
Planning Interactions for Agents in
Argumentation-Based Negotiation

Alison R. Panisson, Giovani Farias, Artur Freitas,
Felipe Meneguzzi, Renata Vieira, and Rafael H. Bordini

Pontifical Catholic University of Rio Grande do Sul – PUCRS
Postgraduate Programme in Computer Science – School of Informatics (FACIN)

Porto Alegre – RS – Brazil
{alison.panisson,giovani.farias,artur.freitas}@acad.pucrs.br,

{felipe.meneguzzi,renata.vieira,rafael.bordini}@pucrs.br

Abstract. In this paper, we present the modelling of a domain of argu-
mentation-based negotiation with scarce resources so that Hierarchical
Task Network planning can be used for finding appropriate strategies for
the negotiating agents. In our modelling, the agents justify their positions
on interactions throughout the course of a negotiation episode, and such
justifications are taken into account in future interactions. This approach
allows the agents to plan the outcome of a negotiation and use this
information in their favour. Our method, further, selects the best plan
among those found by the HTN planner, based on the plan costs. This
allows the agents to choose the best reachable plan in order to reach the
desired outcome.

Keywords: HTN Planning, Argumentation-based Negotiation, Multi-
Agent Systems

1 Introduction

Argumentation can be divided into two main lines of research in the multi-agent
community [1]: (i) argumentation focused on reasoning (nonmonotonic reason-
ing) over incomplete, conflicting, or uncertain information, where arguments for
and against certain conclusions (beliefs, goals, etc.) are constructed and com-
pared; and (ii) argumentation focused on communication/interaction between
agents allowing the exchange of arguments that justify a stance and provide
reasons to defend previous claims.

Negotiation is one of the key techniques for multi-agent systems where there
is interaction between self-interested agents [2]. The second line of research cited
above includes argumentation-based negotiation which is an approach for nego-
tiation that has been much investigated in the last few years because of its po-
tential for making the negotiation process more efficient than other approaches,
such as game-theoretic and heuristic-based approaches [1]. Argumentation-based
negotiation allows us to include additional information (that are typically un-
available in other approaches [2]) within the negotiation exchanges, for example,

2 A.R.Panisson, G.Farias, A.Freitas, F.Meneguzzi, R.Vieira and R.H.Bordini

allowing participants to justify their negotiation stance or to influence another
agent’s negotiation stance [3, 4]. Such additional information makes the negotia-
tion richer and potentially leading to outcomes that the others approaches could
not achieve.

Despite argumentation-based negotiation being claimed in the literature as
the most efficient approach to negotiation, practical work is scarce. The first
practical approaches to appear (e.g., [5]) are based in the interaction of argu-
ments from a single theory, identifying which arguments are acceptable given
certain semantics, most of them based on Dung’s abstract argumentation sys-
tem [6].

Due to the scarcity of practical work, we propose an approach to argumenta-
tion-based negotiation/interaction planning where the agents can plan the out-
come of the negotiation/interaction and use this information to obtain advan-
tages over other agents which do not possess such ability. In this work, we for-
malise methods in Hierarchical Task Network (HTN) [7] using JShop21 [8] to
specify problems of argumentation-based negotiation/interaction, where HTN
operators represent the performatives exchanged between the agents. Given some
assumptions, we can simulate the possible outcomes of such interactions.

In this work, we select the best plan among those found by the HTN planner;
Each interaction with the planner can return the following possibilities: (i) the
number of plans to obtain is passed as parameter (i.e., the planner stops the
search for plans after a given number of attempts, which is passed as param-
eter); or (ii) any number of plans found (i.e., all possible plans are returned).
This is an important characteristic of this work which is different from other
approaches because agents can request a number of different possible interac-
tions (i.e., plans), and use the best among the returned plans. Further, they
can request a new round of planning with a larger number of interactions and
possibly obtain an event better plan. Yet, if the time to obtain the better plan
is too long, the agent can use a previously returned plan.

