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Abstract. This paper presents an implementation for an explanation-
based theory of argumentation. Instead of referring to attack/support
relationships between arguments, as in traditional argumentation theo-
ries, we focus on the relation of messages with the space of hypothetical
explanations. The consequences of this choice are two-fold. First, attack
and support relationships become derivative measures. Second, we unveil
a natural integration with probabilistic reasoning. The proposed opera-
tionalization is based on stable models semantics for logic programming.
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1 Introduction

Argumentation is traditionally perceived as operating at a meta-level, concerned
with support and attack relationships between claims uttered by participants
in a conversation. Although absolutely not bound by such practical perspective,
formal theories follow, if not strengthen, this meta-level interpretation. Dung’s
seminal work [1] reduces argumentation to an abstract setting, which consists of
a set of atomic components called arguments and attack relations between them.
In this context, an argument can be for instance an atomic proposition, a (de-
feasible) rule, or even an argument scheme. In order to interpret such argument
systems, e.g. so as to evaluate conflicts between arguments, Dung and following
authors have proposed many formal argumentation semantics (for an overview,
see [2]), used as a basis for deriving the justification state of each argument.
In extension-based semantics, for instance, the key role is given to extensions,
i.e. subsets of arguments of the argumentation framework, collectively acceptable
according to a given semantic. The justification of an argument is then defined
in terms of its membership to extensions.1

A practical application of this abstract framework would consist in three
steps: (a) the observation of the argumentation process between certain par-
ties2, in a certain applied domain, (b) the reduction of the observation to a

1 An argument is skeptically justified if it belongs to all extensions, it is credulously
justified if there is at least one extension which contains it.

2 Not necessarly different persons, parties may belong to the same person, assuming
different perspectives.
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system of arguments and attacks between arguments, (c) the analysis, using a
certain argumentation semantic, of the resulting argumentation framework, so
as to assign a certain justification state to arguments. Each task may be conven-
tionally associated to a different role: the observer, the modeler and the analyst.
Unfortunately, few but important issues haunt this operational chain.

Inside and Outside of Argument Systems First, the extraction of relations be-
tween distinct utterances may be problematic. Claims are often not explicitly
directed against other claims (i.e. the syntaxic definition of attack). The step
(b) externalizes this problem to the modeler. As a consequence, different model-
ers may produce alternative results, because the underlying process depends on
cognitive abilities and background knowledge of the modeler. Despite of being
abstracted as systemically external to the whole process, the construction of the
argumentation meta-level is intrinsic to the argumentation process as well.

In order to solve this issue, many authors connect argumentation to default
reasoning and other non-monotonic logics. For instance, in assumption-based
argumentation (ABA) [3], arguments and attacks are not any more primitive
components. Arguments are derived via backward reasoning (from conclusions
to assumptions) using a given set of inference rules. Attacks on a target argument
are defined if the “contrary” of the assumptions of this argument can be inferred.
Other approaches [4, 5] count explicitly also the rebuttal attack, related to the
deduction of the negation of the conclusion.3 In both cases, the externalization of
(b) is now placed at the level of the support relationships, defined via defeasible
rules, and based on assumptions. Unfortunately, potential problems still exist, as
zombie arguments and the consilience effect, which will be discussed hereafter.

The main objective of explanation-based argumentation is to push the limit
of the externalization further (or equivalently, to not consider a meta-level for
argumentation). Relying on a deep model of the domain, the relationships of
attack and support become derivative measures of the impact of the observation
on the space of explanatory hypotheses.

