CHAPTER 3
~ The Two-Body
Central Force Problem

In this chapter we shall discuss the problem of two bodies moving under the
influence of a mutual central force as an application of the Lagrangian
formulation. Not all the problems of central force motion are integrable in terms
of well-known functions. However, we shall attempt to explore the problem as
thoroughly as is possible with the tools already developed.

3-1 REDUCTION TO THE EQUIVALENT ONE-BODY PROBLEM

Consider a monogenic systetm of two mass points, m, and m,, where the only
forces are those due to an interaction potential U. 1t will be assumed at first that U
is any function of the vector between the two particles, r; — Iy, 0f of their relative
velocity, t, — Iy, or of any higher derivatives of rp — 1. Such a system has six
degrees of freedom and hence six independent generalized coordinates. Let us
choose these to be the three components of the radius vector to the center of mass,
R, plus the three components of the difference vectorr = r; — Iy The Lagrangian

will then have the form

L=TR}) - U(r,k,...)- (3D
??Il
T
R msy
FIGURE 3-1
Coordinates for the two-body
problem.




The kinetic energy T can be written as the sum of the kinetic energy of the

motion of the center of mass, plus the kinetic energy of motion about the center of
mass, T': o

T=4m, + m,R2+ T
with '
T =4mi? +imyi 2.
Here 1) and r; are the radii vectors of the two particles relative to the center of
mass and are related to r by

My
r=——r,
m, +m,
(3-2)
my
r,=——"m"m"T.
m, +my
Expressed in terms of r by means of Eq. (3-2), T’ takes on the form
, 1 mm,
=—— 1
2m +m,
and the total Lagrangian {3-1) is’
m, +m, . 1 mm
L= 2R*+_ L2 2_Unti,...) (3-3)

2 2my +m,

It is seen that the three coordinates R are cyclic, so that the center of mass is
either at rest or moving uniformly. None of the equations of motion for r will
contain terms involving R or R. Consequently the process of ignoration is
particularly simple here. We merely drop the first term from the Lagrangian in all
subseguent discussion.

The rest of the Lagrangian is exactly what would be expected if we had a fixed
center of force with a single particle at a distance r from it, having a mass

m,m,
=— (3-4)
# t, + m,
where p is known as the reduced mass. Frequently Eq. {3-4) is written in the form

1 t 1
= — (3-5)
Moy iy

Thus the central force motion of two bodies about their center of mass can always
be reduced to an equivalent one-body problem.

3-2 THE EQUATIONS OF MOTION AND FIRST INTEGRALS

We now restrict ourselves to conservative central forces, where the potential is

V{r), a function of r only, so that the force is always along r. By the results of the
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preceding section we need consider only the problem of a singic particle of mass m
moving about a fixed center of force, which will be taken as the origin of the
coordinate system. Since potential energy involves only the radial distance, the
problem has spherical symmetry, i.c., any rotation, about any fixed axis, can have
no effect on the solution. Hence an angle coordinate representing rotation about
a fixed axis must be cyclic. These symmetry properties result in a considerable
simplification in the problem. Since the system is spherically symmetric, the total
angular momentum vector,

L=rxp,

is conserved. It therefore follows that r is always perpendicular to the fixed
direction of L in space. This can be true only if r always lies in a plane whose
normal is parallel to L. While the reasoning breaks down if L is zero, the motion
in that case must be along a straight line going through the center of force, for
L = 0 requires r to be parallel to ¥, which can be satisfied only in straight line
motion.* Thus, central force motion is always motionin a plane. Now, the motion
of a single particle in space is described by three coordinates; in spherical polar
coordinates these are the azimuth angle 0, the zenith angle (or colatitude) ¢, and
the radial distance r. By choosing the polar axis to be in the direction of L, the
motion is always in the plane perpendicular to the polar axis. The coordinate
then has only the constant value /2 and can be dropped from the subsequent
discussion. The conservation of the angular momentum vector furnishes three
independent constants of motion {corresponding to the three Cartesian
components). In effect, two of these, expressing the constant direction of the
angular momentum, have been used to reduce the problem from three to 1wo
degrees of freedom. The third of these constants, corresponding to the
conservation of the magnitude of L, remains still at our disposal in completing the
solution.
Expressed now in plane polar coordinates the Lagrangian is

L=T-V
Im(2 + r*6%) — V(r). 3-8

As was foreseen @ is a cyclic coordinate, whose corresponding canonical
momentum is the angular momentum of the system:

dL .
Po =oF = mr*f.
One of the two equations of motion is then simply

, d . '
Dy = E(mrzﬂ) =0 (3-7

* Formally: r = in, + rfn,, hence r x i = 0 requires 0 = 0.



with the immediate integral
mrl) = |, (3-8)

where [ is the constant magnitude of the angular momentum. From (3-7) it also
follows that

dri2

The factor } is inserted because $*6 is just the areal velocity—the area swept out
by the radius vector per unit time. This interpretation follows from the diagram,
Fig. 3-2, the differential area swept out in time dt being

dA =r(rdfh),

i(lrzo) =0 (3-9)

and hence

da _1,d0
a2 de
The conservation of angular momentum is thus equivalent to saying the areal
velocity is constant. Here we have the proof of the well-known Kepler’s second law
of planetary motion: the radius vector sweeps out equal areas in equal times. It
should be emphasized, however, that the conservation of the areal velocity is a
general property of central force motion and is not restricted to an inverse square

law of force.
The remaining Lagrange equation, for the coordinate r, is

d . av
E(m:“) — mrf? + 5= 0. (3-10)

. . y
Designating the value of the force along r, —aa—, by f{r) the equation can be
rewritten as r

my — mri? = fr). . (3-11)

FIGURE 3-2
The area swept out by the radius vector in
a time dr.
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By making use of the first integral, Eq. (3-8), ¢ can be eliminated from the
equation of motion, yielding a second order differential equation involving r

only:
2
¥ - — = f(r). ©(3-12)
mr ;

There is another first integral of motion available, namely the total energy, since
the forces are conservative. On the basis of the general energy conservation
theorem we can immediately state that a constant of the motion is

E =%m(f‘2 + r262) + V(r), ‘ (3-13)

where E is the energy of the system. Alternatively, this first integral could be
derived again directly from the equations of motion (3--7) and (3-12). The latter

can be written as
N d 1 2
mr = —E; V+EW . '(3—14)

If both sides of Eq. (3-14) are multiplied by F the left-hand side becomes
P LI
mrr = dt 2m .

The right-hand side similarly can be written as a total time derivative, for if g(r) is
any function of r, then the total time derivative of g has the form

d _ dg dr
ag(") =

Hence Eq. (3—14) is equivalent to

or
i(}_mrl +1 £ + V) =0,
de\2 2 mr?
and therefore ‘
1, 1P '
Emr +§ —3 + V = constant. (3-15}

Equation (3--15) is the statement of the conservation of total energy, for by using
(3-8) for ! the middle term can be written

L4 mr26?

Tt 2my? m 2’

and (3-15) reduces to {3—13).