The remainder of this paper is organised as follows. In Section 2, we present a
background of concepts and technologies used. Section 3 describes some related
work in argumentation-based negotiation/interaction and planning. Section 4
describes the development of the work, including the modelling of the domain
and problems, the adaptation of the planner to return the best plan, and the
problems we modelled to validate the implementation. In Section 5, we make
some final remarks and discuss possible directions for future work.

2 Background

In this section we describe the main concepts and technologies involved in the
development of this work, explaining briefly Hierarchical Task Network, which
we use as planning formalism, and argumentation systems, which is the basis for
argumentation-based negotiation used as domain in this work.

1 Available at https://sourceforge.net/projects/shop/files/JSHOP2/.

Planning Interactions for Agents in Argumentation-Based Negotiation 3

2.1 Hierarchical Task Network Planning

Classical planning refers generically to planning for restricted state-transition
systems. This class of planning problems is also referred to in the literature as
STRIPS planning, in reference to STRIPS (Stanford Research Institute Problem
Solver), an early planner for restricted state-transition systems [9]. Hierarchical
Task Network (HTN) [7] planning is like classical planning in that each state
of the world is represented by a set of atoms, and each action corresponds to
a deterministic state transition. However, HTN planners differ from classical
planners in what they plan for and how they plan for it.

In an HTN planner, the objective is not to achieve a set of goals but instead
to perform some set of tasks. The input to the planning system includes a set
of operators and also a set of methods, each of which is a prescription for how
to decompose some task into some set of subtasks (i.e., smaller tasks). Planning
proceeds by decomposing nonprimitive tasks recursively into smaller and smaller
subtasks, until primitive tasks that can be performed directly using the planning
operators are reached.

HTN planning can be described best by contrasting it with its predecessor,
STRIPS-style planning. The representations of the world and the actions in HTN
planning are very similar to those of STRIPS-style planning. Each state of the
world is represented by the set of atoms which are true in that state. Actions
correspond to state transitions, that is, each action is a partial mapping from a
set of states to other set of states. However, actions in HTN planning are usually
called primitive tasks or operators.

STRIPS-style planners search for a sequence of actions that brings the world
to a state that satisfies certain conditions (achieving goals). Planning proceeds by
finding operators that have the desired effects, and by asserting the preconditions
of those operators as subgoals. HTN planners search for plans that accomplish
task networks, and they plan via task decomposition and conflict resolution.
A task network is a collection of tasks that need to be carried out, together
with constraints on the order in which the tasks are to be carried out, the way
variables are instantiated, and what literals must be true before or after each
task is performed [10].

An HTN [7] planner generates a plan by successive refinements of tasks. Tasks
are either primitive (equivalent to actions in STRIPS planning) or compound
(abstract highlevel tasks). A HTN planner recursively decomposes compound
tasks by applying a set of methods until only primitive tasks remain. Methods
are elements of the domain knowledge that describe how a higher-level task can
be decomposed into more concrete tasks; they constrain the search space, helping
to improve the runtime efficiency of the planning algorithm.

2.2 Argumentation

“Argumentation can be seen as the principled interaction of different, potentially
conflicting arguments, for the sake of arriving at a consistent conclusion” [1].
Maudet et al. [1] state that argumentation in multi-agent systems has two main
lines of research:

4 A.R.Panisson, G.Farias, A.Freitas, F.Meneguzzi, R.Vieira and R.H.Bordini

i. Autonomous agent reasoning, such as, belief revision and decision-making
under uncertainty;

ii. As a means for facilitating multi-agent interaction, because argumentation
naturally provides tools to design, implement, and analyse sophisticated
forms of interaction among rational agents.

In the communication/interaction strand, an inherent characteristic of multi-
agent systems is that agents need to communicate in order to achieve their
individual or collective goals. Agent communication with argumentation tech-
niques allows agents to exchange arguments to justify their stance and to provide
reasons that defend their claims. The improvement on expressivity has many po-
tential benefits, but it is often claimed that it should, in particular [1]:

– Make communication more efficient by allowing agents to reveal relevant
pieces of information when it is required during a conversation;

– Allow for a verifiable semantics based on the agents’ ability to justify their
claims (and not on private mental states); and

– Make protocols more flexible, by replacing traditional protocol-base regula-
tion by more sophisticated mechanics based on commitments.