Strength of Truth Second, justification is defined only in discrete terms: an ar-
gument is justified or not, and if justified, it can be skeptically or credulously
justified. A more fine-grained determination is however necessary in most prac-
tical cases. When there is no skeptically justified conclusion, how to decide the
strength of a certain credulously justified interpretation over another? Intuitively,
counting the number of arguments present in the different extensions would be
a measure of their strength — as proposed for instance in [7]. But other solu-
tions are possible as well. According to the subjective interpretation of Bayesian
probability, probability counts as a measure of the strength of belief. In this line
of thought, a certain probability assigned to arguments can be considered as a
proxy for their strength. Some authors, as for instance [8], propose to integrate
probability to Dung’s abstract framework; others target more applied contexts,
as evidential reasoning [9, 10], in the legal domain [11, 12]. We share part of their

3 Dung argues this case can be easily converted to the previous one [6].
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objectives: as this contribution shows, explanation-based argumentation unveils
a natural integration with probabilistic theory. However, while those works gen-
erally insist on the computation of posterior probabilities, we will consider a
confirmation measure over explanations, making the role of subjective commit-
ment more explicit.

The paper proceeds as follows. In section 2 we present a puzzle given by
Pollock concerning argumentation and probabilistic reasoning. In sections 3 and
4 we present the main characteristics of an explanation-based theory of argu-
mentation. In section 5, we operationalize it using answer set programming. In
section 6, we report and comment our results. The paper ends with a note on
further developments.

2 An Interesting Puzzle

Pollock presents in [13] a lucid philosophical critique on defeasible reasoning and
how probabilistic methods approach the problem of justification, in the form of
some interesting puzzles. He gives the following case: Jones says that the gunman
had a moustache. Paul says that Jones was looking the other way and did not
see what happened. Jacob says that Jones was watching carefully and had a clear
view of the gunman.
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Fig. 1. Argumentation scheme of Pollock’s puzzle

The associated argument scheme is illustrated in Fig. 1. A (Jones’ claim)
supports P (gunman had a moustache), B (Paul’s) supports Q (Jones was not
watching the gunman), C (Jacob’s) supports ∼ Q (Jones was watching him).
Evidently, Q attacks the relation between A and P , while Q and ∼ Q attack each
other. In terms of argumentation, this is an example of collective defeat (Q vs
∼ Q), which results in a zombie argument (P ) [14]. Although formal semantics
usually allow the presence of zombie arguments, it is not clear — Pollock admits
— whether they should. Therefore, he targets some intuitive properties, easy to
be agreed upon from a common-sense perspective:

1. given the conflict, we should not believe to Jones’ claim carelessly;
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2. if we consider Paul more trustworthy than Jacob, Paul’s claim should be
justified, but to a lesser degree;

3. if Jacob had confirmed Paul’s claim, its degree of justification should have
increased.4

Pollock gives then a preliminary, elaborated proposal based on “probable prob-
abilities”, which however does not differ in the idea of solving the issue within
the meta-level of the argumentation framework.

3 Informal Presentation

Considering an applied perspective, argumentation can be seen as a dialectic pro-
cess.5 Parties produce and receive others’ messages, interpreting and evaluating
them. Sometimes these messages are collected by a third-party adjudicator, en-
titled to interpret the case from a neutral position. The set of collected messages
forms an observation.

The presumption of conflict between parties is naturally associated to the
epistemic function of argumentation. However, weaker definitions of conflict may
include even a simple assertion. If an agent shares something with another agent
who is ignorant about it, the second agent usually performs some evaluation on
what the first said before believing in it. A similar process occurs during a
persuasion dialogue. In our daily experience, we know that such evaluation does
not concern only the content of such message, but also the context in which it
has been provided. Related common questions are “Is what he says plausible?”,
“Is he reliable?”, “Why is he telling that?”, “Why now?”, etc. More structured
taxonomies of critical questions, relevant in specific domains of expertise, are
available in the literature [16].

Generalizing this, we observe that argumentation does not involve only a cer-
tain story —the case which is matter of debate— but also the meta-story related
to the “construction” of such a story. Therefore, in our perspective, given a dis-
puted case, an explanation is a possible scenario compatible with the content
of the provided messages and with the generation process of the messages as well.
An explanation is valid if it reproduces the messages collected in the observation.
Evidently, the nature of such scenarios is that of a multi-representation model
[17]: they may integrate physical, intentional, socio-institutional, and abstract
domains.

Traditionally, AI research relates story understanding to abduction [18]. This
connection holds also here. There may be several valid explanations associated
to the same observation. However, when interpreting a story, and still more
when adjudicating a case, we are interested in determining what is the case.
Valid explanations compete, and such competition is a matter of (epistemic)
justification.

