1. **Hydrogen burning is the main thing [10 pts]**

Consider two hypothetical stars of the same mass and (constant) luminosity. The stars are originally pure hydrogen. In Star A, fusion proceeds until the entire star is converted into 56Fe. In Star B, fusion does not proceed all the way to 56Fe. Instead, fusion is halted after all the hydrogen is converted into 4He. How much longer is the lifetime of Star A, compared to Star B?

You will find it useful to know the masses of the relevant nuclei:

\[
\begin{align*}
 m_{H} &= 1.0078250 \text{ amu} \\
 m_{^4\text{He}} &= 4.0026032 \text{ amu} \\
 m_{^{56}\text{Fe}} &= 55.9349421 \text{ amu}
\end{align*}
\]

where the amu is approximately m_p (it is defined as one-twelfth of the mass of an unbound carbon-12 nucleus in its ground state).

Solution: We begin by calculating the fraction, ϵ, of a proton’s mass-energy that is released when hydrogen is fused into 4He and 56Fe. Then, the nuclear energy released in the conversion of 4 protons to 4He (56 protons to 56Fe) corresponds to a fraction $\epsilon_{^4\text{He}}$ ($\epsilon_{^{56}\text{Fe}}$) of the initial mass energy of the protons.

\[
\begin{align*}
 \epsilon_{^4\text{He}} &= \frac{4m_{H} - m_{^4\text{He}}}{4m_{H}} = 0.0071 \\
 \epsilon_{^{56}\text{Fe}} &= \frac{56m_{H} - m_{^{56}\text{Fe}}}{56m_{H}} = 0.0089
\end{align*}
\]

Since stars A and B have identical masses and constant luminosities, their nuclear burning lifetimes $\tau = \epsilon M c^2 / L$ are related by

\[
\frac{\tau_A}{\tau_B} = \frac{\epsilon_{^{56}\text{Fe}}}{\epsilon_{^4\text{He}}} \approx 1.25
\]

The lifetime of star A is 25% longer than that of star B.

2. **Electron degeneracy pressure for an arbitrary degree of relativistic motion [20 pts]** (based on Choudhuri 5.2)

The degeneracy pressure of an electron gas is given by Equation (5.5) of Choudhuri,

\[
P = \frac{8\pi}{3h^3} \int_0^{\rho_p} \frac{p^4 c^2}{\sqrt{p^2 c^2 + m_e^2 c^4}} dp.
\]

(a) Work out this integral by substituting $p = m_e c \sinh \theta$ and show that the general expression for the electron degeneracy pressure is equal to

\[
P = \frac{\pi m_e^4 c^5}{3h^3} f(x),
\]

where

\[
f(x) = x(2x^2 - 3) \sqrt{x^2 + 1} + 3 \sinh^{-1} x
\]
and \(x \equiv p_F/m_e c \).

Solution: With the recommended change of variables, and using \(dp = m_e c \cos \theta d\theta \),

\[
P = \frac{8 \pi}{3h^3} \int_0^{\theta_F} m_e^5 \sinh^4 \theta \cosh \theta d\theta,
\]

where \(\theta_F = \sinh^{-1}(p_F/m_e c) = \sinh^{-1} x \). Use the identity \(\cosh^2 \theta - \sinh^2 \theta = 1 \) to cancel \(\cosh \theta \) in the numerator with the denominator. Note that we already have the prefactor right,

\[
P = \frac{\pi m_e^5}{3h^3} f(x), \quad f(x) \equiv 8 \int_0^{\sinh^{-1} x} \sinh^4 \theta d\theta
\]

This can be integrated by writing \(\sinh \theta = \frac{1}{2}(e^{\theta} - e^{-\theta}) \) and expanding,

\[
8 \sinh^4 \theta = \frac{1}{2} e^{4\theta} - 2 e^{2\theta} + 3 - 2 e^{-2\theta} + \frac{1}{2} e^{-4\theta}
= 3 - 4 \sinh(2\theta) + \sinh(4\theta).
\]

Integrating this is straightforward:

\[
f(x) = \left[3\theta - 2 \sinh(2\theta) + \frac{1}{4} \sinh(4\theta) \right]^{\sinh^{-1} x}_0
= 3 \sinh^{-1} x - 2 \sinh(2 \sinh^{-1} x) + \frac{1}{4} \sinh(4 \sinh^{-1} x).
\]