Generally, argumentation is treated abstractly, where the content of individ-
ual arguments is not relevant and an overall structure of the relations between
arguments is used instead. Abstract argumentation frameworks have their ori-
gins in [6], a seminal work that studied the acceptability of arguments. In [6], the
focus is on the attack relation between arguments, and the sets of arguments that
defend its members, representing the ones that, given a set of arguments, are
acceptable. The set of arguments that are mutually defensive, and thus cannot
be attacked is referred to as being admissible.

In argumentation theory, an argument is a pair (S,C), where S denotes
the Support and C denotes the Conclusion, meaning that C is supported by S.
Arguments can be defeated (a.k.a. attacked) by other arguments. Defeat between
arguments can be of two types: rebut and undercut, as defined below.

Definition 1 (Rebut). Let (S1, C1) and (S2, C2) be two arguments. Argument
(S1, C1) rebuts argument (S2, C2) iff C1 is equivalent to the negation of C2 (i.e.,
C1 ≡ ¬C2).

Definition 2 (Undercut). Let (S1, C1) and (S2, C2) be two arguments. Argu-
ment (S1, C1) undercuts argument (S2, C2) iff C1 is equivalent to the negation
of a formula contained in S2 (i.e., ∃ϕ.ϕ ∈ S2 and C1 ≡ ¬ϕ).

An abstract argumentation framework is defined as a tuple 〈A,R〉 with a
set of arguments (A) and a binary relation (R) that defines an attack relation
between the arguments.

The status of an argument depends on its justification state, whereby an
argument is justified if it survives the attacks (or has no argument attacking it,
or the set of argument defends it from the attacks) and it is rejected otherwise.
The formal methods that describe this evolution (whether an argument turns
out as justified or not) are called argumentation semantics.

Planning Interactions for Agents in Argumentation-Based Negotiation 5

3 Related Work

In this section we describe some related work. The focus of this section is to
describe the main performatives used in argumentative dialogues and some of the
work on argumentation-based negotiation, planning, and resource reallocation.

3.1 Argumentative Dialogues

Argumentation-based negotiation is based on the exchange of proposals which
the agents believe are acceptable. The exchange of proposals takes place as a
dialogue between two or more agents. In an argumentative dialogue, the agents
trade propositions for which they have acceptable arguments, and accept propo-
sition put forward by other agents if they find that the arguments are acceptable.
The locutions presented at each round and the way that they are exchanged de-
fine a formal dialogue game (a dialogue governed by a protocol) in which agents
engage [11, 12].

How that dialogue unfolds depends on the message exchanges (what messages
agents actually send and how they respond to the messages they receive). This
aspect of the dialogue is specified by a protocol (stating the allowed message
exchanges), and by some decision-making apparatus within the agent (the agent
strategy depends on the choices made by the agent through reasoning).

Some of the locutions/performatives commonly used in argumentative dia-
logues are found in work such as [11, 13, 12]. Also, the performatives listed below
were suggested by McBurney and Parsons [14] to be added to FIPA ACL [15]
as the performatives necessary to enable argumentation-based communication
between agents. The informal meaning of those performatives are as follows:

– assert: an agent that performs an assert utterance declares, to all partici-
pants of the dialogue, that it is committed to defend this claim. The receivers
of the message become aware of this commitment.

– accept: an agent that performs an accept utterance declares, to all partic-
ipants of the dialogue, that it accepts the previous claim of another agent.
The receivers of the message become aware of this acceptance.

– retract: an agent that performs a retract utterance declares, to all partic-
ipants of the dialogue, that it is no longer committed to defend its previous
claim. The receivers of the message become aware of this fact.

– question: an agent that performs a question utterance desires to know the
reasons for a previous claim from another agent. The receiver of the message
is committed to defend its claim, and presumably will provide the support
set for its previous claim.

– challenge: the challenge performative is similar to the question perfor-
mative, except that the sender of the message is committed to defend a claim
contrary to the previous claim of another agent.

We use some of these performatives in our work, where their informal meaning
is used in the definitions of operators for the planning process.

