (by accepting more arguments) with-
out causing inconsistency. Thus a preferred extension can be
thought of as a maximal consistent set of hypotheses. There
may be multiple preferred extensions, and the grounded ex-
tension is included in all of them.

Example 5 The graph displayed in Figure 1 has only one
complete extension, {A,C}, which is also a preferred exten-
sion. The graph displayed in Figure 2 has two complete ex-
tensions {A,C} and {A,D}, and both qualify as preferred ex-
tensions.

Now that we have defined various semantics that identify the
extensions of an argument graph, we can at last define the
status of an individual argument within the graph, that is,
we can define criteria for accepting or not each individual
argument. The main question in this paper is whether people
evaluate a reinstated argument sceptically or credulously in
accordance with the definition below.

Definition 6 (Argument status) Let 〈A,⇀〉 be an argu-
mentation framework, and E1, . . . ,En its extensions under a
given semantics. Let α ∈ A.
• α is accepted in the sceptical sense iff α ∈ Ei, ∀Ei with

i = 1, . . . , n.
• α is accepted in the credulous sense iff ∃Ei such that

α ∈ Ei.
• α is rejected iff @Ei such that α ∈ Ei.

Under the grounded semantics, any argument that belongs to
the unique grounded extension is accepted both in the credu-
lous and the sceptical sense, and any argument that does not
belong to the unique grounded extension is rejected. Under
the preferred semantics, an argument is sceptically accepted
if it belongs to all preferred extensions; but it can also be
credulously accepted if it belongs to at least one preferred
extension. If an argument is neither sceptically nor credu-
lously accepted, it is rejected.

Example 6 The graph displayed in Figure 1 has only one
complete extension, {A,C}, which is grounded as well as pre-
ferred. As a consequence, arguments A and C are accepted
by grounded as well as preferred semantics, both in the cred-
ulous and sceptical sense. The graph displayed in Figure 2
has an empty grounded extension, which means that no argu-
ment should be accepted under a grounded semantics. Un-
der a preferred semantics, though, two extensions are iden-
tified, {A,C} and {A,D}. From these extensions, only A can
be accepted in a sceptical sense, but A, C, and D can all be
accepted in a credulous sense.

What Validates a Semantics?
As established in the previous section, different semantics

can have different takes on which arguments can be accepted
within a given argumentation framework. The question then
arises of evaluating the different claims made by different
semantics as to what constitutes an acceptable argument. In

this section, we discuss this issue in the broader context of the
general sources of inspiration and validation found for these
semantics in the formal argumentation literature. We dis-
cuss in turn the example-based approach, the principle-based
approach, and lastly the experiment-based approach that we
suggest needs more attention from the Artificial Intelligence
community.

The example-based approach

Most semantics for argumentation-based reasoning in Ar-
tificial Intelligence are based on intuition as to what consti-
tutes correct reasoning. A typical research article presents
scenarios that can be hypothetical or real (e.g., from the
legal domain), and that correspond to one or several argu-
ment structures (e.g., floating reinstatement). The proposed
semantics is then shown to draw intuitively satisfying con-
clusions. The difficulty, then, is that one is often able to
construct other examples with the same logical structure, in
which the proposed semantics draws counter-intuitive con-
clusions. For example, Horty (2002) famously devoted a
whole paper to demonstrate counter-intuitive results with
floating conclusions in default reasoning (see also Bonnefon,
2004).

Such counter-intuitive results motivate work on new se-
mantic criteria to capture the novel examples, and the process
repeats, examples always being the main tool for comparing
semantics with one another. This example-based approach
(to borrow a term from Baroni & Giacomin, 2007) was,
for example, the inspiration for the CF2 semantics (Baroni,
Giacomin, & Guida, 2005), dealing with odd-length cycles
examples that were problematic for preferred semantics; or
for the semi-stable semantics (M. W. A. Caminada, 2006b),
dealing with cases in which no stable extension exists, and
are shown to have guaranteed existence.

Baroni and Giacomin (2007) made a compelling case for
the limitations of the example-based approach, noting in par-
ticular that even in relatively simple examples, there might
not be a consensual intuition on what should be the correct
conclusion. In parallel, Prakken (2002) observed that intu-
itions about given examples were helpful for generating new
investigations, but less helpful as critical tests between dif-
ferent semantics. This recognised difficulty in relying on in-
tuition alone as the benchmark for designing and evaluating
argumentation semantics motivated a number of authors to
advocate a more systematic approach to which we now turn.