One can complete the evaluation by using the identity (see http://dlmf.nist.gov/4.37.E16) \(\sinh^{-1} x = \ln(x + \sqrt{1 + x^2}) \) and expanding the sinh functions as exponentials, or by using the multiple angle formulas (see http://dlmf.nist.gov/4.35.iii) \(\sinh 2\theta = 2 \sinh \theta \cosh \theta \) and \(\sinh 4\theta = 4 \sinh^3 \theta \cosh \theta + 4 \sinh \theta \cosh^3 \theta \) along with \(\cosh(\sinh^{-1} x) = \sqrt{1 + x^2} \). Either way, the function evaluates as

\[
f(x) = 3 \sinh^{-1} x + x \sqrt{1 + x^2} (2x^2 - 3).
\]

(b) Evaluate \(f(x) \) numerically for various values of \(x \) and use these numerical values to make a plot of \(\log P \) versus \(\log(\rho/\mu_c) \). Indicate regions of the plot corresponding to the two limiting equations \(P \propto \rho^{5/3} \) for nonrelativistic motion, and \(P \propto \rho^{5/3} \) for ultrarelativistic motion.

Solution: The asymptotic forms of \(f(x) \) are

\[
f(x) = \begin{cases}
\frac{2}{3} x^5 + \mathcal{O}(x^6), & x \ll 1 \\
2x^4 + \mathcal{O}(x^5), & x \gg 1
\end{cases}
\]

Recall the definition of \(p_F \),

\[
p_F = \left(\frac{3h^3 \pi}{8} \right)^{1/3} = \left(\frac{3h^3 \rho}{8 \pi \mu_e m_p} \right)^{1/3},
\]

so we may write \(x = (\rho/\rho_0)^{1/3}, \) with

\[
\rho_0 = \frac{8 \pi \mu_e m_p m_e^3 c^3}{3h^3},
\]

and define

\[
P_0 = \frac{\pi m_e^5}{3h^3} = \frac{1}{8} \rho_0 c^2 \mu_e \mu_p.
\]

Then one can write \(\frac{P}{P_0} = f((\rho/\rho_0)^{1/3}) \). Then a log-log plot of the function \(f \) is a horizontally scaled log-log plot of \(P/P_0 \) vs. \(\rho/\rho_0 \). Such a plot appears in Fig. [1].
3. Polytropic relation between core density and temperature [20 pts]

Previously you derived some useful analytic relations for a polytropic stellar model. Here you will use them to derive the relation between core density (ρ_c) and core temperature (T_c) that a star of a given mass M is expected to obey. As discussed in class, this relationship constrains the core’s trajectory to a particular locus in the space of $\log \rho_c$ and $\log T_c$.

(a) Show that the central pressure can be written in terms of M and ρ_c as

$$P_c = (4\pi)^{1/3} GM^{2/3} \rho_c^{4/3} F(n),$$

where F is a function of the polytropic index n that you should specify; it will involve ξ_1, the coordinate of the surface, as well as the function ϕ_n, and/or its derivative(s). Show further that for n ranging from 1 to 3.5 (encompassing most of the realistic range of pressure/density profiles), the function F is nearly equal to 0.2 (within $\approx 30\%$).

Solution: Recall from the previous problem set the relations

$$P_c = \frac{GM^2}{R^2} \left[4\pi(n + 1) \left| \frac{d\phi_n}{d\xi} \right|_{\xi_1}^2 \right]^{-1}$$

and

$$\langle \rho \rangle = \frac{3M}{4\pi R^3} = \frac{3\rho_c}{\xi_1} \left| \frac{d\phi_n}{d\xi} \right|_{\xi_1}.$$

Using Eq. [3], the radius R may be eliminated in favor of the mass M, central density ρ_c, the scaled maximum radius ξ_1, and the slope of the temperature profile at the surface $|d\phi_n/d\xi|_{\xi_1}$. The radius may be written

$$R = \left(\frac{M\xi_1}{4\pi \rho_c} \left| \frac{d\phi_n}{d\xi} \right|_{\xi_1}^{-1} \right)^{1/3}.$$
Plug this in to Eq. (2) to find

\[P_c = GM^2 \left(\frac{4\pi \rho_c}{M} \frac{d\phi_n}{d\xi} \right)^{4/3} \left[\frac{4\pi (n + 1)}{4} \left(\frac{d\phi_n}{d\xi} \right)^2 \right]^{-1} \]

\[P_c = (4\pi)^{1/3} GM^{2/3} \rho_c^{4/3} F(n), \quad \frac{1}{F(n)} = (n + 1) \xi_1^{4/3} \left(\frac{d\phi_n}{d\xi} \right)^{2/3} \xi_1 \]

A plot of the function \(F(n) \) appears in Fig. 2. Note that the function is monotonic and it ranges from 0.233 to 0.145 over the \(n \) range from 1 to 3.5.

