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7.1 MTHE CLASSIFICATION OF BINARY STARS

A detailed understanding of the structure and evolution of stars (the goal of Part II) requires
knowledge of their physical characteristics. We have seen that knowledge of blackbody
radiation curves, spectra, and parallax enables us to determine a star’s effective temperature,
luminosity, radius, composition, and other parameters. However, the only direct way to
determine the mass of a star is by studying its gravitational interaction with other objects.
In Chapter 2 Kepler’s laws were used to calculate the masses of members of our Solar |
System. However, the universality of the gravitational force allows Kepler’s laws to be :
generalized to include the orbits of stars about one another and even the orbital interaction
of galaxies, as long as proper care is taken to refer all orbits to the center of mass of th
: system.

! Fortunately, nature has provided ample opportunity for astronomers to observe bmary
i star systems. At least half of all “stars” in the sky are actually multiple systems, two or more ‘E
stars in orbit about a common center of mass. Analysis of the orbital parameters of these
systemns provides vital information about a variety of stellar characteristics ,including mass, -
The methods used to analyze the orbital data vary somewhat depending on the geometry
of the system, its distance from the observer, and the relative masses and luminosities of
the components. Consequently, binary star systems are classified according to their specific ;
observational characteristics. ;

* Optical double. These systems are not actually binaries at all but simply two stars
that lie along the same line of sight (i.e., they have similar right ascensions and
declinations). As a consequence of their large physical separations, the stars an’.'1
not gravitationally bound and hence the system is not useful in determining stellar j
masses. :

* Visnal binary. Both stars in the binary can be resolved independently, and if thc f
orbital period is not prohibitively long, it is possible to monitor the motion of each |
member of the system. These systems provide important information about the an- i
gular separation of the stars from their mutual center of mass. 1f the distance to the :
binary is also known, the linear separations of the stars can then be calculated. ‘
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FIGURE 7.1 An astrometric binary, which contains one visible member. The unseen component
is implied by the oscillatory motion of the observable star in the system. The proper motion of the
entire system is reflected in the straight-line motion of the center of mass.

* Astrometric binary. If one member of a binary is significantly brighter than the
other, it may not be possible to observe both members directly. In such a case the
existence of the unseen member may be deduced by observing the oscillatory motion
of the visible component. Since Newton’s first law requires that a constant velocity
be maintained by a mass uniess a force is acting upon'it, such an oscillatory behav1or
requires that another mass be present (see Fig. 7.1).

Eclipsing binary. For binaries that have orbital planes criented approximately along
the line of sight of the observer, one star may periodically pass in front of the other,
blecking the light of the eclipsed component (see Fig. 7.2). Such a system is recog-
nizable by regular variations in the amount of light received at the telescope. Not enly
do observations of these light curves reveal the presence of two stars, but the data can
also provide information about relative effective temperatures and radii of each star
based on the depths of the light curve minima and the lengths of the eclipses. Details
of such an analysis will be discussed in Section 7.3

* Spectrum binary. A spectrum binary is a system with two superimposed, indepen-
dent, discernible spectra. The Doppler effect (Eq. 4.35) causes the spectral lines of
a star to be shifted from their rest frame wavelengths if that star has a nonzero ra-
dial velocity. Since the stars in a binary system are constantly in motion about their
mutual center of mass, there must necessarily be periodic shifts in the wavelength
of every spectral line of each star (unless the orbital plane is exactly perpendicular
to the line of sight, of course). It is also apparent that when the lines of one star are
blueshifted, the lines of the other must be redshifted relative to the wavelengths that
would be produced if the stars were moving with the constant velocity of the center of
mass. However, it may be that the orbital period is so long that the time dependence
of the spectral wavelengths is not readily apparent. In any case, if one star is not
overwhelmingly more luminous than its companion and if it is not possible to resolve
each star separately, it may still be possible to recognize the object as a binary system
by observing the superimposed and oppositely Doppler-shifted spectra.
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FIGURE 7.2 The V magnitude light curve of YY Sagittarii, an eclipsing binary star. The data from
many orbital periods have been plotted on this light curve as a function of phase, where the phase is 5
defined to be 0.0 at the primary minimum. This system has an orbital period P = 2.6284734 d, an
eccentricity ¢ = 0.1573, and orbital inclination i = 88.89° (see Section 7.2). (Figure adopted from
Lacy, C. H. S., Astron. 7., 105,637,1993.}

Even if the Doppler shifts are not significant (if the orbital plane is perpendicular
to the line of sight, for instance), it may still be possible to detect twa sets of super-
imposed spectra if they originate from stars that have significantly different spectral
features (see the discussion of spectral classes in Section 8.1).