4 We slightly changed the third one, in order to make use of the same story.
5 For an overview of contributions focusing on the dialogue aspect of argumentation

you may refer to [15, 2.1].
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Fig. 2. A visual synthesis of attack in Dung’s argumentation framework, support in
assumption-based argumentation, and confirmation/disconfirmation in explanation-
based argumentation

Furthermore, agents make claim also in order manipulate the explanatory
search space ascribed to the recipient of the message. When the dissent opinion
in Pierson vs Post6 raises the argument concerning the ferocity of the fox, a new
allocation rule is presented —or better, its applicability is claimed—, and new
arguments are generated from the assumptions shared in the court.

Instead of being a static entity, the space of hypothetical explanation is in-
crementally constructed along with the observation (as foreground), integrated
on top of common and expert knowledge about the world (as background), deter-
mining factors, constraints and strengths of epistemic commitment. We recognize
therefore three operational steps in an explanation-based argumentation:

(a) generation: relevant factors are grounded into scenarios;
(b) deletion: (I) impossible scenarios are removed, leaving a set of hypotheti-

cal explanations; (II) hypothetical explanations fitting the observation are
selected as explanations;

(c) justification: the relative position of explanations is evaluated according some
measures of epistemic commitment.

Usually, (a) and (b) go together, resulting in a set of explanations.7 The main
difference between (b) and (c) is matter of certainty (in a way similar to the
difference between strict and defeasible rules): they both represent a refinement
over (a). In practice, hypothetical explanations can be associated to a certain
likelihood. After some confirming message, the relative weights of explanations
will change, and, consequently, stronger explanations will emerge from the set
of hypothesis. Using a metaphor, instead of being drawn, the best explanation
is sculpted. Conversely, when messages transport conflicting claims, they are
actually disconfirming certain explanations, equilibrating their relative weight.
The matter becomes raw again. A visual synthesis is in Fig. 2.

6 This is a well-known case for the AI & Law community, see for instance [19].
7 Argumentation frameworks based on default reasoning may be seen as covering these

steps as well, but insisting on the inferential aspect of the problem, rather than the
selection of an adequate search space.
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Following this approach, not only attack, but also support between argu-
ments becomes a derivative measure. In this way, we are not vulnerable to the
consilience effect, occurring when a claim merely supports another claim because
they both confirm the same explanation, while otherwise being uncorrelated.

Prior Probabilities as Likelihood Prior probabilities derived from statistics are
problematic, especially in law. A more “just” approach would be in considering
a neutral perspective, i.e. all hypothetical explanations having the same initial
likelihood. On the other side, the selection of hypothetical explanations (and,
more in general, the choice of relevant factors and background theory) hides
already a certain commitment. This is evident in default reasoning. For instance,
in the third scenario of the puzzle, where Jacob confirms what Paul says, a
conflict-free extension is given by the two arguments brought by Jacob and
by Paul. With “no-evidence-to-the-contrary” [20], we are neglecting the case in
which they are both lying.

4 Formal Presentation

We present hereby a limited version of our framework. In its full form, explana-
tions and observations would consist of multi-agent systems based on agent-roles
[21, 22], so as to take into account intentional and institutional layers, and mul-
tiple figures for speech acts. For simplicity, we will consider here only a generic
emission of propositional content, and neglect all intentional and causal compo-
nents, leaving them to future extensions.

4.1 Fundamental Concepts

Definition 1. A message M is a tuple 〈E,R,C〉, where E is the emitter entity,
R the receiver entity, and C the message content. Hereafter it will be represented
as M = [C]RE. λE is the function labelling messages with their emitters.

Definition 2. The content C of a message M is a proposition. ΦC is the func-
tion mapping C to its relevant factors {f1, ..., fn}, i.e. the variables to be evalu-
ated in order to assess its truth value.