6 A.R.Panisson, G.Farias, A.Freitas, F.Meneguzzi, R.Vieira and R.H.Bordini

3.2 Planning and Argumentation-Based Negotiation

It has been shown that agents able to plan their action have better performance
than agents without this capability. An example in the literature is found in [16],
where argumentation-based negotiation is planned by agents before the begin-
ning of the interactions with the other agents. There are two key aspects of the
approach used in [16]. First, the agents create their plans based on probabilities
using the information that they have about the environment and of other agents.
Second, the agents interact using appeals [17] (or, as defined in [18], explana-
tory arguments), threats, and promises of rewards [19–21]. Appeals are used to
justify a proposal; threats are used to warn about negative consequences in case
the counterpart does not accept a proposal; and rewards are used to promise
future rewards if the counterpart accepts the proposal. Our work differs in two
aspects. First, we do not use probabilities, rather the planner uses the infor-
mation present in the agent belief base and the expected reaction of the other
agents. Second, we use more general interactions as defined in Section 3.1. In
our approach, agents can check which is the best plan to be used to achieve their
goals. We assume that agents are cooperative, differently from [16], and we use
the domain of argumentation-based negotiation over scarce system resources.

The domain of argumentation-based negotiation for reallocation of scarce
resources is well known in the literature and can be found in [22] and [23]. Both
papers assume scarce resources (the resources are unique) and that agents need
the resources to achieve their goals. In our work, we followed this line, i.e., we
are interested in systems where the agents need scarce resources to achieve their
goals. Further in [23], the authors make clear the benefit of exchanging additional
information during the negotiation, where the agents justify both the request for
a resource as well as when they refuse to provide the resource giving the reasons
for this. The work in [23] also assumes that agents are cooperatives, i.e., that
agents provide information which helps other agents to find the resources needed
or to find alternative courses of action, as in our work. Both [22] and [23] do not
use planning, but they demonstrate the expressivity of the resource reallocation
domain, which we also use in this paper.

4 HTN Formalisation

In this section, we describe the development of our work. We describe the domain
modelling, problem modelling, and the predicates used in both models. We also
describe the selection of the best plan and present some problems we modelled
to validate our implementation.

The domain chosen for modelling and the development of this work was the
reallocation of scarce resources, where the resources are unique and the agents
negotiate resources which they need to achieve their goals. Further, we assume
that agents are cooperative, so:

i. the agents in the system will always provide resources that they do not need
in order to achieve their own goals;

Planning Interactions for Agents in Argumentation-Based Negotiation 7

ii. if an agent α requests a resource to an agent β who also needs this resource,
agent β will suggest a plan that can be used to achieve the goal with resources
that it does not need or that uses resources the agent α, who requested the
resource, already has (if it knows one such plan).

We represent the agent knowledge (beliefs) as a HTN problem, using predi-
cates such as:

(hasPlan <agent> <plan>)

to represent an agent plan, where <agent> is the agent and <plan> is the plan
name (we use p1, p2 etc. to represent plan names).

4.1 Domain Modelling

The operations presented in Table 1 (which describes their meanings), were used
to model the domain. The cost of these operations may be amended using the
syntax for operators with costs shown below:

(: operator (!<operator_name > <parameters ...>)

(<precondition >)

(<delete list >)

(<add list >)

<cost >

)

In the operator model with cost, as usual, the operator has a name, param-
eters, preconditions, deleted predicates, added predicates, and it is possible to
assign a cost which is added to the total cost of the plan that uses this operator.

Table 1. Operators used in domain modelling.

Operator Meaning

!achieve goal achieves the goal

!obtain resource obtains a resource

!assert makes an assertion

!justify justifies an assertion

!question questions a previous assertion

!inform plan inform a plan

In addition to operators, an HTN planning domain has methods that decom-
pose non-primitive tasks into more refined tasks.

• Method Achieve : the achieve method has two parameters, being the root
method in the plan decomposition. The parameters are the agent and the
goal which the agent wishes to achieve. The achieve method checks the plans
of the agent that can be use to achieve the goal, and decomposes itself into
the execute plan method recursively applied to all suitable plans.

