Meta Learning

MIT

Iddo Drori, Fall 2020
Supervised Learning

- task data
- learning algorithm
- predictor
- test data
- prediction
Supervised Learning

\[D = (X, y) \]
\[f' = g(D) \]
\[y' = f'(X') \]
Image Analogies (style transfer before CNNs)

- Source data $D_s = (X_s, Y_s)$
- Target data $D_t = (X_t, ?)$
- Source and target data distributions are the same
- Missing Y_t
- $X_s : Y_s :: X_t : ?$
- Supervised learning

Figure source: Image Analogies, Hertzmann et al, 2001
Supervised Learning

\[f_t = g(D_s) \]
\[y_t = f_t(X_t) \]
CNNs Overview
ImageNet

CNN architecture

Figure source: ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky et al, NIPS 2012
ImageNet Filters

Source: ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky et al, NIPS 2012
ImageNet Results

Figure source: ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky et al, NIPS 2012
ImageNet Results

Figure source: ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky et al, NIPS 2012
Understanding ImageNet

Which training image patches do specific activation units in layer 1 respond to?

Figure source: Visualizing and understanding convolutional networks, Zeiler and Fergus, ECCV 2014.
Understanding ImageNet

Which training image patches do specific activation units in layer 2 respond to?

Figure source: Visualizing and understanding convolutional networks, Zeiler and Fergus, ECCV 2014.
Understanding ImageNet

Which training image patches do specific activation units in layer 3 respond to?

Figure source: Visualizing and understanding convolutional networks, Zeiler and Fergus, ECCV 2014.
Understanding ImageNet

Which training image patches do specific activation units in layer 4 respond to?

Figure source: Visualizing and understanding convolutional networks, Zeiler and Fergus, ECCV 2014.
Understanding ImageNet

Which training image patches do specific activation units in layer 5 respond to?

Figure source: Visualizing and understanding convolutional networks, Zeiler and Fergus, ECCV 2014.
Input Maximizing Activation

\[
\text{argmax}_{x} a_i^l(W, x)
\]

Given trained network with weights \(W\), find input \(x\) which maximizes activation of unit \(i\) at layer \(l\). Starting from \(x\) as random noise, perform gradient ascent on \(x\).

Input Maximizing Activation

Given a trained network with weights W, find an input x which maximizes activation starting from x as random noise. Perform gradient ascent on x.

Figure source: Feature Visualization, Olah et al, Distill, 2017.
Input Maximizing Different Objectives

\textit{given} trained network with weights W

find input x which maximizes different objectives

starting from x as random noise perform gradient ascent on x

Figure source: Feature Visualization, Olah et al, Distill, 2017.
Training Patches vs. Optimization

Figure source: Feature Visualization, Olah et al, Distill, 2017.
Maximization and Minimization

Figure source: Feature Visualization, Olah et al, Distill, 2017.
Interactions Between Activations

Figure source: Feature Visualization, Olah et al, Distill, 2017.
Visualizing Every Network Activation

GoogLeNet

Figure source: Feature Visualization, Olah et al, Distill, 2017
https://distill.pub/2017/feature-visualization/appendix
Transfer Learning

- Task 1: learn to recognize animals given many (10M) examples which are not horses
- Keep layers from task 1, re-train on last layer
- Task 2: learn to recognize horses given a few (100) examples
Siamese Networks
CNN’s for Face Recognition

Problem: single example for each person.
Solution: learn similarity rather than identity.

Reduce to verification: are x_i and x_j the same person?

Encode x as $f(x)$ using CNN

Compare $f(x_i)$ with $f(x_j)$ by $d(f(x_i), f(x_j))$
CNN’s for Face Recognition

Train on input pairs \((x_i, x_j)\)

Label each pair \(y=1\) if \(x_i\) and \(x_j\) are same person, \(y=0\) otherwise

Use CNN encoding of pair \(f(x_i), f(x_j)\)

Loss function

\[L(x_i, x_j) = f(x_i, y) - f(x_j) \]

\[\hat{y} = g(d(f(x_i), f(x_j))) \]

Figure source: Taigman et al, 2014
Style Transfer
Input Maximizing Activation

\[
\text{argmax}_{x} a^l_i(W, x)
\]

given trained network with weights \(W\)
find input \(x\) which maximizes activation of unit \(i\) at layer \(l\)
starting from \(x\) as random noise perform gradient ascent on \(x\)

Input Maximizing Activation

Given trained network with weights W find input x which maximizes activation starting from x as random noise perform gradient ascent on x.