These two first integrals give us in effect two of the quadratures necessary to
complete the problem. As there are two variables, r and 0, a total of four
integrations are needed to solve the equations of motion. The first two
integrations have left the Lagrange equations as two first order equations (3-8)
and (3-15); the two remaining integrations can be accomplished {formally}in a
variety of ways. Perhaps the simplest procedure starts from Eq. (3~15). Solving

for ¢ we have
2 2
F = —_ —_ — ’;_
d \/m(E v 2mr2)’ : (3-16)

dr

2 Py :
\/E(E_ V—2mr2) G4

At time £ = O let r have the initial value r,. Then the integral of both sides of the
equation from the initial state to the state at time ¢ takes the form

dr

terJz(E_V_ 7

or

dt =

(3-18)

m 2mr?

Asitstands Eq. (3-18) gives f as a function of r and the constants of integration E, ],
and r,. However, it may be inverted, at least formally, to give rasa function of tand
the constants. Once the solution for r is thus found, the solution 8 follows
immediately from Eq. (3-8). which can be written as

di = —;, (3-19)
It the initial value of @ is 6, then the integral of (3—19) is simply
o1 f A (3-20)
N 1 B

Equations (3-18) and (3-20) are the two remaining integrations, and formally
the problem has been reduced to quadratures, with four constants of integration
E, L r,, 00. These constants are not the only ones that can be considered, We
might equally as well have taken ry, 0,, 7, 0, but of course E and / can always be
determined in terms of this set. For many applications, however, the set containing
the energy and angular momentum is the natural one. In quantum mechanics such
constants as the initial values of r and #, or of f and 6, become meanin gless, but we
can still talk in terms of the system energy or of the system angular momentum,
Indeed, the salient differences between classical and quantum mechanics appear in
the properties of E and ! in the two theories. In order to discuss the transition to
quantum theories it Is important therefore that the classical description of the
system be in terms of its energy and angular momentum.



e

76 THE TWO-BODY CENTRAL FORCE PRODLEM

3-3 THE EQUIVALFNT ONE-DIMENSIONAL PROBLEM,
AND CLASSIFICATION OF ORBITS

While the problem has thus been solved formally, practically speaking the
integrals (3-18) and (3-20) are usually quite unmanageable, and in any specific
case it is often more convenient to perform the integrajion in some other fashion.
But before obtaining the solution for specific force laws, let us see what can be
learned about the motion in the general case, using only the equations of motion
and the conservation theorems, without requiring explicit solutions.

For example, with a system of known energy and angular momentum, the
magnitude and direction of the velocity of the particle can be immediately
determined in terms of the distance . The magnitude v follows at once from the

conservation of encrgy in the form
' 1
E :Emv2 + ¥(r)

or

2 .
v= \/m(E V(). (3-21)
. The radial velocity-—-the component of i along the radius vector—has already
been given in Eq. (3-16). Combined with the magnitude z this is sufficient
information to furnish- the direction of the velocity.* These results, and much
more, can also be obtained from consideration of an equivalent one-dimensional
problem. :
The cquation of motion in r. with § expressed in terms of I, Eq. (3-12),
involves only rand its derivatives. Ttis the sameequation as would be obtained fora
fctitious one-dimensional problem in which a particle of mass i subject to a
force '
fr= i+ —3 (3-22)
mr
The significance of the additional term is clear if it is written as mrd? = muj/r,
which is the familiar centrifugal force. An equivalent statement can be obtained
from the conservation theorem for energy. By Eq. (3-15) the motion of the
particle in r is that of a one-dimensional problem with a fictitions potential
energy:
1 P

Vi=V4s—. (3-22)

As a check we note that

av’ I*
M= —— = )+ —
=)

* Aliernatively, the conservation of angular momentum furnishes 8, the angular velocity,
e il b mivea hath the magnitude and direction of &,



which agrees with Eq. (3-22). The energy conservation theorem (3-15) can thus
also be written as

1
E=V + Emﬁ'z. (3-159

As an illustration of this method of examining the motion, consider a plot of
V' against r [or the specific case of an attractive inverse square law of force:

k
f=-%

((For positive k the minus sign ensures that the force is roward the center of force.)
The potential energy for this force is

V===
r

and the corresponding fictitious potential is

k 12
Ve —Zp
ro 2mrt

Such a plot is shown in Fig. 3-3; the two dotted lines represent the separate
components

and the solid line is the sum V',

IZ
2mr?

|
i
|
\
§

FIGURE 3-3

The equivalent one-dimensional potential for
attractive inverse square law of force.
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Let us consider now the motion of a particle having the energy E,, as shown
in Figs. 3-3 and 3-4. Clearly this particle can never come closer than r, (cf. Fig.
3—4). Otherwise with r < ry, V' exceeds E, and by Eq. (3-15') the kinetic energy
would have Lo be negative, corresponding to an imaginary velocity ! On the other
hand, there is no upper limit to the possible value of r, so that the orbit is not
bounded. A particle will come in from infinity, strike fhe “repulsive centrifugal
barrier,” be repelled, and travel back out to infinity (cf. Fig. 3-3). The distance
between E and V' is4m#?, that s, proportional to the square of the radial velocity,
and becomes zero, naturally, at the turning point r,. At the same time the distance
between E and V'is sm#”, that s, proportional to the square of the radial velocity,
Hence the distance between the Vand V" curves is1mr?(?, These curves thercfore
supply the magnitude of the particle velocity and its components for any distance,
at the given energy and angular momentum. This information is sufficient to
provide an approximate picture of the form of the orbit.

I

v’ E,

F it

/ FIGURE 3-4

Unbounded motion at positive energies for
inverse square law of force.

For the energy E, = 0 (cf. Fig. 3-3) a roughly similar picture of the orbit
pehavior is obtained. But for any lower energy, such as E, indicated in Fig. 3-6,
we have a different story. In addition to a lower bound r,, there is also a
maximum value ¥, that cannot be exceeded by r with positive kinetic energy. The
motion is then “bounded,” and there are two turning points, r, and ry, also
known as apsidal distances. This does not necessarily mean that the orbits are
closed. All that can be said is that they are bounded, contained between two
circles of radius r, and r, with turning points always lying on the circles {cf. Fig.

-~




FIGURE 3-5
Schematic picture of the orbit for E,
corresponding to unbounded motion.

If the energy is E, just at the minimum of the fictitious potential as shown in
Fig. 3-8, then the two bounds coincide. In such case motion is possible at only
one radius; 7 = 0, and the orbit is a circle. Remembering that the effective “force”
is the negative of the slope of the V' curve, the requirement for circular orbits is
simply that f' be zero, or

[ ——

\

FIGURE 3-6

The equivalent one-dimensional potential
for inverse square law of force, illustrating
bounded motion at negative energies.

We have here the familiar elementary condition for a circular orbit, that the
applied force be equal and opposite to the “reversed effective force™ of centripetal
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FIGURE 3-7
Schematic illustration of the nature of
the orbits for bounded motion,

acceleration.* The properties of circular orbits and the conditions for them will be
studied in greater detail below in Section 3-6.

It is to be emphasized that all of this discussion of the orbits for various
energies has been at one value of the angular momentum. Changing / will change
the quantitative details of the V' curve but it will not aifect the general classification
of the types of orbits. '

For the attractive inverse square law of force discussed above, we shall see that
the orbit for E, is a hyperbola, for E, a parabola, and {or E, an ellipse. With other
forces the orbits may not have such simple forms. However, the same general
qualitative division into open, bounded, and circular orbits will be true for any

<~ .

FIGURE 3-8

The equivalenl one-dimensional potential
of inverse square law -of force, illustrating
the condition for circular orbits.