In general, when someone reports something, he may tell the truth or not,
i.e. what he says may hold or not, considering truth as a successful word-to-
world alignment. There is therefore an additional implicit factor involved in
the evaluation of an assertion. In general, the reliability attributed to a source
is a sufficient condition to consider the content of the message as holding.8

Nevertheless, the fact that the agent is not reliable does not imply that he is
necessarily lying9, but, if he is not reliable, it is perfectly acceptable that what

8 Consider the case of direct perceptions. In general we are practically certain of the
reliability of our senses. In certain situations, however, we may doubt them.

9 Note that the relation “being reliable” has no direct reference with the real intent
of the emitter/assertor. Lying refers hereby only to a word-to-world misalignment.
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he says does not hold. We call Φ′C the extended version of the mapping function,
including the reliability condition.

Definition 3. Given an observer S0 and a set of sources ΣS = {S1, ..., Ss},
an observation O = {M1, ...,Mm} = {[C1]S0

λE(M1)
, ..., [Cm]S0

λE(Mm)} is a set of

messages received by the observer from the sources.

Definition 4. An assumption A is a proposition.

Because ΦC applies on propositions, we can use it on assumptions as well. A
concept similar to reliability can be introduced here as well, so as to make explicit
a general principle of conditional encapsulation. There are factors related to the
propositional content, and factors “outside” the propositional content, which
may be relevant in certain conditions in determining its truth value. In the case
of belief, truth is associated to a mind-to-world alignment, and the condition
would be the commitment to belief.10 In the case of rules, such external condition
is applicability. Here as well, we call Φ′C the extended versions of the mapping
function.

Definition 5 (generation). Given an observation O, a background theory B
consisting of a set of assumptions {A1, ..., As}, a scenario is an allocation of
relevant factors of B and O.

Definition 6 (deletion I). Given a background theory B, a possible scenario
or explanatory hypothesis is a scenario satisfying the constraints given by B.

These definitions rely on a more generic operational assumption, i.e. given
an observation, the modeler should be able to generate a set of hypothetical
explanations, using factors adequately relevant to the observation.

Definition 7 (deletion II). Given an observation O, an explanation is a pos-
sible scenario which fits with O.

In general, in order to apply this methodology, explanations should be spe-
cific enough to entail the occurrence of a certain message. We name this as
the informative assumption: an observation O either fits an explanation E or
it doesn’t. Note that in the present contribution, because we are neglecting the
causal component, occurrence is translated with holding.

4.2 Evaluation of Explanations

The subsequent problem is to decide how to evaluate explanations, or, equiv-
alently, how to measure their degree of justification, in respect to some prior
assumptions about the world. We consider as mathematical framework of ref-
erence Bayesian probability. Given an explanation E, the likelihood of E on O
L(E|O) is equivalent to P (O|E) —the conditional probability of observing O
given the hypothesis E— and, on the basis of the informative assumption, it is
one of {0, 1} for any E or O.

10 Informally, an assumption is usually considered less strong than a belief. We can
translate that as “This assumption certainly holds, if I believe in this assumption”.
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Definition 8. If all likelihoods of explanations on a given observation are the
same, then this observation is irrelevant.

Going further, we assume, in Bayesian terms, that an explanatory problem
space is well-known:

P (E1) + P (E2) + ..+ P (En) ∼ 1

If we are not willing to commit to prior probabilities, we may assume prior
indifference between explanatory hypotheses E1, .., En. In this case, we would
have P (E) = 1

n .
At this point, in order to determine the relative value of an explanation E,

given O, we may calculate the likelihood of O on E. Considering the Bayesian
confirmation constraint [23], we may say that O confirms E if P (E|O)−P (E) >
0, and disconfirms E if P (E|O)−P (E) < 0. Unfortunately, this measure does not
permit ordinal comparisons of explanations. Therefore, we decide to calculate the
confirmation value of O for explanation E with an alternative measure, which
permits ordinal judgments.

Definition 9. Given an observation O, and an explanation E, the confirmation
value c of O on E is defined as:

c(O,E) =
P (O|E)− P (O|¬E)

P (O|E) + P (O|¬E)
(1)

Put in words, an observation confirms an explanation if it is predicted by the
explanation and discriminates the explanation from its alternatives.11 If c(O,E)
approaches 1 (-1), the observation O confirms (disconfirms) the explanation E.
If c is equal to 0, O is irrelevant.