Figure source: Feature Visualization, Olah et al, Distill, 2017.
Input Maximizing Different Objectives

Given trained network with weights W
find input x which maximizes different objectives
starting from x as random noise perform gradient ascent on x

Figure source: Feature Visualization, Olah et al, Distill, 2017.
Training Patches vs. Optimization

Figure source: Feature Visualization, Olah et al, Distill, 2017.
Maximization and Minimization

Figure source: Feature Visualization, Olah et al, Distill, 2017.
Interactions Between Activations

optimizing activation a

joint optimization
linear interpolation between objectives

optimizing activation b

Figure source: Feature Visualization, Olah et al, Distill, 2017.
Gram Matrix of Channels

\[G_{kk'}^l = \sum_{k=1}^{n_c} \sum_{k' = 1}^{n_c} a_{ijk}^l a_{ijk'}^l \]

Gram matrix

\[- \sum_{k=1}^{n_c} \sum_{k' = 1}^{n_c} \frac{g_A \cdot g_B}{\|g_A\| \|g_B\|} \]

add term to optimization objective

Source: Feature Visualization, Olah et al, Distill, 2017
https://distill.pub/2017/feature-visualization/appendix
Optimization with Gram Matrix Objective

make results be different from each other: diversity

Figure source: Feature Visualization, Olah et al, Distill, 2017
Style Transfer

Figure source: Image style transfer using convolutional neural networks, Gatys et al, CVPR 2016.
Style Transfer

\[E_L = \sum (G^L - A^L)^2 \]
\[G^L = \sum_k F^L_k F^L_k\]
\[\mathcal{L}_{\text{total}} = \alpha \mathcal{L}_{\text{content}} + \beta \mathcal{L}_{\text{style}} \]

Figure source: Image style transfer using convolutional neural networks, Gatys et al, CVPR 2016.
Style Transfer

\[x = x - \frac{\partial L(x)}{\partial x} \]

\[L(x) = \alpha L_{\text{content}}(x, c) + (1 - \alpha) L_{\text{style}}(x, s) \]

Initialize \(x \) to random noise or content image or style image
Gradient descent with loss function a linear combination of a style and content terms

Style Transfer using Gram Matrix

\[\mathcal{L}^\text{content}(x, c) = \frac{1}{2} \| a_c^l - a_x^l \|^2 = \frac{1}{2} \sum_l \sum_j (a_{cij}^l - a_{xij}^l)^2 \]

\[\mathcal{L}_{\text{style}}(x, s) = \frac{1}{(2n_wn_hn_c)^2} \lambda_l \sum_l \sum_k \sum_{k'} (G_{skkl'}^l - G_{xskkl'}^l)^2 \quad G_{skkl'}^l = \sum_{k=1}^{n_c} \sum_{k'=1}^{n_c} a_{skjk}^l a_{skjk'}^l \]

content loss is element-wise sum of squares between activations
style loss depends on correlation between activations across channels

Style Transfer

Figure source: Image style transfer using convolutional neural networks, Gatys et al, CVPR 2016.
GANs Overview
Generative Models

• Real data from real distribution

• Generate samples from model distribution

• Learn model distribution similar to real distribution
Generative Adversarial Networks

Photo-realistic faces synthesized using GANs: images are of high quality and diverse.

Figure source: thispersondoesnotexist.com
Coevolution
Game Theory

• Minimax optimization problem or saddle-point problem:

\[\min_{x} \max_{y} f(x, y) \]
Generative Adversarial Networks

Figure source: thiscatdoesnotexist.com, whichfaceisreal.com
GAN Zoo

Figure source: https://github.com/hindupuravinash/the-gan-zoo
Generative Adversarial Network (GAN)
BigGAN Results (2019)

Figure source: Large scale GAN training for high fidelity image synthesis, Brock et al, ICLR 2019.
Transfer Learning
Image to Image Translation

- Source data $Ds = (Xs, Ys)$
- Target data $Dt = (Xt, ?)$
- Source and target data distributions are the same
- Target data is unlabeled
- $Xs:Ys :: Xt:?$
- $Ys = fs(Xs)$ is unknown, estimate by ft
- $Xs = invfs(Ys)$ is known, generate data pairs $Ds = (Xs, Ys)$
- Conditional GAN
Image to Image Translation

- Generate $D_s = (X_s, Y_s)$ from Y_s and $X_s = f_s^{-1}(Y_s)$
- Train conditional GAN:
 - Train conditional generator $f_t(X_s)$
 - Train discriminator on fake $(f_t(X_s), X_s)$ and real (Y_s, X_s)
- Apply generator f_t to target data X_t
Conditional GAN

Figure source: Image-to-image translation with conditional adversarial networks, Isola et al, CVPR 2017.
Conditional GAN

Figure source: Image-to-image translation with conditional adversarial networks, Isola et al, CVPR 2017.
Application

Figure source: High-Resolution image synthesis and semantic manipulation with conditional GANs, Wang et al, 2017.
Unpaired Image to Image Translation

- Cycle GAN
- Train generator g_1 from X_s to Y_s
- Train generator g_2 from Y_s to X_s
- Apply $g_2(g_1(X_s))$ and check for same value
- Apply $g_1(g_2(Y_s))$ and check for same value
Cycle GAN

Figure source: Unpaired image-to-image translation using cycle-consistent adversarial networks (Cycle GAN), Zhu et al., ICCV 2017.
Transfer Learning

- Source data $D_s = (X_s, Y_s)$
- Target data $D_t = (X_t, Y_t)$
- Source and target data distributions may be different
- Target data labels may not be available
Transfer Learning