8 A.R.Panisson, G.Farias, A.Freitas, F.Meneguzzi, R.Vieira and R.H.Bordini

(: method (achieve ?agent ?goal)

((agent ?agent) (goal ?goal) (hasPlan ?agent ?plan)

(achievedBy ?goal ?plan) (plan ?plan))

((execute_plan ?agent ?plan ?goal))

)

• Method execute plan : the method execute plan has three options for de-
composition (i.e., contexts), according with its preconditions:

i. First is when the agent has all necessary resources to execute the plan to
achieve its goal; in this case, the method is decomposed into the operator
!achieve goal because the agent is able to achieve its goal.

(: method (execute_plan ?agent ?plan ?goal)

(forall (?r) ((resource ?r) (need ?plan ?r))

(has ?agent ?r))

((! achieve_goal ?agent ?plan ?goal))

)

ii. Second is when the agent does not have the resources to execute its plan,
but it knows who has such resources.

(: method (execute_plan ?agent ?plan ?goal)

((need ?plan ?r) (resource ?r) (not(has ?agent ?r))

(believe_has ?agent ?agent1 ?r))

((! assert ?agent ?agent1 ?r)

(! justify ?agent ?agent1 ?r ?goal ?plan)

(request_resource ?agent ?agent1 ?r ?goal)

(achieve ?agent ?goal))

)

this method is decomposed into:

– !assert: the agent α informs agent β (who has the resource) that it
needs the resource;

– !justify: the agent justifies the need for a resource, stating that
the resource is to achieve a certain goal through the execution of a
specific plan;

– request resource: the agent requests the resource to an agent that
it believes to have the resource;

– achieve: a recursive call to the root method.

iii. The third option is when the agent does not have the resources that it
needs to execute the plan, and does not know who has them. The plan
is decomposed into the !question operation that will be used to seek
information about who has the resource (it is important to note that
question refers to question who has the resource needed, and not the
question performative presented in Section 3.1), and then the method
achieve is called recursively.

(: method (execute_plan ?agent ?plan ?goal)

((need ?plan ?r) (resource ?r)

(not(has ?agent ?r))

Planning Interactions for Agents in Argumentation-Based Negotiation 9

(not(believe_has ?agent ?agent1 ?r)))

((! question ?agent ?agent1 ?r)

(achieve ?agent ?goal))

)

• Method request resource : the method request resource can be decom-
posed into two different flows:

(: method (request_resource ?agent ?agent1 ?r ?goal)

((not ((hasGoal ?agent1 ?goal2)

(achievedBy ?goal2 ?plan2)

(need ?plan2 ?r))))

((! obtain_resource ?agent ?agent1 ?r ?goal))

)

(: method (request_resource ?agent ?agent1 ?r ?goal)

((hasGoal ?agent1 ?goal2) (achievedBy ?goal2 ?plan2)

(hasPlan ?agent1 ?plan2) (need ?plan2 ?r)

(hasPlan ?agent1 ?plan3) (achievedBy ?goal ?plan3)

(not(hasGoal ?agent1 ?goal))

(not(hasPlan ?agent ?plan3)))

((sugest_plan ?agent1 ?agent ?plan3 ?goal))

)

i. The first flow is when the agent for which the resource was requested
does not need that resource, then the method is decomposed into the
operator !obtain resource, which is the method to actually obtain the
resource.

ii. The second option is when the resource is necessary for the agent that
is being requested: then the agent will not provide the resource, but it
can suggest another plan it knows which achieves the same goal and
needs resources it can supply or the requesting agent itself has. This
latter method is decomposed into the sugest plan method (shown below)
which, in turn, is decomposed into the !inform plan operator, which
informs the agent a new plan to achieve its goal.

(: method (sugest_plan ?agent2 ?agent1 ?plan ?goal)

(forall (?r) ((resource ?r) (need ?plan ?r))

(or (has ?agent1 ?r)

((has ?agent2 ?r) (not ((hasGoal ?agent2 ?goal2)

(achievedBy ?goal2 ?plan) (need ?plan ?r))))))

((! inform_plan ?agent2 ?agent1 ?plan ?goal))

)

The possible planning flows created by the planner is shown in graph pre-
sented in Figure 1, where oval shapes represent methods and quadrangular
shapes represent operators. The !achieve operator is represented in green be-
cause it is the planning goal.