* The case E < E, does not corréspcmd to physically possiblé motion, for then #* would:
have to be negative, or 7 imaginary.
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/
/ FIGURE 3-9
v fv . The equivalent one-dimensional potential
/ for an attractive inverse fourth faw of forcc.

attractive potential that (1) falls off slower than 1/r? as r — o0; {2) becomes
infinite slower than 1/r* as r — 0. The first condition ensures that the potential
‘predominates over the centrifugal term for targe r, while the second condition is
such that for small it is the centrifugal term that is the important one.

The qualitative nature of the motion will be altered if the potential dees not
satisfy these requirements, but we may still use the method of the equivalent
potential to examine features of the orbits. Asan example, consider the attractive
potential

V(r) = _:‘_3, with f= mi—f.

The energy diagram then is as shown in Fig. 3-9. For an energy E there are two
possible types of motion, depending upon the initial value of r. If ry is less than ry
the motion will be bounded, r will always remain less than r,, and the particle will
eventually pass through the center of force. If r is initially greater than r,, then it
will always remain so; the motion is unbounded, and the particle can never get
inside the “potential” hole. The initial condition ry <1y <r, is again not
physically possible. )

Another interesting example of the method occurs for a linear restoring foree
(isotropic harmonic oscillator):

J k |4 : kr?
= r, =3 e
For zero angular momentum, corresponding to motion along a straight line,
V' = ¥ and the situation is as shown in Fig. 3-10. For any positive energy the

motion is bounded and, as we know, simple harmonic. If ] # O we have the state of
affairs shown in Fig. 3—11. The motion then is always bounded for all physically

-+
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FIGURE 3-10

¥ —-

possible energies and does not pass through the center of force. In this particular
case it is easily seen that the orbit is elliptic, for if f = —&r, the x and y components

of the force are
-/:Y = _kx: jy = _ky.

The total motion is thus the resultant of two simple harmonic oscillations at right
angles, and of the same frequency, which in general leads to an elliptic orbit."A
well-known example is the spherical pendulum for small amplitudes. The familiar
Lissajous figures are obtained as the composition of two sinusoidal oscillations at
right angles where the ratio of the frequencies is a rational number.* Central force
motion under a linear restoring force therefore constitutes the simplest of the

Lissajous figures.

[

Ix0

| -~ [
] N | [2
=12 oM I
T
P =y——  FIGURE 3-11
?’-l r rl

3—4 THE VIRIAL THEOREM

Another property of central force motion can be derived as a special case of a
general theorem valid for a large variety of systems—the virial theorem. It differs

* Gee, for example, K. R. Symon, Mechanics, 3rd ed., (Reading, Massachusetts: Addison-
Wesley, 1971), Section 3-10. ‘ ’



in character from the theorems previously discussed in being statistical in nature,

ie., it is concerned with the time averages of various mechanical quantities.
Consider a general system of mass points with position vectors r, and applied

forces F (including any forces of constraint). The fundamental equations of

motion are then
p,=F. (1-1)
We shall be interested in the quantity
G= Z P T

where the summation is over all particles in the system. The total time derivative
of this quantity is

dG

E{—:Zi',.-pi+2pi-ri. . (3-23)
The first term can be transformed to

Zi'f'pi =Y mi,§; = Emiv? = 2T,

while the second by Eq. (1-1) is

Zps'ri =ZE"’:‘-

Equations (3-23) therefore reduces to

%Zpi'ri =2T+ ZFr (3-24)

‘The time average of Eq. (3-24) over a time interval 7 is obtained by integrating
both sides with respect to t from 0 to 7, and dividing by :

! EMEELJ?+ZEﬁ
TJ, dt t ;
or
— 1
2T+ Y E'1, = ;[G(T) — G(0)]. (3-25)

If the motion is periodic, i.e., all coordinates repeat after a certain time, and if 7 is
chosen to be the period, then the right-hand side of {(3-25) vanishes. A similar
conclusion can be reached even if the motion is not periodic, provided that the
coordinates and velocities for all particles remain finite so that there is an upper
bound to G. By choosing 7 sufficiently long, the right-hand side of Eq. (3-25) can
be made as small as desired. In both cases it then follows that

T= ——;EF}-ri. (3-26)
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Equation (3-26) is known as the virial theorem, and the right-band side is called
the virial of Clausius. In this form the theorem is very useful in the kinetic theory of
gases. Thus the virial theorem can be used to derive Boyle’s Law for perfect gases
by means of the following brief argument.

Consider a gas consisting of N atoms confined within a container of volume
V. The gas is further assumed to be at a temperature F(not to be confused with the
symbol for kinetic energy). Then by the equipartition theorem ol kinetic theory,
the average kinetic energy of each atom is given by 2kT, k being the Boltzmann
constant, a relation that in effect is the definition of temperature. The left-hand
side of Eq. (3-26) is therefore

3
ENkT.

On the right-hand side of Eq. (3-26), the forces F; include both the forces of
interaction between atoms and the forces of constraint on the system. A perfect
gas is defined as one for which the forces of interaction contribute negligibly to the
virial. This occuts, e.g., if the gas is so tenuous that collisions between atoms ocour
rarely, compared to collisions with the walls of the container, [t is these walls that
constitute the constraint on the system, and the forces of constraint, F,, are
localized at the wall and come into existence whenever a gas atom collides with the
wall. The sum on the right-hand side of Eq. (3-26) can therefore be replaced in the
average by an integral over the surface of the container. The force of constraint
represents the reaction of the wall to the collision forcesexerted by the atoms onthe
wall, i.e,, to the pressure P. With the usual outward convention for the unit vectorn -
in the direction of the normal to the surface, we can write therefore

dF, = — PndA,
or

P
%;E-ri = —3Jn~rdA.

But, by Gauss’ theorem,
jn-rdA = jV-rdV =3V

The virial theorem, Eq. (3—26), for the system representing a perfect gas therefore
can be written '

3 3 :
= =—PV,
2N kT 5PV,
which, cancelling the common factor of § on both sides, is the familiar Boyle’s

Law. Where the interparticle forces contribute to the virial, the perfect gas law of
course no longer holds. The virial theorem is then the principal tool, in classical

- kinetic theory, for calculating the equation-of-state corresponding to such

imperfect gases.
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One can further show that if the forces K, are the sum of nonfrictional forces F
and frictional forces f; proportional to the velocity, then the virial depends only
- on the F; there is no contribution from the f;. Of course, the motion of the system
must not be allowed to die down as a result of the frictional forces, Energy must
constantly be pumped into the system to maintain the motion; otherwise alf time
averages would vanish as ¢ increases indefinitely. (See Exercise 4,

If the forces are derivable from a potential, then the theorem becomes
S
T=§ZVV-r,., (3-27)

and for a single particle. moving under a central force it reduces to

-~ 13V
-7, 3-28
T=3%" (=28)
If Vis a power-law function of r,
V=art!,

where the exponent is chosen so that the force law goes as ¥, then

gr ={n+ 1)V,
ar
and Eq. (3-28) becomes
71727 (3-29)

Byanapplication of Euler’s theorem for homogeneous functions (cf.p.61)itisclear
that Eq. {3-29) holds also whenever V is a homogeneous function in r of degree
n + 1. For the further special case of inverse square law forces nis —2 and the virial
theorem takes on a well-known form:

I
T=-2F. 3-30
> (3-30)