Once calculated for all explanations, confirmation values can be used to order
them. The final ordering depends on:

– the effective capacity of generating adequate scenarios (i.e. the operational
assumption), which contain fitting explanations (i.e. the informative assump-
tion); if these assumptions are not adequately satisfied, relevant explanations
may be missing;

– the set of prior probabilities associated to the generated explanations;
– the confidence in the previous structure as representation of the world (re-

lated to the assumption of well-known problem space).

Leaving apart the third point, it is difficult to qualify the second as related to
“objective” measures. Statistics describe aggregates, not individuals. The case
which is discussed has already occurred and we are in the realm of epistemic
uncertainty. Prior probabilities play the role of prior assumptions towards the
facts, and then become a matter of belief. If belief is involved, then the ordering
of explanations expresses their relative (epistemic) justification.

11 Tentori et al. [23] suggest that the above is the psychologically most plausible con-
firmation measure of those proposed in the literature.
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Definition 10 (justification). Given an observation O, and an explanation E,
the degree or strength of justification of E is a measure relative to his position
in the set of all explanations, ordered by their confirmation value.

We preferred to leave this generic definition, because further research is required
in order to propose a specific analytic expression.

5 Operationalization

In this section, we will translate the previous concepts in a concrete computa-
tional setting. After a brief overview on answer set programming, we describe
how it can be integrated in an explanation-based argumentation framework.
Then we provide some modeling guidelines, and, at the end of the section, we
analyse more in detail the computation of the confirmation values.

5.1 Answer Set Programming: an Introduction

Answer set programming is a declarative programming paradigm [24] based on
the stable-model semantic12 [27], oriented towards difficult (NP-hard) search
problems. In the literature, ASP is used to model and solve problems belong-
ing to a wide range of applications. For instance, [28, 29] apply ASP to compute
extension-based semantics on argument systems. In ASP, similarly to Prolog, the
programmer models a problem in terms of rules and facts, instead of specifying
an algorithm. The resulting code is given as input to a solver, which returns mul-
tiple answer sets or stable models satisfying the problem. The main operational
difference to Prolog is that all variables are grounded before performing search,
and unlike SLDNF resolution, ASP solvers algorithms always terminate.

5.2 Integration with Explanation-Based Argumentation

Basically, our idea is to take advantage of the search capabilities of ASP solvers,
in order to effectively perform the generation and deletion steps at once. An ASP
program related to an explanation-based argumentation consists of 3 parts:

1. allocation choices, grounding all permutations of relevant factors,
2. world properties and ground facts, modeling shared assumptions,
3. observation, modeling the collected messages.

The execution of a program with only (1) would give scenarios (possible and
impossible); with (1) and (2) the hypothetical explanations; with the complete
code the explanations. (2) can be interpreted as the deep model of the domain.

At this point, hypothetical explanations and explanations can be parsed.
Assigning a prior probability to hypothetical explanations, and analysing the
resulting final explanations we can calculate their confirmation values. In our
prototype, this is performed via an external script.

12 Stable-model semantics apply ideas of auto-epistemic logic of Moore [25] and default
logic of Reiter [26].
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5.3 Modeling Guidelines

Facts are written as in Prolog.13 For instance, “it is raining” can be written as:

rain.

If the rule is given as a property of the world (and then as a constraint on
possible worlds) it is coded similarly to Prolog rules as well. Prolog rules consist
of a head (conclusion) and a body (premises). For instance, a rule R1 described
by rain→ wet can be written as:

wet :- rain.

Differently to the usual use of rules, however, we want to ground all relevant
factors, so as to generate all scenarios, possible and impossible. The pruning of
impossible ones will occur subsequently, with the application of the rules.

In ASP, a factor f can be allocated using the choice operator14, so as to
translate the principle of non-contradiction (f holds or it doesn’t: f ⊕ ¬f):

1{f, -f}1.