10 A.R.Panisson, G.Farias, A.Freitas, F.Meneguzzi, R.Vieira and R.H.Bordini

Fig. 1. Graph representing the possible planning flows.

4.2 Problem Modelling

The modelling of the problems was based on the description of beliefs, goals and
resources that each agent has in the system, as well as information (beliefs) that
agents have about the others agents.

To representation of beliefs and goals of the agents in modelling of planning
problems we use predicates, for example, assuming that an agent ag has a certain
goal goal1, the predicate that represent this idea is defined as (hasGoal ag goal1).

The predicates used in problem modelling are presented in Table 2 along
with their meaning.

Other predicates that represent agent knowledge are used during planning,
and are not described here in the problem modelling because they are related
to information acquired by agents during the interaction. An example of such
predicates is (believe has ag1 ag2 r), where ag1 is the agent which believes that
agent ag2 has the resource r (this information is acquired through the question
operator).

In all problems we modelled to be used as experiments, the predicates pre-
sented in Table 2 were used in the definition of the initial state to assign tasks
to be performed by agents; in our experiments, the task is always to achieve
particular goals.

Planning Interactions for Agents in Argumentation-Based Negotiation 11

Table 2. Predicates used in modelling the planning problems.

Predicates Meaning

(agent ag) ag is an agent

(plan p) p is a plan

(resource r) r is a resource

(goal g) g is a goal

(has ag r) agent ag has resource r

(hasP lan ag p) agent ag has plan p

(hasGoal ag g) agent ag has goal g

(achievedBy g p) goal g is achieved by plan p

(need p r) plan p needs resource r to be executed

4.3 Selecting the Best Plan

As part of this work, we select the best plan from the list returned by the planner.
This list has a number of plans (equal to the number passed as parameter at
runtime or as many plans as could be found), each with a cost associated with
it.

The cost of plans regards the operators that were executed to perform the
plan; by default the planner assigns the value 1 (“one”) for each operator that
is required to complete the plan, for example, if five operations with the default
value are part of the plan’s course of action, then the cost of that plan is five. The
operator values can be changed, which is done by altering the last parameter in
the description of operators in the domain specification.

In our approach, it is possible to request the planner to try to generate
thousands of plans, then only the lowest-cost plan will be selected.

4.4 Modeled Problems

Among the problems we modelled in HTN for testing our domain, we present
two examples which are interesting because they cover most of the modelled
domain.

The first model relates to a Multi-Agent System with four agents (ag1, ag2,
ag3, and ag4). The resources are distributed as follows:

– Agent ag1 has no resource;
– Agent ag2 has resource r2;
– Agent ag3 has resources r1 and r3;
– Agent ag4 has resource r4.

Agent ag1 needs to achieve goal g1, which can be achieved by plans p1 or
p2. Plan p1 needs resources r1, r2 and r3 to be used in order to achieve the
goal. Performing plan p2 requires only resource r4 for the goal to be achieved.
In this first example, only agent ag1 has a goal, so the other agents provide the
resources that will be requested (in accordance with the assumed cooperative

12 A.R.Panisson, G.Farias, A.Freitas, F.Meneguzzi, R.Vieira and R.H.Bordini

behaviour). As the planner takes into account the order in which the predicates
are described in the modelling of the problem, it can provide a plan that is not
the best for the agent if the number of plans to be returned is not enough to
find it.

Outputs 1.1 and 1.2 show the results of two executions of the first proposed
model. Output 1.1 presents the plan found by the planner with a parameter
to generate only 5 plans, and Output 1.2 shows the plan found by the planner
with parameter 5000; in the latter experiment, 2290 plans were found, which
means that all plans were returned, so the best overall plan is guaranteed to be
included. Both executions are for the same domain and the same problem, which
makes it clear the importance of our online approach which both allows for an
immediate response but also provides optimal solutions in the long run.

Output 1.1. First problem, execution 1.

5 plans found!