The principle-based approach

To overcome the limitations of the example-based ap-
proach, a number of authors recently advocated a more sys-
tematic, axiomatic, principle-based approach (e.g. Baroni &
Giacomin, 2007; M. Caminada & Amgoud, 2007). In this
approach, alternative semantics are evaluated by analysing
whether they satisfy certain principles, or quality postulates.

Baroni and Giacomin (2007) offered for example the rein-
statement criterion, according to which an argument must be
included in any extension that reinstates it, and directional-
ity criterion which requires that an argument’s status should
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only be affected by the status of its defeaters. The Baroni
and Giacomin (2007) article offers many other interesting
criteria to provide a comprehensive and systematic compar-
ison between abstract argumentation semantics. In parallel,
M. W. A. Caminada (2006a) provided postulates for the no-
tion of reinstatement, in order to characterise the labelling
of arguments in an argument graph (in, out, and undecided).
One postulate states that an argument must be ‘in’ if and only
if all of its defeaters are ‘out.’ Another postulate states that
an argument must be ‘out’ if and only if at least one of its
defeaters is ‘in.’ This enabled Caminada to characterise dif-
ferent semantics by examining the kinds of labellings they
allowed.

The principle-based approach provides a significant im-
provement over the basic example-based approach, since it
enables claims that transcend individual examples and char-
acterise semantics more generally. The source of the general
postulates, however, is still the researcher’s intuition as to
what correct reasoning ought to be. In sum, most of the ex-
tent validation of various argumentation semantics, example-
based or principle-based, relies on normative claims based
on intuition. We now suggest that this normative-intuitive
perspective could be adequately complemented with descrip-
tive, experimental evidence about how people actually reason
from conflicting arguments.

The experiment-based approach

There is a growing concern within the Artificial Intel-
ligence community that logicians and computer scientists
ought to give serious attention to cognitive plausibility when
assessing formal models of reasoning, argumentation and
decision-making. For example, Benthem (2008) strongly
supports the rise of a new psychologism in logic at large, ar-
guing that although logicians and computer scientists have
tended to go by intuition and anecdotal evidence, formal the-
ories can be modified under pressure from evidence obtained
though careful experimental design. In the context of epis-
temic logic, Pietarinen (2003) argues for the important role of
empirical findings from cognitive science in revising our log-
ical conceptions of knowledge and belief, commenting that
the interplay between logic and cognition is likely to reach
increasingly wider and become increasingly prominent.

Pelletier and Elio (1997, 2005) also argued extensively
for the importance of experimental data when formalizing
default and inheritance reasoning, arguing that default rea-
soning is particularly psychologistic in that it is defined by
what people do. Their own results have been complemented
by a dynamic experimental literature consisting of controlled
tests of human default reasoning (e.g., Benferhat, Bonne-
fon, & da Silva Neves, 2005; Bonnefon, Da Silva Neves,
Dubois, & Prade, 2008; Da Silva Neves, Bonnefon, & Ra-
ufaste, 2002; Ford, 2004; Ford & Billington, 2000; Pfeifer &
Kleiter, 2005, 2009).

Finally, and in close relation to the problems of simple and
floating reinstatement that we have introduced in the previ-
ous section, Horty (2002) implicitly appealed to descriptive
validation when highlighting the issues that floating conclu-

sions raise for sceptical semantics:2

There is a vivid practical difference between the two
skeptical alternatives. [. . . ] Which alternative is cor-
rect? I have not done a formal survey, but most of
the people to whom I have presented this example are
suspicious of the floating conclusion (p.64).

We believe that the field of computational argumentation can
indeed benefit from the same kind of formal surveys that have
been conducted in the field of default reasoning, and that
have been generally called for in Artificial Intelligence. To
our knowledge, only very few articles have explicitly sought
to inform formal models of argumentation with experimen-
tal evidence, and these experimental data have only been
collected in relation to the specific issue of argumentation-
based decision making (e.g., Amgoud, Bonnefon, & Prade,
2005; Bonnefon, Dubois, Fargier, & Leblois, 2008; Dubois,
Fargier, & Bonnefon, 2008). What we offer in this article is
an experimental investigation of the basic issue of how peo-
ple reason from the critical argument structures correspond-
ing to simple and floating reinstatement, and whether one of
the current available semantics can capture their reasoning.