<table>
<thead>
<tr>
<th>Tasks / Distributions</th>
<th>Same source and target distributions on X</th>
<th>Different source and target distributions on X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same tasks on source and target domains</td>
<td>Supervised learning</td>
<td>Transductive transfer learning = domain adaptation</td>
</tr>
<tr>
<td>Different tasks on source and target domains</td>
<td>Inductive transfer learning</td>
<td>Unsupervised transfer learning</td>
</tr>
</tbody>
</table>
Transfer Learning

<table>
<thead>
<tr>
<th>Tasks / Distributions</th>
<th>Data collected from the same user</th>
<th>Data collected from different users</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detect spam</td>
<td>Supervised learning</td>
<td>Transductive transfer learning = domain adaptation</td>
</tr>
<tr>
<td>Detect spam vs. detect hoax</td>
<td>Inductive transfer learning</td>
<td>Unsupervised transfer learning</td>
</tr>
</tbody>
</table>
Transfer Learning

<table>
<thead>
<tr>
<th>Tasks / Distributions</th>
<th>P(Xs) = P(Xt)</th>
<th>P(Xs) \neq P(Xt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ts = Tt</td>
<td>Supervised learning</td>
<td>Transductive transfer learning = \text{domain adaptation}</td>
</tr>
<tr>
<td>Ts \neq Tt</td>
<td>Inductive transfer learning</td>
<td>Unsupervised transfer learning</td>
</tr>
</tbody>
</table>
Domain Adaptation

- Source and target tasks are the same $Ts = Tt$
- Source dataset with many labeled examples
- Target dataset with few or no labeled examples
Training data

- Supervised: available labeled data
- Semi-supervised: uses both labeled and unlabeled data
- Unsupervised: only unlabeled data
Domain Adaptation

- Supervised: labeled source and labeled target data
- Unsupervised: labeled source and unlabeled target data
Invariance

- Most learning tasks are invariant to sets of transformations
- Classification is invariant to translation, rotation, reflection,..
- $y = f(t(X)) = f(X)$
- Class does not change when transforming the input by t
Invariance

- Data augmentation: train on larger dataset

- Work with unlabeled data:
 Pretext: generate classes by transformations
 Supervised training
Equivariance

- Function commutes with transformation: $f(t(x)) = t(f(x))$
- For example, edge detection is equivariant to translation
- Translation of input image translates the output in exactly the same way
Transfer Learning Example

- Learn policy using reinforcement learning to balance small pendulum
- Transfer to large pendulum
- Option 1: Learn policy using reinforcement learning to balance large pendulum
- Option 2: Transfer learning
- Q: What is the common information or shared structure between the tasks?
- A: in this example, the ODE that models the pendulum
Transfer Learning

- Use same representation for tasks
- What changes between tasks?
- Set of transformations t that transform one task to another
- Related tasks can be transformed from one to another using a specific set of transformations
- Equivalence class $t\sim$
- Best approximators m_{t_1} and m_{t_2} related in the same way as t_1 and t_2
- Equivariance
Domain Adaptation
Adversarial Unsupervised Domain Adaptation

• Train GAN generator from source to target
• Train classifier on mapped source and source labels
• Apply classifier to target
Adversarial Unsupervised Domain Adaptation

- $D_s = (X_s, Y_s)$ for example simulated data
- $D_t = (X_t, ?)$ for example real data
- Train GAN generator from source X_s to target X_t
 - $X_t = g(X_s)$
- Train GAN discriminator $d(g(X_s), X_t)$
- Train classifier on $(g(X_s), Y_s)$
- Apply classifier on X_t
SimGAN

- Train GAN generator from synthetic to real images
- Train classifier on mapped synthetic and synthetic labels
- Apply classifier to real images

Figure source: Learning from simulated and unsupervised images through adversarial training, Shrivastava et al, CVPR 2017
SeUDA

- $D_s = (X_s, Y_s)$ for example simulated data
- $D_t = (X_t, ?)$ for example real data
- Train GAN generator from target X_t to source X_s
 - $X_s = g(X_t)$
- Train classifier on (X_s, Y_s)
- Apply generator to $g(X_t)$ and classify source domain

Figure source: Semantic-aware generative adversarial nets for unsupervised domain adaptation in chest X-ray segmentation, Cheng et al, 2018
ADDA

- $D_s = (X_s, Y_s)$, $Y_s = f_s(X_s)$
- $LA(D_s) = f_2(f_1(X_s))$
- Train f_1 CNN and f_2 classifier on D_s
- Train f'_1 CNN on X_t using discriminator $d(f_1(X_s), f'_1(X_t))$
- Apply $f_2(f'_1(X_t))$

Figure source: Adversarial discriminative domain adaptation, Tzeng et al, CVPR 2017
Cycada

- CycleGAN

Figure source: CyCADA: Cycle-Consistent Adversarial Domain Adaptation, Hoffman et al, 2018
Meta Learning

MIT

Iddo Drori, Fall 2020