Best Plan -> Plan cost: 25.0

(! question ag1 ag3 r1)

(! assert ag1 ag3 r1 g1)

(! justify ag1 ag3 r1 g1)

(! obtain_resource ag1 ag3 r1 g1)

(! question ag1 ag2 r2)

(! assert ag1 ag2 r2 g1)

(! justify ag1 ag2 r2 g1)

(! obtain_resource ag1 ag2 r2 g1)

(! question ag1 ag3 r3)

(! assert ag1 ag3 r3 g1)

(! justify ag1 ag3 r3 g1)

(! obtain_resource ag1 ag3 r3 g1)

(! achieve_goal ag1 p1 g1)

Output 1.2. First problem, execution 2.

2290 plans found!

Best Plan -> Plan cost: 4.0

(! assert ag1 ag4 r4 g1)

(! justify ag1 ag4 r4 g1)

(! obtain_resource ag1 ag4 r4 g1)

(! achieve_goal ag1 p2 g1)

The second problem explores the situation where an agent is asked to provide
a resource that it needs and, in this case, it offers an alternative plan to achieve
the goal of the requesting agent. To model this problem, we used four agents
and four resources, as in the first problem. Now agent ag2 has also a goal that
requires resource r3 and agent ag1 has a goal that needs resources r1, r2, and
r3. The agent ag2 has the resource r3, so it can achieve its goal. In this example,
if another agent request the resource r3, the agent ag2 will deny the request
because the resource is necessary to achieve its goal.

Planning Interactions for Agents in Argumentation-Based Negotiation 13

As agent ag2 is cooperative, it tries to find an alternative plan for agent ag1,
who requested a resource that ag2 needs to achieve its goal. In this case, there is
the plan p2 that needs resource r4 that agent ag2 has and does not need, therefore
the agent informs to agent ag1 about this plan and agent ag1 can perform the
process to obtain the resource and then achieve its goal.

Output 1.3. Execution of the second problem.

21 plans found!

Best Plan -> Plan cost: 17.0

(! question ag1 ag2 r2)

(! assert ag1 ag2 r2 g1)

(! justify ag1 ag2 r2 g1)

(! inform_plan ag2 ag1 p2 g1)

(! question ag1 ag2 r4)

(! assert ag1 ag2 r4 g1)

(! justify ag1 ag2 r4 g1)

(! obtain_resource ag1 ag2 r4 g1)

(! achieve_goal ag1 p2 g1)

The result of this implementation shows that the agent tries to obtain the
resource and when faced with a new plan p2 to achieve that goal, ends up
adopting plan p2 because it is the better option (lower cost and all resources are
available).

5 Conclusion

In this work, we modelled negotiation over resources based on argumentation
as planning domain, so that agents can plan the interactions needed to achieve
their goals. In our approach, agents can use justifications for requesting resources,
allowing agents to (cooperatively) offer alternative plans to achieve the same goal
with different resources that can be supplied or are already in possession of the
agent that wants to achieve that goal.

In addition, our method selects the best plan among those found by the HTN
planner, based on the plan costs, and this is the plan that an agent will typically
use. Furthermore, the agent might allow the planner to produce a larger quan-
tity of plans, if more time becomes available for a particular negotiation. We also
used different costs on operators; for example the plan with !question initially
appeared good but ended up being more costly and thus not selected. We argue
that this improves the capabilities of agents, which allows the agents to pre-
dict the outcome of argumentation-based negotiation/interaction in cooperative
environments and with that select the best strategy for itself.

Acknowledgements

Part of the results presented in this paper were obtained through research on a
project titled “Semantic and Multi-Agent Technologies for Group Interaction”,

14 A.R.Panisson, G.Farias, A.Freitas, F.Meneguzzi, R.Vieira and R.H.Bordini

sponsored by Samsung Eletrônica da Amazônia Ltda. under the terms of Brazil-
ian federal law No. 8.248/91.