We consider then the following allocation principle:

Proposition 1. For each assumption A belonging to a background theory B, we
allocate each factor f ∈ φ′C(A). For each message M part of an observation O,
we allocate each factor f ∈ φ′C(M).

Applying this principle to the previous rule we have:

1{rain, -rain}1.

1{wet, -wet}1.

wet :- rain.

A rule can be also activated at a second level, i.e. introducing an external
condition which triggers the constraint that the rule posits to the world. Using
the material implication (a → b ⇔ ¬a ∨ b), we translate R1 as ¬rain ∨ wet.
Anchoring the rule to this factor r1 (to be read as the rule R1 applies, or R1 is
applicable), we can model it as:

1{-rain, wet} :- r1.

r1.

If r1 is not grounded, i.e. the applicability of R1 is matter of debate, we may
count it as a relevant factor as well:

13 The code excerpts presented here refer in particular to the syntax of the ASP solver
lparse+smodels.

14 A brief summary of the syntax of ASP logic operators: OR: a1 ∨ .. ∨ aN ⇔ 1{a1,
.., aN} — XOR: a1 ⊕ ..⊕ aN ⇔ 1{a1, .., aN}1 — AND: a1 ∧ ..∧ aN ⇔ a1, ..,

aN (only in the body of rules) or N{a1, .., aN}N (body and head).



Implementing Explanation-Based Argumentation using ASP 11

1{-rain, wet} :- r1.

1{r1, -r1}1.

We can use this artifice also to create meta-rules concerning the priority
between rules. In general, each rule may hold or not. If a certain rule holds
then the conflicting rules with lower priority do not hold. If we want to model
R2 > R1, we can write:

1{r1, -r1}1.

1{r2, -r2}1.

-r2 :- r1.

We can also rewrite the rule in the last line introducing another fact r1r2 (to be
read as the meta-rule R1 > R2 holds)

1{-r1, -r2} :- r1r2.

r1r2.

Messages As we observed in section 4.1, an assertion, as individual message,
may be generalized taking into account a reliability condition:

– what an agent says may hold or not (allocation choice),
– an agent may be reliable or not (allocation choice),
– when he is reliable, what he says is what it holds (constraint rule).

In our puzzle, Paul says Jones was not seeing the gunman. Writing “Paul is
reliable” as paul and “Jones was seeing” as eye, we have:

1{eye, -eye}1.

1{paul, -paul}1.

-eye :- paul.

We can proceed similarly in case of reported rules and meta-rules.

5.4 Computation of Confirmation Values

When integrated in a explanation-based framework, the outputs of the ASP
solver are sets of (hypothetical) explanations. For all Ei, c(O,Ei) depends on
two parameters. P (O|Ei) is equal to 1 if Ei belongs to the output of the execution
of the complete code, 0 otherwise. If it is 0, we directly infer that c(O,Ei) = −1.
In the remaining cases, P (O|¬Ei) can be calculated as:

P (O|¬Ei) =
P (O ∩ ¬Ei)
P (¬Ei)

=

∑
i6=j P (O ∩ Ej)
1− P (Ei)

=

∑
i 6=j P (O|Ej) · P (Ej)

1− P (Ei)
(2)

Then, in order to compute c, we need a prior probability P (Ei) for each Ei.
In general, we could assign it directly at this point. However, we can also take
advantage of the generative construction associated to the methodology. We
know which factors are relevant in the construction of an explanation, therefore,
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if we have prior assumptions in their respect, we can calculate P (Ei) starting
from these components. Given the set of all relevant factors φ = {f1, f2, ..., fn},
assuming they are all independent, we have:

P (Ei) = P (f1) · P (f2) · ... · P (fn)

To obtain a neutral perspective toward explanations, all P (fi) = 0.5. More
complex figures may be obtained integrating Bayesian networks to model the
probabilistic relationships between factors. In all cases, however, it is important
to underline that this counts as a subjective measure of belief. If P (fi) = 0.5, we
are neutral towards that factor fi. It may equivalently hold or not in a specific
case. If P (fi) > 0.5, we assign more likelihood for its presence, and vice-versa for
P (fi) < 0.5. If all factors are neutrally positioned, we are not able to discriminate
explanations, because they will have the same degree of justification.