+ Spectroscopic binary. If the period of a binary system is not prohibitively long and "_
if the orbital motion has a component along the line of sight, a periodic shiftin spectral
lines will be observable. Assuming that the Juminosities of the stars are comparable, ;
both spectra will be observable. However, if one star is much more luminous than the
other, then the spectrum of the less luminous companion will be overwhelmed and
only asingle set of periodically varying spectral lines will be seen. In either situation,
the existence of a binary star system is revealed. Figure 7.3 shows the relationship
between spectra and orbital phase for a spectroscopic binary star system.

These specific classifications are not mutually exclusive. For instance, an unresolved
system could be both an eclipsing and a spectroscopic binary. It is also true that some
systems can be significantly more useful than others in providing information about stellar
characteristics. Three types of systems can provide us with mass determinations: visual
binaties combined with parallax information; visual binaries for which radial velocities are |
available over a complete orbit; and eclipsing, double-line, spectroscopic binaries. ‘
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FIGURE 7.3 The periodic shift in spectral features of a double-line spectroscopic binary. The
relative wavelengths of the spectra of Stars 1 and 2 are shown at four different phases during the orbit:
(a) Star 1 is moving toward the observer while Star 2 is moving away. (b) Both stars have velocities
perpendicular to the line of sight. (c} Star 1 is receding from the observer while Star 2 is approaching.
(d) Again both stars have velocities perpendicular to the line of sight. 3 represents the wavelength
of the observed line Doppler-shifted by the velocity of the center of mass of the system.

7.2 B MASS DETERMINATION USING VISUAL BINARIES

When the angular separation between comiponents of a binary system is greater than the
resolution limit imposed by local seeing conditions and the fundamental diffraction limi-
tation of the Rayleigh criterion, it becomes possible to analyze the orbital characteristics
of the individual stars. From the orbital data, the orientation of the orbits and the system’s
center of mass can be determined, providing knowledge of the ratio of the stars’ masses. If
the distance to the system is also known, from trigonometric parallax for instance, the linear
separation of the stars can be determined, leading to the individual masses of the stars in
the systermn.

To see how a visual binary can yield mass information, consider two stars in orbit
about their mutual center of mass. Assuming that the orbital plane is perpendicular to the
observer’s line of sight, we see from the discussion of Section 2.3 that the ratio of masses
may be found from the ratio of the angular separations of the stars from the center of mass.
Using Eq. (2.19) and considering only the lengths of the vectors ry and r», we find that

| ra _ [74]

= , .1

mz i ap

where a) and a; are the semimajor axes of the ellipses. If the distance from the observer to
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the binary star system is d, then the angles subtended by the semimajor axes aré

[43]) d
o = — an o= —,
d T4
where o, and ¢, are measured in radians. Substituting, we find that the mass ratio simply
becomes

m_% (72
my @y 2)

Even if the distance to the star system is not known, the mass ratio may still be determined,
Note that since only the ratio of the subtended angles is needed, o and oy may be expressed
in arcseconds, the unit typically used for angular measure in astronomy.

The general form of Kepler’s third law (Eq. 2.37),

2
4 3

| L ——
G (my + ma)

gives the sum of the masses of the stars, provided that the semimajor axis () of the orbit

of the reduced mass is known. Since @ = a; + a, (the proof of this is left as an exercise),
the semimajor axis can be determined directly only if the distance to the system has been
determined. Assuming that d is known, m + m, may be combined with m, /m3 to give
each mass separately.