3-5 THE DIFFERENIHAL EQUATION FOR THE ORBIT,
AND INTEGRABLE POWER-LAW POTENTIALS

In treating specific details of actual central force problems a change in the
orientation of our discussion is desirable. Hitherto solving a problem has meant
finding r and 6 as functions of time with E,l,and 50 on, as constants of integration.
But most often what we really seek is the equation of the orbit, i.e., the dependence
of r upon 0, eliminating the parameter t. For central force problems the
elimination is particularly simple, since ¢ occurs in the equations of motion only
as a variable of differentiation. Indeed one cquation of motion, (3-8), simply

v

~
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provides a definite relation between a differential change dt and the
corresponding change 48:

ldt = mr? de. (3-31)
The corresponding relation between derivatives with respect to ¢ and & is

d_ 1 d ' _—

i 40 G-32)

These relations may be used to convert the equation of motion (3-12) into a

different equation for the orbit. Alternatively they can be applied to the formal

solution of the equations of motion, given in Eq. (3-17), to furnish the equation of

the orbit directly. For the moment we shall follow the former of these posstbilities.
From (3-32) a second derivative with respect to ¢t can be writlen

& _tdiild
At m? dd\mr? dO)

and the Lagrange equation for r, {3—12), becomes

I df 1 dr L B 33
r? do\mr? E - mr? = f(i‘) (3-33)
Now, to simplify (3—33) we notice that
1dr_ dil/r)
rde dg
hence if the variable is changed to u = 1/r, we have
tu? c_iz_u + =—Ff L 3-34
m \der " T ul’ (3-34)
Since
d _drd _ 1 d
du dudr  ular

Eq. (3—34a) can be written alternatively in terms of the potential as

d?u m d

T T P
Either form of Eq. (3-34) is thus a differential equation for the orbit if the force
law f, or the potential ¥, is known. Conversely if the equation of the orbit is
known, that is, r is given as a function of 8, then one can work back and obtain the
force law f(r). ’

Here, however, we want to obtain some rather general results, For example, it
can be shown from (3-34) that the orbit is symmetrical about the turning points.
To prove this statement it will be noted that if the orbit is symmetrical it should be
possible to reflect it about the direction of the turning angle without producing

Vv l) (3-34b)
u




any change. If the coordinatces arc so chosen that the lurning point occurs for
{) = 0, then the reflection can be effected mathematically by the substitution of
— 4§ for 6. The differential equation for the orbit, (3-34), is obviously invariant
under such a substitution. Further the initial conditions, here
du
u = u(0), (d@)o =1, for 8 = 0,

will likewise be unaffected. Hence the orbit equation must be the same whether
expressed in terms of & or —@, which 1s the desired conclusion. The orbit is
therefore invariant under reflection about the apsidal vectors. In effect this means
that the complete orbit can be traced if the portion of the orbit between any two
turning points is known, Reflection of the given pottion about-one of the apsidal
vectors produces a neighboring stretch of the orbit, and this process can be
repeated indefinitely until the rest of the orbit is completed, as illustrated in Fig.
3-12.

FIGURE 3-12
Extension of the orbit by reflection of a portion
about the apsidal vectors.

For any particular force law the actual equation of the orbit must be obtained
by integrating the differential equation Eq. (3-34), in either of its forms. However
it is not necessary to go through all the details of the integration, as most of the
work has already been done in solving the equation of motion (3-12). All that
remains is to eliminate ¢ from the solution (3-17) by means of {3—31), resulting in

{dr

df = 3 T (3-35)
’ mr \/E(E - V() — 2mr2) ‘

With slight rearrangements the integral of (3—35) is

+
\/2mE 2mV 1
- 2

g, (3-36)
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or, if the variable of integration is changed to u = 1/r,

J‘\/sz 2mV N
- — U

As in the case of the equation of motion, Eq. f3—37), while solving the
problem formally, is not always a practicable solution, because the integral often
cannot be expressed in terms of wetl-known functions. In fact, only certain types
of force laws have been investigated. The most important are the power-law
functions of r,

13-37)

V =art? : {3-38)

so that the force varies as the nth power of r.* With this potential (3—37) becomes

0 =0, :
\/ZmE _ma s

This again will be integrable in terms of simple functions only in certain cases. If
the quantity in the radical is of no higher power in u than quadratic, the
denominator has the form . /ou? + Bu + y and the integration can be directly
effected in terms of circular functions. This restriction is equivalent to requiring
that

(3-39)

—-n—1=0,1,2,
or, excluding the # = —1 case, for
n=—2,-3,

corresponding to inverse square or inverse cube force laws. One further easily
integrable case is for n = 1, i.e., the linear force; for then Eq. (3—39) can be written

as
u d
0=0,— j 4 . (3-39)

If now we make the substitution

2

U =Xx

dy = dx
] _2\/;5

* The case n = —1 is to be excluded from the following discussion. In the potential (3-38)
it corresp(mds to a constant potential, i.e., no force at all. It isan equally anomalous case if
© the exponent is used in the force law dm:ctly, since a force varying asr~ corresponds toa
logarithmic potential, which is not a power law at all. A logarithmic potential is unusual
for motion about a point; it is more characteristic of a line source.




Eq. (3-39') becomes

0 1™ dx
° 2| pmE_ 2ma
vy T TR TR

which again is in the desired form. Thus, a solution in terms of simple functions is
obtained for the exponents.

8:

. (3-40)

n=1,-2 -3

This does not mean other powers are not integrable, merely that they lead to
functions not as well known. For example, there is a range of exponents for which
Eq. (3-39) involves elliptic integrals, with the solution expressed in terms of
elliptic functions.

By definition air eiliptic integral is

J‘R(x, w)dx,

where R is any rational function of x and «, and w is defined as

= Joux* + fx? + yx? + 8x + .

Of course o and f cannot simultaneously be zero, for then the integral could be
evaluated in terms of circular functions. It can be shown (Whittaker and Watson,
Modern Analysis, 4th ed., p. 512) that any such integral can be reduced to forms
invelving circular functions and the Legendre elliptic integrals of the first, second,
and third kind. There exist complete and detailed tables of these standard elliptic
integrals, and their properties and connections with elliptic functions have been
discussed exhaustively in the literature. Intrinsically they do not require any
higher logical concept for their use than do circular functions:; they are just not as
familiar. From the definition it is seen that the integral in (3—39) can be evaluated
in terms of elliptic functions il

n=~4, -5

We can atlempt to pul the integral in another form also by leading to elliptic
Integrals by multiplying numerator and denominator by u? where £ 18 some
undetermined exponent. The integral then becomes

w du
¥ 1

mE 2ma _
\/ 12 HZp _ Tl 1+2p L‘:Z(p-i-l)

]2
where the expression in the radical will be a polynorﬂial of higher order than a

quartic except if p = 1. The integral will therefore be no worse than elliptic only if
-n—1+4+2=01223,4



L

98 THE TWO-BODY CENTRAL FORCE PROBLEM

or
n=+10,-1,-2,-3.