(b) Show that if the ideal gas equation of state is applicable, then one expects

\[\log \rho_c = 3 \log T_c - 2 \log M + \text{constant}. \]

Solution: Equate \(P_c \) from Eq. (1) with the ideal gas equation of state,

\[(4\pi)^{1/3} GM^{2/3} \rho_c^{4/3} F(n) = \frac{\rho_c}{\mu m_p} k_b T_c. \]

Taking the log and solving for \(\log \rho_c \),

\[\frac{1}{3} \log \rho_c + \frac{2}{3} \log M + \log \left((4\pi)^{1/3} GF(n) \right) = \log T_c + \log \left(\frac{k_b}{\mu m_p} \right), \]

\[\log \rho_c = 3 \log T_c - 2 \log M + 3 \log \left(\frac{k_b}{(4\pi)^{1/3} GF(n) \mu m_p} \right), \]

where the final term is a slowly varying function of \(n \), and so is almost constant.

(c) Show that if nonrelativistic degeneracy pressure is dominant, then one expects

\[\log \rho_c = 2 \log M + \text{constant}. \]

Solution: Equate \(P_c \) from Eq. (1) with the nonrelativistic degenerate equation of state,

\[(4\pi)^{1/3} GM^{2/3} \rho_c^{4/3} F(n) = K_{NR} \rho_c^{5/3}. \]

Taking the log and solving for \(\log \rho_c \),

\[\frac{2}{3} \log M + \log \left((4\pi)^{1/3} GF(n) \right) = \frac{1}{3} \log \rho_c + \log K_{NR} \]
\[
\log \rho_c = 2 \log M + 3 \log \left(\frac{(4\pi)^{1/3} GF(n)}{K_{NR}} \right),
\]

where the final term is a slowly varying function of \(n \), and so is almost constant.

4. Extremes of the main sequence [20 pts]

Near the "lower" end of the main sequence is a star with \(M = 0.072 \, M_\odot \), \(\log_{10} T_{\text{eff}} = 3.23 \) and \(\log_{10}(L/L_\odot) = -4.3 \). Near the "upper" end is a star with \(M = 85 \, M_\odot \), \(\log_{10} T_{\text{eff}} = 4.705 \) and \(\log_{10}(L/L_\odot) = +6.006 \).

(a) Estimate the hydrogen-burning lifetime of each star. For the 85 \(M_\odot \) star, assume that only the innermost 10% of the hydrogen is available for burning. For the 0.072 \(M_\odot \) star, assume the interior is entirely convective and all of its hydrogen becomes available for burning.

\[t \approx 1.5 \times 10^{14} \text{ yr}, \quad t_U \approx 8.7 \times 10^5 \text{ yr}. \]

(b) Estimate the radius of each star, and the radius ratio.

\[R_L \approx 5.7 \times 10^9 \text{ cm} \approx 0.08 \, R_\odot, \quad R_U \approx 9.1 \times 10^{11} \text{ cm} \approx 13 \, R_\odot. \]

The radius ratio may be found with less calculation by taking the ratio of the Stefan-Boltzmann law for the lower mass and higher mass object,

\[\left(\frac{R_U}{R_L} \right)^2 = \frac{L_U}{L_L} \left(\frac{T_L}{T_U} \right)^4 = 10^{+6.006-(-4.3)+4(3.23-4.705)} \implies \frac{R_U}{R_L} \approx 160. \]

(c) Compare the Eddington luminosity of each star to its actual luminosity. For the low-mass star, use \(\kappa = 0.01 \text{ cm}^2 \text{ g}^{-1} \). For the high-mass star, assume the opacity is dominated by electron scattering. For which star is radiation pressure significant?

\[L_{\text{Edd},L} \approx 3.6 \times 10^{38} \text{ erg s}^{-1} \approx 9.4 \times 10^4 \, L_\odot \]
\[L_{\text{Edd},U} \approx 1.1 \times 10^{40} \text{ erg s}^{-1} \approx 2.8 \times 10^6 \, L_\odot. \]

Comparing to their physical luminosities,

\[\frac{L_L}{L_{\text{Edd},L}} \approx 5 \times 10^{-10}, \quad \frac{L_U}{L_{\text{Edd},U}} \approx 0.36. \]

Radiation pressure is important for the high mass star, since its luminosity is within an order of magnitude of the Eddington luminosity.