6 Results

Puzzle code In order to apply our methodology on Pollock’s puzzle, we start
by translating the proposed story. We have evidently three messages. The only
world property that we consider is that, in order to be reliable, Jones has at least
seen the gunman (eye is a necessary condition to Jones’ reliability). In code:

%% allocation

1{moustache, -moustache}1.

1{eye, -eye}1.

1{jones, -jones}1.

1{paul, -paul}1.

1{jacob, -jacob}1.

%% world property

eye :- jones.

%% observation

moustache :- jones.

-eye :- paul.

eye :- jacob.

ASP solver output For analysis purposes, we write down the code to generate
hypothetical explanations (before observation) and the code for explanations
(after observation) for each step of the observation (O1 = {M1},O2 = {M1,M2},
etc.), and we have in total 6 ASP programs. The following table resumes the
numbers at stake:

# O1 O2 O3

relevant factors 3 4 5

scenarios 8 16 32

hypothetical explanations 6 12 24

explanations 5 7 10
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As the table shows, the introduction of new factors entails an explosion of
the number of scenarios (given n factors, 2n), and similarly the number of hy-
pothetical explanations and of explanations.15 The following table illustrates all
resulting explanations:

moustache T F
eye T F T F

jones T F F F F
paul F F T F F T F

jacob T F T F T F T F F F

Probabilistic evaluation Before proceeding in the analysis we introduce a syn-
thesized visualization:

Definition 11. Given a set of explanations {E1, ..En}, for each allocation fac-
tor f , if f is true (false) in all explanations, then f is true (false) in the union
explanation EU , otherwise f is undecided.

Basically, we refer to the union explanation of the set of explanations with the
maximum confirmation value to have a synthesis of the shared common points
of the best explanations. The following table synthetizes the incremental results
(O1, . . . , O3 columns), in different probabilistic settings (P columns):

EU (Jacob attacks Paul)
P O1 O2 O3 P O1 O2 O3 P O1 O2 O3

moustache .50 U U U .50 U U U .50 T U T
eye .50 U U U .50 U F F .50 T U T

jones .50 U U U .50 U F F .55 T U T
paul .50 - U U .55 - T T .55 - U F
jacob .50 - - U .50 - - F .55 - - T

c(O|EU ) .27 .43 .55 .27 .45 .58 .31 .48 .61

Let us analyze the table according to the properties targeted by Pollock, as
reported in section 2. (1) Assuming indifference toward hypotheses (group of
columns on the left), our approach confirms to the same degree hypotheses in
which the gunman has a moustache, and not. (2) Using for instance P (paul) =
0.55 > P (jacob) = 0.5 (in the middle of the table), the hypothesis in which
Paul is telling the truth is the one confirmed to the greater degree. Note that we
still cannot say anything about the moustache.

In the third setting (on the right), we consider the case in which all witnesses
are assumed relatively reliable. When a conflict arises, then things become un-
clear again. When Jacob supports Jones however, the first scenario wins again,
producing a kind of majority opinion effect. This is an acceptable choice when
the epistemic motivation of the agents is taken for granted (e.g. judges, experts).

15 On the contrary, if we add messages concerning only already known factors, the
number of explanations will decrease, or remain the same. This is not the case in
our puzzle: each message comes with its own reliability condition.
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However, a best practice would be to consider as much as possible a position
of indifference towards prior assumptions. This would help for instance to take
into account organized crime scenarios.