Forn = +1, —2, — 3 the solutions reduce to circular functions, the case n = — 1
has aiready been eliminated, so that this procedure Jeads to eltiptic functions only
forn=0. p

We again can obtain integrals of the elliptic type in certain cases by changing
thé variable to u? = x. The integral in question then appears as

1 j’ dx
2] amE_ 2 ’
\/TTX EELENI
which reduces to the elliptic for for
1—n
=34
2
leading to the exponents
n=—5 -1

Finally we again can perform the trick of multiplying numerator and
denominator by x, and the condition for obtaining elliptic integrals or simpler is
then

l1—n

+2=0,1234

or
n=—+5+3+1,-1,-3,

which leads to new possibilities only for n = +5, +3. The total number of

integral exponents resulting in elliptic functions is thus
n=+5 +3,0 -4, -5 -7

Although this exhausts the possibilities for integral exponents, with suitable
transformations some fractional exponents can also be shown to lead to elliptic
integrals, :

3-6 CONDITIONS FOR CLOSED ORBITS (BERTRAND’S THEOREM)

We have not yet extracted all the information that can be obtained from the. -
equivalent one-dimensional problem or from the orbit equation without
explicitly solving for the motion. In particular, it is possible to derive a powerful
and thought-provoking theorem on the types of attractive central forces that lead
to closed orbits, e, orbits in which the particle eventually retraces its own
footsteps. '



Conditions have already been described for one kind ol closed orbit, namely a
circle about the center of force. For any given [, this' will occur if the equivalent
potential ¥'(r) has a minimum or maximum at some distance r, and if the energy
E is just equal to V'(r,). The requirement that V" have an extremum is equivalent
to the vanishing of f” at r,, leading to the condition derived previously (cf. p. 79),

) 2
fro) = T - {3-41)
which says the force must be attractive for circular orbits to be possible. In
addition, the energy of the particle must be given by
[2
E=V)+— _ (3-42)

2 3
2mr}

which, by Eq. (3—15), corresponds to the requirement that for a circular orbit 7 is
zero, Equations (3-41) and (3-42) are both clementary and familiar. Between
them they imply that for any attractive central force it is possible to have a
circular orbit at some arbitrary radius r,, provided the angular momentum [ is
given by Eq. (3-41) and the particle energy by Eq. (3-42). p

The character of the circular orbit depends on whether the extremum of V' is
a minimum, as in Fig. 3-8, or a maximum, as in Fig. 3-9. If the energy is slightly
above that required for a circular orbit at the given value of ,, then for a minimum
in V' the motion, though no {enger circular, will still be bounded. However if P
exhibits a maximum, then the slightest raising of E above the circular value, Eq.
(3-34), results in motion that is unbounded, with the particle moving both
through the center of force and out to infinity for the potential shown in Fig. 3-9.
Borrowing the terminology from the case of static equilibrium the circular orbit
arising in Fig. 3-8 is said to be stable; that in Fig. 3-9 is unstable. The stability of
the circular orbit is thus determined by the sign of the second derivative of V' at
the radius of the circle, being stable for positive second derivative (V' concave up)
and unstable for ¥’ concave down. A stable orbit therefore occurs il

;v _ef + 3 -0
arl F=r B E‘h‘ r=ry mrg
Using Eq. (3-41) this condition can be written
¢ 3 ‘
—f P A (r"), (3-43)
or r=ry rO
or !
din f
- < 3 3437
dtar|,_.. (3-43)
If the force behaves like a power law of 7 in the vicinity of the circular radius rg,

k
f=—r,,7+,,
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then the stability condition, Eq. (3-43), becomes

m+ Dk 3k
TR <7 T
or
n<?. f (3-44)

A power-law attractive potential varying more slowly than 1/r? is thus capable of
stable circular orbits for all values of rg.

If the circular orbit is stable, then a small increase in the particle energy above
the value for a circular orbit results in only a slight variation of r about ry. It can
be shown (cf. Appendix A) that for such small deviations from the circularity

conditions, the particle executes a simple harmonic motion in u(= 1/r) about ug:
U = Uy + acos fo. ‘ (3-45)

Here a is an amplitude that depends on the deviation of the energy from the value
for circular orbits,and fis a quantity arising froma Taylor series expansion ofthe
force law f(r) about the circular orbit radius rq. It is shown in Appendix A that §
is given by
' 5 rdf

gi=3+ 7 r=m. {3-46)
As the radius vector of the particle sweeps completely around the plane, u goes
through f cycles of its oscillation (cf. Fig. 3-13).1f 8 is a rational number, the ratio
of two integers, p/q, then after g revolutions of the radius vector the orbit would
begin to retrace itself, i.e.,, the orbit would be closed.

At each rg such that the inequality in Eq. (3-43) is satisfied, it is possible to
establish a stable circular orbit by giving the particle an initial energy and angular
momentum prescribed by Eqgs. (3-41) and (3-42). The question naturally arises
as to what form must the force law take in order that the slightly perturbed orbit

FIGURE 3-13
Orbit for motion in a central forec deviating
slightly from a circular orbit.




about any of these circular orbits should be closed. 1t is clear that under these
conditions B must not only be a rational number, but it must be the same rational .
number at all distances that a circular orbit is possible. Otherwise, since f# can
take on only discrete values, the number of oscillatory periods would change
discontinuously with r,, and indeed the orbits could not be closed at the '
discontinuity. With §? everywhere constant, the defining equation for %, Eq.
(3—46), becomes in effect a differential equation for the force law fin terms of the
independent variable ry. We can indeed consider Eq. (3—46) Lo be written in terms
of rif we keep in mind that the equation is valid only over the ranges in r for which
stable circular orbits are possible. A slight rearrangement of Eq. (3—46) leads to the
equation

dlnf

T ' (3-47)

which can be immediately integrated to give a force law:

‘ k
fr) = —p (3-48)

All force laws of this form, with f a rational number, lead to closed stable orbits for
initial conditions that differ only slightly from conditions defining a circular
orbit. Included within the possibilities allowed by Eq. (3-48) are some familiar
forces such as the inverse squarc law (8 = 1), but of course many other behaviors,
such as.f = — kr 2% (f = 3) are also permitted.

Suppose the 1mt1al LOI‘ldlthnS deviate more than shghtly from the
requirements for circular orbits; will these same force laws still give circular
orbits? The question can be answered directly by keeping an additional term in
the Taylor series expansion of the force law and solving the resuitant orbit
equation. While the calculations involved are elementary they are somewhat
lengthy. Details are given in Appendix A. What is found is that for more than first-
order deviations from circularity, the orbits are closed only for 2 =1 and p* =4,
The first of these values of 82, by Eq. (3-48), leads to the familiar attractive inversc
square law; the second is an attractive force propertional to the radial
distance— Hooke’s law! These force laws, and only these, couid possibly produce
closed orbits for any arbitrary combination of / and E(E < 0),and in fact we know
fromdirect solution of the orbitequation that they do. Hence, the only central forces
that result in closed orbits for all bound particles are the inverse square law and
Hooke's law.*

This is a remarkable result, well worth the tedious algebra required. Tt is a
commonplace of astronomical observation that celestial objects that are bound
move in orbits that are in first approximation closed. For the most part, the small

e —

* This conclusion was apparently first derived by J. Bertrand, Comptes Rendus 77, 849-853
(1373) and is frequently referred to as Bertrand’s theorem. See other pertinent literature
referenced at the end of this chapter.



94  THE TWO-BODY CENTRAL FORCE PROBLEM

deviations from a closed orbit are traceable to periurbations such as the presence
of other bodies. The prevalence of closed orbits holds true whether we consider
only the solar system, or look out to the many examples of true binary stars that
have been examined. Now, Hooke’s law is a most unrealistic force law to hold at all
distances, for itimplies a force increasing indefinitely to infinity. Thus, the existence
of closed orbits for awide range of initial conditions by itsglfleads to the conclusion

that the gravitational force varies as the inverse square of the distance. 1t is not.

necessary, for example, to use the elliptic character of the orbits to arrive at the
gravitational force law.