This process is complicated somewhat by the proper motion of the center of mass’ (see
Fig. 7.1) and by the fact that most orbits are not conveniently oriented with their planes
perpendicular to the line of sight of the observer. Removing the proper motion of the center
of mass from the observations is a relatively simple process since the center of mass must
move at a constant velocity. Fortunately, estimating the orientation of the orbits is also
possible and can be taken into consideration. '

Let i be the angle of inclination between the plane of an orbit and the plane of the

sky, as shown in Fig. 7.4; note that the orbits of both stars are necessarily in the same |

plane. As a special case, assume that the orbital plane and the plane of the sky (defined as
being perpendicular to the line of sight) intersect along a line paralle} to the minor axis,
forming a line of nodes. The observer will not measure the actual angles subtended by the
semnimajor axes ¢ and o, but their projections onto the plane of the sky, &, = o cosi and
& = wy cos i. This geometrical effect plays no role in calculating the mass ratios since the
cosi term will simply cancel in Eq. (7.2):

b£43] oz 7 COS 1 '562

N5 o) COS I 6.'1

However, this projection effect can make a significant difference when we are using Kepler’s

third law. Since o = a/d (& in radians), Kepler's third law may be solved for the sum of

I'The annual wobble of steliar positions due to trigonometric parallax must also be considered, when significant.
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FIGURE 7.4 Anelliptical orbit projected onto the plane of the sky produces an observable elliptical
orbit. The foci of the original ellipse do not project onto the foci of the observed ellipse, however.

the masses to give

i = cosi
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where & = &) + dz.

(7.3)

To evaluate the sum of the masses properly, we must deduce the angle of inclination.
This can be accomplished by carefully noting the apparent position of the center of mass
of the sysiem. As illustrated in Fig. 7.4, the projection of an ellipse tilted at an an gle § with
respect to the plane of the sky will result in an observed ellipse with a different eccentricity.
However, the center of mass will not be located at one of the foci of the projection—a result
that is inconsistent with Kepler’s first Jaw. Thus the geometry of the true ellipse may be
determined by comparing the observed stellar positions with mathematical projections of

various eflipses onto the plane of the sky.

Of course, the problem of projection has been simplified here. Not only can the angle
of inclination i be nonzero, but the ellipse may be tilted about its major axis and rotated
about the line of sight to produce any possible orientation. However, the general principles
already mentioned still apply, making it possible to deduce the true shapes of the stars’

elliptical orbits, as well as their masses.

It is also possible to determine the individual masses of members of visual binaries,
even if the distance is not known. In this situation, detailed radial velocity data are needed.
The projection of velocity vectors onto the line of sight, combined with information about
the stars’ positions and the orientation of their orbits, provides a means for determining the

semimajor axes of the ellipses, as required by Kepler’s third law.
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7.3 B ECLIPSING, SPECTROSCOPIC BINARIES

A wealth of information is available from a binary system even if it is not possible to
resolve each of its stars individually. This is particularly true for a double-line, eclipsing,
spectroscopic binary star system. In such a system, not only is it possible to determine the
individual masses of the stars; but astronomers may be able to deduce other parameters as
well, such as the stars’ radii and the ratio of their fluxes, and hence the ratio of their effective
temperatures. (Of course, eclipsing systems are not restricted to spectroscopic binaries but
may occur in other types of binaries as well, such as visual binaries.)

The Effect of Eccentricity on Radial Velocity Measurements

Consider a spectroscopic binary star system for which the spectra of both stars may be seen
(a double-line, spectroscopic binary). Since the individual members of the system cannot
be resolved, the technigues used to determine the orientation and eccentricity of the orbits
of visual binaries are not applicable. Also, the inclination angle { clearly plays a role in the
solution obtained for the stars’ masses because it directly influences the measured radial
velocities. If vy is the velocity of the star of mass #1y and vy is the velocity of the star of
mass m, at some instant, then, referting to Fig. 7.4, the observed radial velocities cannot
exceed V™ = v sini and vi* = vy sini, respectively. Therefore, the actual measured
radial velocities depend upon the positions of the stars at that instant. As a special case, if
the directions of motion of the stars happen to be perpendicular to the line of sight, then the
observed radial velocities will be zero.