Story variations Following the puzzle, we modify the story, in a way that Jacob
confirms what said by Paul. The resulting explanations are:

moustache T F F
eye T F T F

jones T F F F F
paul F F T F F T F
jacob F F T F T F F T F T F

As before, we calculate the confirmation values and the union explanations
for a few probabilistic settings:

EU (Jacob supports Paul)
P O1 O2 O3 P O1 O2 O3

moustache .50 U U U .50 T U U
eye .50 U U U .50 T U F

jones .50 U U U .55 T U F
paul .50 - U U .55 - U T
jacob .50 - - U .55 - - T

c(O|EU ) .27 .43 .51 .31 .48 .57

(3) In conditions of indifference (on the left), we observe that the hypothesis
they both support are confirmed just as much as the hypotheses in which they
are lying. While, assuming bona fide (on the right), we are again in a majority
opinion case.

For completeness, we consider also the case in which they all support each
other (at least partially — Jones remains the only one able to the see the gun-
man).

moustache T F
eye T F T F

jones T F F F F
paul T F T F F T F F

jacob T F T F T F T F F T F T F F

The number of scenarios have increased. The confirmation values are in gen-
eral lower then before, showing an underlying principle similar to Shannon’s
theory of communication: less conflict, less “information”.
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EU (no conflict)
P O1 O2 O3 P O1 O2 O3

moustache .50 U U U .50 T T T
eye .50 U U U .50 T T T

jones .50 U U U .55 T T T
paul .50 - U U .55 - T T

jacob .50 - - U .55 - - T
c(O|EU ) .27 .36 .41 .31 .41 .45

Supports and attacks Analyzing the confirmation values, we can draw some pic-
tures about attack/support relationships. We can consider as target arguments
both assumptions (paul, jacob, jones), than conclusions (eye, moustache). We
compute the confirmation values before and after the observation, and, calling
cmax(f) the maximum confirmation value of explanations in which f is satisfied,
we have (in respect to the original puzzle):

cmax(f)/cmax(−f)
O1 O2 O3

P pre post pre post pre post
moustache .50 .19/.19 .31/.30 .18/.18 .48/.48 .17/.17 .61/.60

eye .50 .19/.18 .31/.30 .18/.17 .48/.48 .17/.16 .61/.60
jones .55 .19/.18 .31/.30 .18/.17 .48/.48 .17/.16 .61/.60
paul .55 .18/.17 .48/.48 .17/.16 .60/.61

jacob .55 .17/.16 .61/.60

Thus, we can refer to two dimensions of change, for each observation Oi:
from after to before the observation (post Oi − pre Oi), and from the current
observation to the previous one (post Oi − post Oi−1). The following table illus-
trates the incremental impact of observations in respect to the ongoing dialogue,
according to such dimensions:16

O1 O2 O3

moustache +/+ =/− +/+
eye =/+ −/− =/+

jones =/+ −/− =/+
paul −/= −/−

jacob =/+

7 Further developments

The paper presents a first implementation of an explanation-based argumen-
tation framework. Despite its concrete operational result, many points require
further research. For instance, we are working on finding adequate analytical

16 We take an undecided position when confirmation values are not defined (e.g. O0).
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expressions to measure the (relative) justification of an explanation, and to de-
rive attack and support from confirmation/discorfimation. As we can see in the
pictures, confirmation values tend to always increase introducing a new message.
Intuitively, the relative ratio of the increase depends on a kind of informational
value, relative to the clarification of the case. Our objective is to extract this in-
formational measure from the confirmation value, so as to be independent from
the number of messages taken into account. Related to this objective, we plan
to quantify the strength of attack/support, given a certain message in a con-
textual dialogue. Future extensions will consider the integration of game-theory
analysis.

Evidently, the crucial point of this methodology is on the ability of con-
structing an adequate deep model. From a wider perspective, our research aims
to integrate background theories and allocation factors described in terms of
agent-roles [21, 22], acknowledged in specific social settings. In this respect, the
configuration investigated here is limited: no treatment of events/causation, only
assertion, no intentional/institutional components, etc. This was functional to
present a global picture of the methodology, and operationalize it with Pollock’s
puzzle. Further developments will investigate the encapsulation of fundamen-
tal components (as the “emitter” seen here) in higher-abstraction models. Ob-
servations and explanations would become explicitly structured on multi-agent
systems. As a relevant consequence, we will need to evaluate how Answer Set
Programming (or other computational tools) respond to the integration of such
more complex models.
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