We can phrase this conclusion in a slightly different manner, one that 15 of
somewhat more significance in modern physics. The orbital motion in a plane can
be looked on as compounded of two oscillatory motions, one in r and one in 0.
That the orbit is closed is equivalent to saying that the periods of the two
oscillations are commensurate—that they are degenerate. Hence, the degenerate
character of orbitsina gravatatzonal field fixes the form of the force law. Later on
we shall encounter other formulations of the relation between degeneracy and the
nature of the potential.

3-7 THE KEPLER PROBLEM: INVERSE SQUARE LAW OF FORCE
The inverse square law is the most important of all the central force laws and it

deserves detailed treatment. For this case the force and potential can be written as

T = k V= ' 3-49
j"’__;_fs - ? ‘(_ )

There are several ways to integrate the equation for the arbit, the simplest being
to substitute (3-49) in the differential equation for the orbit {3-34):

——tu=—33t=—7. {3-50)
u

Changing the variable to y = 1t ~ e the differential equation becomes

d’y

+y=0,

a0z "’

which has the immediate solution
y = Bceos{0 — 8,

B and ¢ being the two constants of integration. In terms of r the solution is

1
ro 1

= m—;‘(l + ecos(f — 8), i3—51) _

T



where

e=B—. (3-52)

[t is instructive to obtain the orbit equation also from the formal solution

(3-39}. While this procedure is longer than the simple integration of the

differential equation (3-50), it has the advantage that the significant constant of

integration e is antornatically evaluated in terms of the energy E and the angular
momentum [ of the system. We write (3-39) in the form

"
f=6 -~ - , (3-53)
2mE  2mku
T

where the integral is now taken as indefinite. The quantity  appearing in (3-53) -
is a constant of integration determined by the initial conditions and will not
necessarily be the same as the initial angle 8, at time t = 0. The indefinite integral
is of the standard form,*

+2 '
dx = I__arc cos — E_Wf, (3-54)
S+ Bx 4 px? \/—y \/(;
where
¢ =p*— day.
To apply this to (3-53) we must set
_ 2mk

2mE
= [2 * ﬁ_l_zs '};=_ls

and the discriminant g is therefore
[ 2mk 2 L+ 2E®
qg= T mik2 |

With these substitutions, Eq. (3—53) becomes

_——

* Cf, for example, B. O. Pierce, A Short Table of Integrals, 3d ed. no 161; 4th ed. no. 166. Sec
also 1.8, Gradshtein and 1. W. Ryzhik, Table of Integrals, no. 2.261, or M. R, Spiegel,
Mathematical Handbook no. 14.280. {For full description of these books, see the section on
‘Works of Reference’ in the Bibliography, p.630). A constant, —#/2, is to be added to the
result as given in all of these tables of integrals in order to obtain (3—45), a procedure that is
Permissible since the integral is indefinite.
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. . 1 . .
Finally, by solving for w, == the equation of the orbit is found to be

R 2
b ! mk (1 + /1 iilz cos (f — 9’)), (3-55)

which agrees with (3—51), except that here ¢ is evaluatgd in terms of E and /. The
constant of integration 8’ can now be identified from Eq. (3-35) as one of the
: turning angles of the orbit. It will be noted that only three of the four constants of
: integration appear in the orbit equation, and this is always a characteristic
; property of the orbit. In effect, the fourth constant locates the initial position of
the particle on the orbit. If we are interested solely in the orbit equation this
information is clearly irrelevant and hence does not appear in the answer, Of
course, the missing constant has to be supplied if it is desired to complete the
solution by finding r and § as functions of time. Thus, if one chooses to integrate
the conservation theorem for angular momentum,

mr2 df = ldt,

' i _ by means of (3-55), one must specify in addition the initial angle 6.
T Now, the general equation of a conic with one focus at the origin is

lr = C(1 + ecosff ~ 8), (3-56)

where ¢ is the eccentricity of the conic section. By comparison with Eq. (3-55) it
follows that the orbit is always a conic section, with the eccentricity

1 %2E12 (3-57
e = —=. -
mk* )
The nature of the orbit depends on the magnitude of e according to the following .
scheme:
e>1, E>0: hyperbola,
e=1, E=0: parabola,
e<l, E < 0: ellipse,
k2 |
e=0, E=— %ﬁu: circle. |
r
This classification agrees with the qualitative discussion of the orbits based on the
energy diagram of the equivalent one-dimensional potential V', The condition for

i circular motion appears here in a somewhat different form, but it can easily be
b derived as a consequence of the previous conditions for circularity. For a circular
. orbit, T and V are constant in time, and from the virial theorem

| : % v
' =T+ V=-=<-+V=—.
- E 3 2



Hence

. .
E=s=— —. —
= 2 (3—-58)
But from Eq. {3—41), the statement of equilibrium between the central force and
the “effective force,” we can write

ko 1?2
TR
or ‘
P
Fn = ——. 3-39
® T mk ( )
With this formula for the orbital radius, Eq. (3-58) becomes
mic?
E=-—

2%

the above condition for circular motion.

In the case of elliptic orbits it can be shown the major axis depends solely on
the energy, a theorem of considerable importance in the Bohr theory of the atom.
The semimajor axis is one half the sum of the two apsidal distances r, and r, (cf.
Fig. 3-6). By definition the radial velocity is zero at thesc points, and the
conservation of energy tmplies that the apsidal distances are therefore the roots of
the equation

2 k
s 7370
Oor
2k oy (3-60)
E 2mE

Now, the coefficient of the linear term in a quadratic equation is the negative of
the sum of the roots. Hence the semimajor axis is given by
ro+r k
g=t T2

=55 (3-61)
Note that in the circular limit, Eq. (3—61) agrees with Eq. (3-58). In terms of the

semimajor axis, the eccentricity of the ellipse can be written

g
! e= J1—— (3-62)
mka’

{a relation we will have. use for in a later chapter). Further, from Eq. (3--62) we
have the expression

2

oy a(l — %), (3-63)
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in terms of which the elliptical orbit equation {3—-51) can be written
_a(l - e?)

T 1 4+ecos(f—0)

From Eq. (3-64) it follows that the two apsidal distances (which occur when

0 — ¢ is 0 and =, respectively) are equal to a(l — e)zand a{l + e), as is to be
expected from the properties of an ellipse.

r (3-64)

3.8 THE MOTION IN TIME IN THE KEPLER PROBLEM

The orbital equation for motion in a central inverse-square force law can thus be
solved in a fairly straightforward manner with results that can be stated in simple
closed expressions. To describe the motion of the particle in time as it traverses
the orbit is, however, 4 much more involved matler. In principle the relation
between the radial distance of the particle r and the time (relative to some starting
point) is given by Eq. (3-18), which here takes on the form

L dr (3-65)
- 2J ———

r 2mr

Similarly, the polar angle 0 and the time are connected through the conservation
of angular momentum,

2
dt = T;Lde,

which combined with the orbit equation (3-51) leads to

t= £ jﬂ 40 (3-66)
~ mk* J, [1 + ecos(d - 0'y]*

Either of these integrals can be carried out in terms of elementary functions. (For
Eq. (3-66) sce, for example, formula 14.391 in Mathematical Handbook of
Formulas and Tables, ed. by M. R. Spiegel). But the relations are very complex,
and their inversion to give r or & as functions of t pose formidable problems,
especially when one wants the high precision needed for astronomical
observations.