References

1. Maudet, N., Parsons, S., Rahwan, I.: Argumentation in multi-agent systems: Con-
text and recent developments. In Maudet, N., Parsons, S., Rahwan, I., eds.:
ArgMAS. Volume 4766 of Lecture Notes in Computer Science., Springer (2006)
1–16

2. Amgoud, L., Parsons, S., Maudet, N.: Arguments, dialogue, and negotiation. Jour-
nal of Artificial Intelligence Research 23 (2000) 2005

3. Jennings, N.R., Parsons, S., Noriega, P., Sierra, C.: On argumentation-based ne-
gotiation. In: Int. Workshop on Multi-Agent Systems. (1998)

4. Dimopoulos, Y., Moraitis, P.: Advances in argumentation based negotiation. Chap-
ter 4, Negotiation and Argumentation in Multi-Agent Systems (2011)

5. Berariu, T.: An argumentation framework for bdi agents. In Zavoral, F., Jung, J.J.,
Badica, C., eds.: Intelligent Distributed Computing VII. Volume 511 of Studies in
Computational Intelligence. Springer International Publishing (2014) 343–354

6. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77 (1995) 321–357

7. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory & Practice.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2004)

8. Ilghami, O.: Documentation for jshop2. Technical report, University of Maryland,
Department of Computer Science, College Park, MD 20742, USA (May 2006)

9. Fikes, R.E., Nilsson, N.J.: Strips: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2(3–4) (1971) 189 – 208

10. Erol, K., Hendler, J.A., Nau, D.S.: Complexity results for hierarchical task-network
planning. Annals of Mathematics and Artificial Intelligence 18 (1996) 69–93

11. Amgoud, L., Maudet, N., Parsons, S.: Modeling dialogues using argumentation.
In: ICMAS, IEEE Computer Society (2000) 31–38

12. Parsons, S., Wooldridge, M., Amgoud, L.: An analysis of formal inter-agent dia-
logues. In: Proceedings of the first international joint conference on Autonomous
agents and multiagent systems: part 1. AAMAS ’02, New York, NY, USA, ACM
(2002) 394–401

13. Parsons, S., McBurney, P.: Argumentation-based dialogues for agent coordination.
group decision and negotiation. Group Decision and Negotiation (2004)

14. McBurney, P., Parsons, S.: Locutions for argumentation in agent interaction pro-
tocols. In van Eijk, R.M., Huget, M.P., Dignum, F., eds.: AC. Volume 3396 of
Lecture Notes in Computer Science., Springer (2004) 209–225

15. Foundation for Intelligent Physical Agents: Fipa communicative act library speci-
fication. http://www.fipa.org/specs/fipa00037 (2002)

16. Monteserin, A., Amandi, A.: Argumentation-based negotiation planning for au-
tonomous agents. Decision Support Systems 51(3) (jun 2011) 532–548

17. Sycara, K.P.: Persuasive argumentation in negotiation. Theory and Decision 28(3)
(may 1990) 203–242

18. Amgoud, L., Prade, H.: Generation and evaluation of different types of arguments
in negotiation (2004)

Planning Interactions for Agents in Argumentation-Based Negotiation 15

19. Amgoud, L., Prade, H.: Formal handling of threats and rewards in a negotiation
dialogue. In Parsons, S., Maudet, N., Moraitis, P., Rahwan, I., eds.: ArgMAS.
Volume 4049 of Lecture Notes in Computer Science., Springer (2005) 88–103

20. Kraus, S., Sycara, K., Evenchik, A.: Reaching agreements through argumentation:
A logical model and implementation. Artificial Intelligence 104 (1998) 1–69

21. Sierra, C., Jennings, N.R., Noriega, P., Parsons, S.: A framework for
argumentation-based negotiation. In: Proceedings of the 4th International Work-
shop on Intelligent Agents IV, Agent Theories, Architectures, and Languages.
ATAL ’97, London, UK, UK, Springer-Verlag (1998) 177–192

22. Rahwan, I., Pasquier, P., Sonenberg, L., Dignum, F.: A formal analysis of interest-
based negotiation. Annals of Mathematics and Artificial Intelligence 55(3-4) (2009)
253–276

23. Hussain, A., Toni, F.: On the benefits of argumentation for negotiation-preliminary
version. In: Proceedings of 6th European workshop on multi-agent systems
(EUMAS-2008). (2008)

