3.6 The adiabatic exponent

T'herm(.)dynamjc processes of a special kind, which will be of interest in later
dls(fussmns, are those occurring in a system without exchange of heat with the
environment. Such processes are called adiabatic. From the first law of thermo-

dynamics (mentioned in Section 2.2) it follows that adiabatic processes satisfy
the condition

1
du+Pd|—-)=0.
u (p) (3.48)

In th_e previous section we have seen — at least for simple systems — that the
specific energy u is always proportional to P/p. We may therefore write

P
U = gb—, (349)
o

which, by differentiating and substituting into Equation (3.48), leads to
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o (p) +¢de + Pd (p) = (¢ + 1)Pd (;) -f—cp;dP =0. (3.50)

lAccordingly, the dependeace of the pressure on density is described by a power
aw

o5l
Pocpe. (3.51)

The.powc-ar (dIn P/dn p)is called the adiabatic exponent, denoted y,; the pro-
portionality factor (to be denoted K,) is determined by the properties of the

system (it is a direct function of the entropy). In conclusion, adiabatic processes
are characterized by the law

P =K, o". (3.52)

. Itis easily seen that for the systems we have considered, the value of y, is 5/3
in the ca§e of a nonrelativistic ideal gas or a completely degenerate electron gas
and 4/3 in the case of a relativistic degenerate electron gas or of pure radiation.

Intermediate values will obtain for mixtures, such as gas and radiation, and
nonexireme cases, such as a moderately relativistic degenerate electron gas.

So far we have considered gases of a fixed number of particles: ¢ither (almost)
fully ionized, as in the deep stellar interior, or (almost) fully recombined, as in
the outer layers of a cool stellar atmosphere. When jonization takes place and
the number of particles changes with the other physical properties, the adiabatic
exponent changes too. Since this will prove to be of particular importance to the
stability of stars, it deserves some discussion. We shall only consider the very
simple case of a singly ionized pure gas (rather than a mixture of gases), say,
hydrogen. Hence we have to deal with three different types of particles: neutral
atoms, whose number density we denote by ng, ions of number density n.., and
free electrons of number density 7. (obviously, ne = n). The pressure exerted
by the gas is proportional to ng + 14 + 1., while the mass density is proportional
to ng + ny. The degree of ionization is defined by

x=—t (3.53)
ng+ny
The densities of ions and neutrals are related by Saha’s equation (after Meghnad
Saha, who derived it in 1920)
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where g is a constant and x is the ionization potential (the energy required to
create an ion by removing an electron from an atom). In terms of the degree of
ionization, we have

P=014x)ng+n kT =14+ x)RpT, {3.55)
and Saha’s equation becomes
2 3/2 5/2
28 Qrm PRI e, (3.56)
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In the case of a partially ionized gas, t_he specific energy has an additional term,
xny/p = xny/lno + nydmul = xx/mn, which is due to the available potential
energy of ionization. Thus

uo 3P X (3.57)

replaces Equation (3.49). Using Equations (3.55) and (3.56) to express the degree
of ionization as a function of pressure and density x = x(FP, p), differentiating
Equation (3.57), and substituting into Equation (3.48) yields

3 /1 31\ x dx X dx (1)

(= )dP+ZPd|— |+ =—dP+——dp+Pd|—-) =0

2(10) T2 (p)+mH3P F 9 “ |
(3.58)
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Figure 3.2 Radiation flux passing through a slab.
Multiplying by p/ P and assembling terms, we have

3+L(P ax dpP 5 X p)Bx d_e_o
2 kT \1+x/\8P/,| P 2 kT \1+x)\dp/pl p

(3.59)

from which, after not inconsiderable manipulation, y,(x) may be calculated:

5+(3+ k—xf)z;x(l — X}

Yalx) = 3 " 2 . (3.60)
3+ [3+ G+ )]0 -0
In the limit x = 0 or x = |, we obtain y, = 5/3, as before; the minimum value

is obtained for x = 0.5; it is 1.63 for x/&T =1, for example, and 1.21 for
x/&kT =10.