To illustrate some of these involvements let us consider the situation for
parabolic motion (e = 1), where the integrations can be most simply carried out.
It is customary to measure the plane polar angle from the radius vector at the
point of closest approach—a point most usually designated as the perihelion.*
This convention corresponds to setting ° in the orbit equation (3-51) equal to

* Literally, the term should be restricted to orbils around the sun, while the more general
term should be periapsis. However, it has become customary 10 use perihelion no matter
where the center of force is. Even for space craft orbiting the moon, official descriptions of
the orbita) parameters refer to perihelion where pericynthion would be the pedantic term.



zero. Correspondingly, time is measured from the moment, T, of perihelion
passage. Using the trigonometric identity

1)
1 + cosf = 2cos?—,

Eq. (3-66) then reduces for parabolic motion to the form

13 ] 40
= Wf sec Ed().

0

Theintegration is easily performed by a change of variable to x = tan(¢/2), leading

to the integral
! JE tan(f; )
f (1 + x%)dx,

t=—
2mk* [,
or
= F tang + ltan-"o (3-67)
T 2mk? 23 20

This is a straightforward relation for t as a function of 4 inversion to obtain 8 at a
given time requires solving a cubic equation for tan{/2), and then finding the
corresponding arctan. The radial distance at the given time is then given through
the orbital equation.

For elliptic motion, Eq. (3—65) is most conveniently integrated through an
auxiliary variable ¥, denoted as the eccentric anomaly,* and defined by the
relation

r=a(l —ecosy) (3-68)

By comparison with the orbit equation, (3—64), it is clear that 1 also covers the
interval 0 to 27 as 0 goes through a complete revolution, and that the perihelion
occurs at v = O {where § = 0 by convention) and the aphelion at y = n = 0. A
geometrical interpretation can be given to y, but it is of historical interest only
(sce, e.g., McCuskey, Introduction to Celestial Mechanics, p. 45). Expressing E and !
in terms of g, e, and &, Eq. (3-65) can be rewritten for elliptic motion as

t""\/E ’ rdr (3-69)
- ijq \/r e a(l _ el)’

2u 2

where, by the conventioh on the starting time, r, is the perihelion distance.
Substitution of r in terms of  from Eq. (3-68) reduces this integral, after some

-
* The name connects with the terminology of medieval astronomy in which 8 was called
the rrue anomaly.
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algebra, to the simple form

fma> ¥
b= T Jl) {1 — ecos l;'l)dl!l (3-70)
(3-70)

First, we may note that Eq. (3-70) provides an ekpression {or the period, 7, of
elliptical motion, if the integral is carried over the full range in i of 2m:

= 21:&3"2\/%. {3-71)

This important result can also be obtained directly from the properties of an
ellipse. From the conservation of angular momentum the areal velocity is
constant and is given by
a4 1, -
— =) = —. 3-72
dt 2 2m ( )
The area of the orbit, A, is to be found by integrating {3-72) over a complete
period r: g
"dA It
—dt=A=—
o dt 2m
Now, the area of an ellipse is
A = nab,
where, by the definition of eccentricity, the semiminor axis b is related to a
according to the formula ‘
bh=a/1—¢e"

By (3-62) it is seen that the semiminor axis can also be written as

[2
b= b2 —,
. mk
and the period is therefore

2m_ 4, ? m
= Z = 2nad? [ —
¢ ! na mk ma k’

as was found previously. Equation (3-71) states that, other things being equal, the
square of the period Is proportional to the cube of the major axis, and this
conclusion is often referred to as the third of Kepler’s laws.* Actually, Kepler was

* Kepler's three laws of planetary motion, published around 1610, were the result of his
pioneering analysis of planetary observations and laid the groundwork for Newton’s great
advances. The second law, the conservation of areal velocity, is a general theorem for
central force motion, as has been noted previously. However, the first—that the planets
move in elliptical orbits about the sun at one focus—and the third are restricted



concerned with the specific problem of planetary motion in the gravitational field
ofthesun. Amore precise statement of his law would therefore be : The square of the
pertods of the various planets are proportional to the cube of their major axes. In
this form the law is only approximately true. It must be remembéred that the
motion of a planet about the sun is a two-body problem and m in {3-71) must be
replaced by the reduced mass:
_ o mymy
s

where m; may be taken as referring to the planet and m, to the sun. Further, the
gravitational law of attraction is

1 N,
f =G F2 »
so that the constant k is
k = Gm,m,, (31

Under these conditions (3—-71) becomes
2na? 2na?
7= &
JGm, +my) . /Gm,

if we neglect the mass of the planet compared Lo the sun. It is the approximate
version of Eq. (3-74) that is Kepler’s third law, for it states that 7 is proportional
to «®”, with the same constant of proportionality for ail planets. However, the
planetary mass m, is not always completely negligible compared to the sun’s: for
example, Jupiter has a mass about 0.1 ¥, of the mass of the sun. On the other hand
Kepler’s third law is rigorously true for theelectron orbits in the Bohr atom, since
and k are then the same for all orbits in a given atom.

To return to the general problem of the position in time for an elliptic orbit,
we may rewrite Eq. (3-70) slightly by introducing the frequency of revolution @

as
In k .
w="= 2 (3-75)
T ma’

The integration in Eq. (3--70) is of course easily performed, resulting in the
relation

(3-74)

, ot = — esiny, (3-76)
known as Kepler's equation. The quantity wt goes through the range 0 to 2x,
along with  and 6, in the course of a complete orbital revolution and is therefore
also denoted as an anomaly, specifically the mean anomaly.

To find the position in orbit at a given time ¢, Kepler’s equation, (3-76),
would first be inverted to obtain the corresponding eccentric anomaly .
Equation (3-68) then yields the radial distance, while the polar angle 8 can be
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expressed in terms of i by comparing the defining equation (3-68) with the orbit
equation (3-64): .

1 —é&?
1 —ecosyr

14 ecosf =

With a little algebraic manipulation this can be simplfified to

cosyfr — ¢

cosf) = —————.
1 —ecosy

(3-71N
By successively adding and subtracting both sides of Eq. (3-77) from unity and
taking the ratio of the resulting two equations, one is led to the alternate form
0 l+e 7
tan—- = tan —. (3-78)
2 1—e 2
Either Bq. (3-77) or (3-78) thus provides 0, once y is known. The solution of the
transcendental Kepler’s equation (3-76) 10 give the value of corresponding to a
given time is a problem that has attracted the attention of many famous
mathematicians ever since Kepler posed the question early in the seventeenth
century. Newton, for example, contributed what today would be called an analog
solution. Indeed, it can be claimed that the practical need to solve Kepler’s
equation to accuracies of a second of arc over the whole range of eccentricity
fathered many of the developments in numerical mathematics in the eighteenth
and nineteenth centuries, A few of the more than 100 methods of solution
developed in the pre-computer cra are considered in the exercises to this chapter.