Study 1: Simple Reinstatement
Study 1 investigates the the basic structure of argument

reinstatement. Abstractly, this structure is defined in the fol-
lowing argumentation framework (as displayed in Figure 1):
AF = 〈{A, B,C}, B ⇀ A,C ⇀ B〉, in which argument A is
attacked by argument B but reinstated by argument C.

Study 1 seeks to answer the following questions: Does
the confidence in the conclusion of A decrease when A is
defeated by B? Does this confidence then increase when C is
introduced alongside A and B? If so, does confidence return
to its initial level, that of when A was presented alone?

Method
Twenty participants were randomly approached in offices,

shopping malls, and open spaces in Dubai, to take part in
Study 1. Participants read an introduction to the task, in-
forming them that the purpose of the experiment was to col-
lect information about how people thought, that the task in-
cluded no trick question, and that they simply had to mark the
answer that they felt correct. Participants were asked about
their proficiency with the English language, in order to make
sure that it was above a reasonable level. Participants evalu-
ated their proficiency by choosing one of nine terms ranging
from Expert to Very Limited. They then solved 18 problems
each, following a 3-level, 6-measure within-participant de-
sign.

The 3-level independent variable was the Pattern of the
problem (Base, Defeated, Reinstated). In the Base pattern,
participants were only presented with argument A; in the De-
feated pattern, participants were presented with arguments

2 Working within the scope of default logic, Horty gave a specific
example to highlight counter-intuitive results in classical reasoning
with a floating conclusion supported by two mutually conflicting
pieces of evidence.
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A and B; finally, in the Reinstated pattern, participants were
presented with all three arguments A, B, and C.

Participants saw six different versions of each pattern,
which used six different sets of contents for the arguments
A, B, and C (see Appendix A for a list of all contents). More
specifically, half the participants solved the Base (argument
A), Defeated (arguments A and B), and Reinstated (argu-
ments A, B and C) problems using the first set of contents,
then the Base, Defeated, and Reinstated problems using the
second set of contents, and up to the Base, Defeated, and Re-
instated problems using the sixth set of contents. The other
half did the same, but they started with the sixth set of con-
tents and worked their way down to the first.

Participants had to answer every problem, in the order
they appeared in the questionnaire, without peeking at the
next problem in the questionnaire. For each problem, partic-
ipants had to assess the conclusion of argument A, using a
7-point scale anchored at certainly false and certainly true.
The scale and the phrasing of the question were similar to
that used in Politzer and Bonnefon (2006).3

Manipulation Check

An independent sample of 18 participants was recruited to
take part in the manipulation check of Study 1. The purpose
of the manipulation check was to make sure that the C argu-
ments did a good job at defeating the B arguments. Without
this precaution, we would not be able to interpret the poten-
tial effect of C arguments on A arguments in the main experi-
ment. Participants in the manipulation check solved 12 prob-
lems, according to a 2-level, 6-measure designs. For each of
the six argument sets, participants assessed their confidence
(on a 7-point scale similar to that used in the main study) in
the conclusion of B when B was presented alone, and their
confidence in the conclusion of B when B was presented to-
gether with C.

Results

Averaging across the 6 contents and 20 participants, the
base confidence in the conclusion (when argument A is pre-
sented alone) was 5.9 (SD = 0.8) whereas confidence in the
defeated conclusion (when argument A is attacked by argu-
ment B) was 4.0 (SD = 1.4). Confidence in the reinstated
conclusion (when argument A is attacked by argument B but
reinstated by argument C) went back up to 5.2 (SD = 1.0).

Confidence in the conclusion was entered as the depen-
dent variable in a repeated-measure analysis of variance, with
pattern as a 3-level predictor (Base, Defeated, Reinstated)
and 6 measures corresponding to the 6 contents. The multi-
variate test detects a significant effect of Pattern, F(2, 18) =
14.1, p < .001, η2

p = .61. This overall effect reflects both an
effect of defeat and an effect of reinstatement. As shown
by a contrast analysis, ratings in the Base condition were
significantly higher than ratings in the Defeated condition,
F(1, 19) = 26.8, p < .001, η2

p = .59; and ratings in the
Defeated condition were themselves significantly lower than
ratings in the Reinstated condition, F(1, 19) = 9.9, p = .005,

η2
p = .34. Although reinstatement increased the acceptabil-

ity of a conclusion, the recovery was not perfect. Indeed,
the ratings in the Reinstated condition were still significantly
lower than the ratings in the Base condition, F(1, 19) = 9.1,
p = .007, η2

p = .32.
The reliable effect of reinstatement must be related to the

success of the reinstating manipulation, as shown by the re-
sults of the manipulation check. Averaging across the 6
contents, the base confidence in the conclusion of defeaters
was 5.1 (SD = 0.8) whereas it was 4.1 (SD = 0.7) for at-
tacked defeaters. A repeated-measure analysis of variance,
with pattern as 2-level predictor, and 6 measures correspond-
ing to 6 contents, detected a significant effect of pattern
F(6, 12) = 3.8, p = .02, η2

p = .66.
Results thus support the notions of defeat and reinstate-

ment. That is, confidence in the conclusion of a defeated
argument significantly decreases, but it increases when the
defeater is itself attacked by a reinstating argument. Results
also suggest, however, that a reinstated argument does not
fully recover from its defeat, as confidence in its conclusion
remains significantly lower than what it was when the argu-
ment was presented in isolation. We defer the discussions
of these results until after we report the results of Study 2,
which extends Study 1 by considering the more complex case
of floating reinstatement.

Study 2: Floating Reinstatement
Study 2 offers an experimental comparison of the simple

reinstatement structure to the more complex structure known
as floating reinstatement, graphically displayed in Figure 2.

In addition to replicating the findings of Study 1, Study
2 seeks to answer the following questions: Does floating re-
instatement restore the confidence in the conclusion of ar-
gument A, and does it do so to the same extent as simple
reinstatement? (A ‘yes’ to both questions would go against
the predictions of grounded semantics.) If so, does the ef-
fectiveness of floating reinstatement require that participants
manifest a preference for either C over D or D over C? (A
‘yes’ would provide support to the predictions of credulous
preferred semantics, a ‘no’ would provide support to the pre-
dictions of sceptical preferred semantics.)

Method
Fourty-seven participants were randomly approached in

the same circumstances and following the same protocol as
in Study 1. They were randomly assigned to two experi-
mental groups corresponding to simple and floating reinstate-
ment, respectively, then solved 12 problems, following a 3-
level, 4-measure within-participant design.

The 3-level independent variable was the Pattern of the
problem (Base, Defeated, Reinstated). In the Base pattern,

3 The question always refers to the conclusion of argument A.
For example, for Argument Set 1 in the appendix, the question
would be worded “Alex’s car will halt is (1) certainly false; (2) much
more false than true; (3) slightly more false than true; (4) as false as
true; . . . (7) certainly true.” Participants responded by checking the
corresponding numeral on a graphically depicted scale.
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Figure 5. Reinstatement is as effective in its floating form as in
its simple form. Confidence in the conclusion of an argument de-
creases when the argument is defeated, and is then imperfectly re-
stored when its defeater is itself defeated, whether by a single ar-
gument (simple reinstatement) or by two mutually defeating argu-
ments (floating reinstatement).

participants were only presented with argument A; in the De-
feated pattern, participants were presented with arguments
A and B; finally, in the Reinstated pattern, participants were
presented with the three arguments A, B, and C (in the simple
reinstatement group) or with the four arguments A, B, C, and
D (in the floating reinstatement group).

The procedure used in Study 2 was the same as that used
in Study 1, but the contents of arguments A, B, C, and D were
taken from four different argument sets than in Study 1 (see
Appendix B). In addition to the questions used in Study 1,
participants rated their understanding of each problem (‘How
clearly did you understand the problem?’) on a 7-point scale
anchored at Not at all and Completely. Lastly, participants
in the floating reinstatement group answered the following
question about the four reinstated problems: Do you think
that (i) C is a better argument than D, (ii) D is a better argu-
ment than C, or (iii) C and D are about equally good?