3-9 THE LAPLACE-RUNGE-LENZ VECTOR

The Kepler problem is also distinguished by the existence of an additional
conserved vector besides the angular momentum. For a general central force,
Newton’s second law of motion can be written vectorially as

p=S{ ; (3-79)

The cross product of p with the constant angular momentum vector L therefore
can be expanded as ‘
mf(r)

pxL= . [r x (r x )]

= Operepy - 8 (3-%0)

Equation (3-80) can be further simplificd by noting that
1d

ret ,—_Ea?(r-r): ri




(or, in less forml terms, the component of the velocity in the radial direction is ).
As L is constant, Eq. (3-80) can then be rewritten, after a little manipulation, as

d _ sl B TR
E(P x L) = —mf{r)r [;—F]
or .
d ‘ dir
— = — Uy o
dr(p x L) mf{r)r dt(r)' (3-81)

Without specifying the form of f{r) we can go no further. But Eq. (3-81) can be
immediately integrated if f{(r) is inversely proportional to r* —thé Kepler
problem. Writing then f(r) in the form prescribed by Eq. (3-49), Eq. {3-81)

becomes
d d [ mkr
2 Ly= —[| —
dr(p‘x ) dt( r )’

which says that for the Kepler problem there exists a conserved vector A defined
by
A=pxL—mik, (3-82)
r o !
In recent times, the vector A has become known amongst physicists as the

Runge-Lenz vector, but priority belongs to Laplace.*
From the definition of A, one can easily see that

A'L=0 (3-83)

since L is perpendicular to p x L and r is perpendicular to L =1 x p. It follows
from this orthogonality of A to L that A must be some fixed vector in the plane of
the orbit. If 6 is used to denote the angle between r and the fixed direction of A,
then the dot product of r and A is given by

Ar=Arcosfl =r-(p x L) — mkr. (3-84)
Now, by permutation of the terms in the triple dot product, we have

rr(pxL)=L-(rxp)=1

*Laplace explicitly exhibited the components of A in the first part of his “ Traite de
Mecanique Celeste,” which appeared in 1799. The designation as the Laplace vector,
common in a number of treatises on celestial mechanics, is therefore probably the proper
eponym. W, R. Hamilton apparently discovered A asa conserved quantity independently in
1845, The first derivation in vector language, substantially as given here, was that of J. W,
Gibbs about 1900. C. Runge repeated the derivation in a pepular German text on vector
analysis (1919) and was quoted as a reference by W. Lenz in a 1924 paper on quantum
mechanical treatment of the perturbed hydrogen atom. Since then the literature on the

Laplace-Runge-Lenz vector and its uses has become enormous. For further historical
details see H. Goldstein, American Journal of Physics, 43, 735 (1975) and 44, 1123 (1976).
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so that Eq. (3-84) becomes

Arcosf = > — mkr,

or '

1 omk A

=1+ = . -

=7 (1 - cos Q) (3-83)
The Laplace-Runge-Lenz vector thus provides still another way of deriving the
orbit equation for the Kepler problem! Comparison of Eq. (3-85) with the orbit
equation in the form of Eq. (3-51) shows that A is in the direction of the radius
vector to the perihelion point on the orbit, and has a magnitude

A = mke. {3-86)

For the Kepler problem we thus have identified two vector constants of the
motion L and A, and a scalar E. Since a vector must have three independent
components, this corresponds to seven conserved quantities in all. Now, a system
such as this with three degrees of freedom has six independent constants of the
motion, corresponding, say, to the three components each of the initial position
and velocity of the particle. Further, the constants of the motion we have found
are all algebraic functions of r and p that describe the orbit as a whole (orientation
in space, eccentricity, etc.); none of these seven conserved quantities relate to
where the particle is located in the orbit at the initial time. Since one of the
constants of the motion must relate to this information, say in the form of T, the
time of the perihelion passage, there can be only five independent constants of
the motion describing the size, shape, and orientation of the orbit. It can there-
fore be concluded that not all of the quantities making up L, A, and E can be
independent;; there must in fact be two relations connecting these quantities. One
such relation has already been obtained as the orthogonality of A and L, Ea.
(3-83). The other follows from Eq. (3-86) when the eccentricity is expressed in
terms of E and ! from Eq. (3-57), leading to

A? = m2k* + 2mEP, (3-87)

thus confirming that there are only five independent constants out of the seven.*

The angular momentum vector and the energy alone contain only four
independent constants of the motion: the Laplace—Runge-Lenz vector thus adds
one more. It is natural to ask why there should not exist for any general central
force law some conserved quantity that together with L and E serves to define the
orbit in a manner similar to the Laplace-Runge-Lenz vector for the special case of
the Kepler problem. The answer seems to be that such conserved guantities can in
fact be constructed,t but that they are in general rather peculiar functions of the

* The arguments in the above paragraph were apparently first presented by Laplace in
1799. He also then explicitly demonstrated the relation between the magnitude of A and

the eccentricity, Eq. (3-86).
+Gnn fer svamnle TV M. Fradkin. Progress of Theoretical Physics 37, 798, May 1967.
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motion. The constants of the motion relating to the orbit between them define the
orbit, 1., lead to the orbit equation giving r as a function of 0. We have seen that in
general orbits for central force motion are not closed ; the arguments of Section 3-6
showed that closed orbits implied rather stringent conditions on the form of the
force law. It is a property of nonclosed orbits that the curve will eventually pass
through any arbitrary (v, ) point that lies between the bounds of the turning points
of . Intuitively this can be seen from the nonclosed nature of the orbit; as § goes
around a full cycle the particle must never retrace its footsteps on any previous
orbit. Thus the orbit equation is such that r is a multivalued function of @ {modulo
27), in fact it is an infinite-valued function of 6. The corresponding conserved
quantity additional to Land E defining the orbit must similarly involve an infinite-
valued function of the particle motion. Only where the orbits are closed, or more
generally where the motion is degenerate, as in the Kepler problem, can we expect
the additional conserved quantity to be a simple algebraic function of rand p such
as the Laplace-Runge—Lenz vector. From these arguments we would expect a
simple analog of such a vector to exist for the case ofa Hooke’s Law force, where, as
we have seen, the orbits are also degenerate, This is indeed the case, except that the
natural way to formulate the constant of the motion leads not to a vector but o a
tensor of the second rank (see Section 9—7). Thus, the existence of an additional
constant or integral of the motion, beyond E and L, that is a simple algebraic
function of the motion is sufficient to indicate that the motion is degenerate and the
bounded orbits are closed.

3-10 SCATTERING IN A CENTRAL FORCE FIELD

Historically, the interest in central forces arose out of the astronomical problems
of planetary motion. There is no reason, however, why central force motion must
be thought of only in terms of such problems; mention has already been made of
the orbits in the Bohr atom. Another field that can be investigated in terms of
classical mechanics is the scattering of particles by central force fields. Of course, if
the particles are on the atomic scale it must be expected that the specific results of
a classical treatment will often be incorrect physically, for quantum effects are
usually large in such regions. Nevertheless there are many classical predictions
that remain valid to a good approximation. More important, the procedures for
describing scattering phenomena are the same whether the mechanics is classical
or quantum: one can learn to speak the language equally as well on the basis of
classical physics.

In its one-bodyformulation the scattering problem is concerned with the
scattering of particles by a center of force. We consider a uniform beam of
particles—whether electrons, or w-particles, or planets is irrelevant—all of the
same mass and energy incident upon a center of force, It will be assumed that the
force falls off to zero for very large distances. The incident beam is characterized by
specifying its intensity I (also called flux density), which gives the number of
particles crossing unit area normal to the beam in unit time. As a particle