Results

Figure 5 displays the average confidence in the conclu-
sion of A, as a function of Pattern and Type of reinstatement,
averaged across the contents and participants. The visual in-
spection of Figure 5 already suggests that the results are very
similar for the two groups. This preliminary intuition was
confirmed by the results of a mixed-design analysis of vari-
ance, using the confidence in the conclusion as a dependent
variable, pattern as a 3-level within-subject predictor (Base,
Defeated, Reinstated), the type of reinstatement as a 2-level
between-group variable (Simple, Floating), and four mea-
sures corresponding to the four linguistic contents.

The multivariate test detected a significant effect of Pat-
tern, F(8, 38) = 6.1, p < .001, η2

p = .56. It did not, how-
ever, detect a significant main effect of Type of reinstatement
F(4, 42) < 1, p = .79, η2

p = .04, nor a significant interaction
between Pattern and Type, F(8, 38) = 1.2, p = .32, η2

p = .20.
As in Study 1, the overall effect of Pattern reflected a suc-

cessful defeat followed by a successful reinstatement. As
shown by contrast analysis, confidence ratings in the De-

feated condition were significantly lower than ratings in the
Base condition, F(1, 45) = 34.9, p < .001, η2

p = .44, and this
difference was not moderated by the Type of reinstatement
(there is indeed no reason that it should be), F(1, 45) < 1,
p = .67, η2

p < .01. The confidence ratings in the Reinstated
condition were significantly greater than in the Defeated con-
dition, F(1, 45) = 13.7, p < .001, η2

p = .23, and this differ-
ence (more interestingly this time) was not moderated by the
Type of reinstatement, F(1, 45) < 1, p = .60, η2

p < .01. Just
as in Study 1, reinstatement is not perfect, as ratings in the
Reinstated condition remain significantly lower than in the
Base condition, F(1, 45) = 9.0, p < .01, η2

p = .17. Again,
there is no evidence whatsoever of a moderation by Type of
reinstatement, F(1, 45) < 1, p = .92, η2

p < .01.
So far, results suggest that floating reinstatement has an

effect that is identical to classic reinstatement. We further
note that although subjects found the floating reinstatement
problems slightly harder to understand than the simple rein-
statement problems, this difference appeared to play no role
in the ratings they gave for their confidence in the conclusion.
The average understanding rating was 4.6 (SD = 1.1) for
simple reinstatement problems, compared to 4.0 (SD = 0.9)
for floating reinstatement problems, t(45) = 2.0, p = .05.
However, a regression analysis seeking to predict acceptance
of reinstated arguments on the basis of problem understand-
ing, Type of reinstatement (dummy coded, 1 for floating),
and the interaction term between these two predictors, failed
to find any significant effect. The interaction term in partic-
ular achieved a standardized β of .19, non-reliably different
from zero, t = 0.32, p = .75.

The effectiveness of floating reinstatement does not ap-
pear to result from the subjects manifesting a preference for
one of the mutually defeated arguments. We conducted four
repeated-measure analyses of variance, one for each argu-
ment set, with conclusion acceptance as a dependent vari-
able, pattern as a 2-level predictor (Defeated, Reinstated),
and preference as a dummy coded between-group variable (0
for subjects who said the two mutually defeating arguments
were equally good, 1 otherwise). The interaction term be-
tween pattern and preference did not achieve statistical sig-
nificance in any of the four analyses, all Fs in the 0.5 − 1.5
range, all ps in the .23 − .48 range.

General Discussion

Following the introduction of Dung’s (1995) influential
abstract argumentation frameworks, formal argumentation
has become a fertile area of research in Artificial Intelli-
gence. An argumentation framework can be represented as
a directed graph in which vertices are arguments and di-
rected arcs characterise defeat among arguments. Within this
framework, various semantics (e.g., preferred vs. grounded)
have been offered that seek to establish whether or not each
argument in the graph can be accepted. In some cases (such
as simple reinstatement), preferred and grounded semantics
are in agreement; but in other cases (such as floating rein-
statement), the two semantics have different takes on what
constitutes an acceptable argument.
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When there is a conflict between the predictions of two
semantics, the standard practice in Artificial Intelligence is
to rely on intuition to elect one of these predictions as the
normatively correct one. Although this normative-intuitive
approach has its uses, we argued that it might be adequately
complemented with the kind of descriptive-experimental ap-
proach that has already been used in some domains of Artifi-
cial Intelligence (e.g., default and inheritance reasoning), and
that has been called for by various voices within the formal
community. This descriptive experimental approach consists
of using the methods of experimental psychology to run con-
trolled studies of argument-based reasoning; and to confront
the results of these studies with the predictions made by for-
mal semantics.

In this article, we applied this approach to simple as well
as floating reinstatement. Study 1 addressed the basic situa-
tion of simple reinstatement, across a varied set of linguistic
contents. Participants reasoned in a way that reflected the
formal notions of defeat and reinstatement: Their confidence
in an argument A decreased when it was attacked by an ar-
gument B, but bounced back up when B itself was attacked
by a third argument C. These findings are in agreement with
grounded as well as preferred semantics (and others). What
neither semantics could predict, though, is the finding (repli-
cated in Study 2) that the recovery of argument A was not
complete when reinstated by argument C: Confidence in A
in presence of B and C did not raise back to its former level,
when A was presented alone.

This is not a trivial observation. Indeed, every possibility
seemed plausible a priori. We could expect, as formal se-
mantics would have it, that A would fully regain its former
status. We could also imagine that the confidence in A in
presence of B and C would surpass the confidence in A when
presented alone: Indeed, confidence in A might be boosted
by seeing a potential objection to A being ruled out. But what
happened was exactly the contrary. Seeing one objection to
A, even when it was ruled out, decreased the confidence in
A, possibly because the evocation of one objection prompted
participants to consider other possible objections that were
not explicitly ruled out in the problem.

There is indeed some sort of suspension of disbelief in-
volved in reasoning experiments using natural language ma-
terials (see Evans & Over, 2004, Chapter 6, for a review of
how to increase or decrease this suspension of disbelief by
means of experimental instructions). Participants can easily
generate all sorts of objections to the arguments presented to
them by the experimenter, but they suspend their disbelief in
these arguments for the sake of the experiment. When one
objection is presented by the experimenter herself, though,
suspension of disbelief is disrupted and some participants
start to let their own private beliefs leak into the way they
reason from the experimental materials. The fact that simple
reinstatement works, though, even if not perfectly, is good
news to current semantics, and a warning for future seman-
tics not to dispense with simple reinstatement.

Turning now to floating reinstatement, our results suggest
that, empirically speaking, floating reinstatement works ex-
actly as well as simple reinstatement. Participants’ confi-

dence in an argument A decreased when it was attacked by an
argument B, but bounced back up when B itself was attacked
by two mutually defeating arguments C and D. These re-
sults clearly speak in favour of preferred semantics. Results
also suggest that the sceptical version of preferred seman-
tics might be more cognitively plausible than the credulous
version, since the effect of floating reinstatement was not de-
pendent on participants showing a preference for one of the
two mutually defeating arguments. This question is not yet
settled, though, since the data do not make it clear whether
participants would be willing to commit to accepting one of
the mutually defeating arguments C and D. Hence, this as-
pect of the results requires further investigation.

Besides their theoretical value, our results also have ap-
plied value for developing agents that are meant to argue
with human users. We already know that artificial agents
can achieve better negotiation results with human users when
they do not play normative equilibrium strategies, but rather
adopt boundedly rational strategies inspired from human be-
havioural data (Gal & Pfeffer, 2007; Lin, Kraus, Wilkenfeld,
& Barry, 2008). Generally speaking, we may expect that arti-
ficial agents may similarly be more successful when arguing
with human users, if they can anticipate human reactions to
various abstract argumentation frameworks. With that goal
in mind, our results suggest that artificial agents may be bet-
ter off avoiding discussion that may reveal a defeater, even if
the agent has a counter-argument to that defeater; but should
be ready to use floating reinstatement as well as simple rein-
statement in order to neutralise a defeater raised by the hu-
man user. These kinds of heuristics can be incorporated into
a decision-theoretic model of a persuasive agent that inter-
acts with users using natural language (Reed, 1998; Grasso,
Cawsey, & Jones, 2000). Such agents may also be comple-
mented by domain-specific knowledge of effective argumen-
tation strategies (e.g. in the domain of genetic counselling
(Green, 2007) or healthy diet promotion (Mazzotta, Rosis,
& Carofiglio, 2007)). Going beyond our specific results, by
building up a corpus of argument structures and how they are
evaluated, it may be possible to use machine learning tech-
niques to build models that predict how people will react to
novel argument structures.

Independently of our specific results, we hope to have con-
vinced the reader that the wealth of scientific methodology
from psychology can give a new perspective on the problems
raised when formalising argumentation and developing argu-
ment evaluation semantics. We hope that our claims and find-
ings can prompt researchers working on the computational
modelling of argument to explore new avenues of investiga-
tion inspired by, and validated against, empirical evidence
from psychology and cognitive science.

We also hope to have excited cognitive scientists working
on human reasoning about the growing literature on formal
models of argumentation. These models, and their associated
normative properties, have great potential in complementing
existing research on human reasoning, and providing concep-
tual means for dealing with highly complex inference struc-
tures.
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Appendix A
Materials used in Study 1

Argument Set 1

(A) The battery of Alex’s car is not working. Therefore,
Alex’s car will halt.



10 RAHWAN ET AL

(B) The battery of Alex’s car has just been changed today.
Therefore, the battery of Alex’s car is working.

(C) The garage was closed today. Therefore, the battery of
Alex’s car has not been changed today.

Argument Set 2

(A) Louis applied the brake and the brake was not faulty.
Therefore, the car slowed down.

(B) The brake fluid was empty. Therefore, the brake was
faulty.

(C) The car had just undergone maintenance service. There-
fore, the brake fluid was not empty.

Argument Set 3

(A) Mary does not limit her phone usage. Therefore, Mary
has a large phone bill.

(B) Mary has a speech disorder. Therefore, Mary limits her
phone usage.

(C) Mary is a singer. Therefore, Mary does not have a
speech disorder.

Argument Set 4

(A) John has no way to know Leila’s password. Therefore,
Leila’s emails are secured from John.

(B) Leila’s secret question is very easy to answer. Therefore,
John has a way to know Leila’s password.

(C) Leila purposely gave a wrong answer to her secret ques-
tion. Therefore, Leila’s secret question is not very easy
to answer.

Argument Set 5

(A) Mike’s laptop does not have anti-virus software in-
stalled. Therefore, Mike’s laptop is vulnerable to com-
puter viruses.

(B) Nowadays anti-virus software is always available by de-
fault on purchase. Therefore, Mike’s laptop has anti-
virus software.

(C) Some laptops are very cheap and have minimal soft-
ware. Therefore, anti-virus software is not always avail-
able by default.

Argument Set 6

(A) There is no electricity in the house. Therefore, all lights
in the house are off.

(B) There is a working portable generator in the house.
Therefore, there is electricity in the house.

(C) The fuel tank of the portable generator is empty. There-
fore, the portable generator is not working.

Appendix B
Materials used in Study 2

Argument Set 1

(A) Cody does not fly. Therefore, Cody is unable to escape
by flying.

(B) Cody is a bird. Therefore, Cody flies.

(C) Cody is a rabbit. Therefore, Cody is not a bird.

(D) Cody is a cat. Therefore, Cody is not a bird.

Argument Set 2

(A) Smith does not follow American spelling. Therefore,
Smith writes ‘colour’ instead of ‘color’.

(B) Smith speaks American English. Therefore, Smith fol-
lows American spelling.

(C) Smith was born and brought up in England. Therefore,
does not speak American English.

(D) Smith was born and brought up in Australia. Therefore,
does not speak American English .

Argument Set 3

(A) The car did not slow down. Therefore, the car ap-
proached the signal at the same speed or higher.

(B) Louis applied the brake. Therefore, the car slowed
down.

(C) Louis applied the accelerator instead. Therefore, Louis
did not apply the brake.

(D) Louis applied the clutch instead. Therefore, Louis did
not apply the brake.

Argument Set 4

(A) Stephen is not guilty. Therefore, Stephen is to be free
from conviction.

(B) Stephen was seen at the crime scene at the time of the
crime. Therefore, Stephen is guilty.

(C) Stephen was having dinner with his family at the time
of crime. Therefore, Stephen was not seen at the crime
scene at the time of the crime.

(D) Stephen was watching football with his friends in the
stadium at the time of the crime. Therefore, Stephen
was not seen at the crime at the time of the crime.