For a star system having circular orbits, the speed of each star will be constant. if the
plane of their orbits lies in the line of sight of the observer (i = 907), then the measured
radial velocities will produce sinusoidal velocity curves, as in Fig. 7.5. Changing the orbital

inclination does not alter the shape of the velocity curves; it merely changes their amplitudes
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FIGURE 7.5 The orbital paths and radial velocities of two stars in circular erbits (¢ = 0). In this
example, M; = 1 Mg, M, = 2 Mg, the orbital period is P = 30 d, and the radial velocity of the
center of mass i v = 42 km s~'. vy, 12, and vgy are the velocities of Star 1, Star 2, and the center
of mass, respectively. (a) The plane of the circular orbits lies along the line of sight of the observer.
{b) The observed radiai velocity curves.
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FIGURE 7.6 The orbital paths and radial velocities of two stars in elliptical orbits (g = 0.4). As
in Fig. 7.5, M), = 1 Mg, M; = 2 M, the orbital period is P = 30 d, and the radial velocity of the
center of mass i$ vy = 42 km s™'. In addition, the orientation of periastron is 45°. vy, v, and vep
are the velocities of Star 1, Star 2, and the center of mass, respectively. (a) The plane of the orbits lies
along the line of sight of the observer. (b} The observed radial velocity curves.

by the factor sin {, To estimate { and the actuai orbital velocities, therefore, other information
about the system is necessary.

When the eccentricity, e, of the orbits is not zero, the observed velocity curves become
skewed, as shown in Fig, 7.6. The exact shapes of the curves aiso depend strongly on the
orientation of the orbits with respect to the observer, even for a given inclination angle.

In reality, many spectroscopic binaries possess nearly circular orbits, simplifying the
analysis of the system somewhat. This occurs because close binaries tend to circularize
their orbits due to tidal interactions over timescales that are short compared to the lifetimes
of the stars involved.

The Mass Function and the Mass—Luminosity Relation

If we assume that the orbital eccentricity is very small (¢ < 1), then the speeds of the stars
are essentially constant and given by vy = 2xa/ P and vy = 2maa/ P for stars of mass m;
and m, respectively, where a; and a, are the radii (semimajor axes) and P is the period of
the orbits. Solving for a; and a; and substituting into Eq. (7.1), we find that the ratio of the
masses of the two stars becomes
mo (7.4)
L) U]
Because vy, = vy sini and vy, = v sini, Eq. (7.4) can be written in terms of the observed
radial velocities rather than actual orbital velocities:
]

ﬂ_uz,/sini _ 1.5)

my  v/sini vy,

As is the situation with visual binaries, we can determine the ratio of the stellar masses
without knowing the angle of inclination.
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However, as is also the case with visual binaries, finding the sum of the masses doeg
require knowledge of the angle of inclination. Replacing a with

P
a=a +a=— (v + 1)
2

in Kepler’s third law (Eq. 2.37) and solving for the sum of the masses, we have
' '
(v + ).

ity = 2 G

Writing the actual radial velocities in terms of the observed values, we can express the sum
of the masses as

m + My = P (Ulr + UZr) (7 6
! T sin® § )

Itis clear from Eq. (7.6) that the sum of the masses can be obtained only if both v}, and u,,
are measurable. Unfortunately, this is not always the case. If one star is much brighter than
its companion, the spectrum of the dimmer member will be overwhelimed. Such a system is
referred to as a single-line spectroscopic binary, If the spectrum of Star 1 is observable but
the spectrum of Star 2 is not, Eq. (7.5) allows vy, to be replaced by the ratio of the stellar
masses, giving a quantity that is dependent on both of the system masses and the angle of
inclination. If we substitute, Eq. (7.6) becomes

P U:f m|)3
—— {14+ — .
2 G sint i na

my+my =
Rearranging terms gives
e :
mj Y r,
———5in’ i = ——,. (7.7 3
(my + m3)? 272G "

The right-hand side of this expression, known as the mass function, depends only on the k-
readily observable quantities, period and radial velocity. Since the spectrum of only one .4

star is available, BEq. (7.5) cannot provide any information about mass ratios. As a result,
the mass function is useful only for statistical studies or if an estimate of the mass of at least

one component of the system already exists by some indirect means. If either m| or sini
is unknown, the mass function sets a lower limit for my, since the left-hand side is always

less than ma.

Even if both radial velocities are measurable, it is not possible to get exact values for ny- 3
and m3 without knowing /. However, since stars can be grouped according to their effective 1
temperatures and luminosities (see Section 8.2), and assuming that there is a relationship
between these quantities and mass, then a statistical mass estimate for each class may be
found by choosing an appropriately averaged value for sin® i. An integral average of sin’i |
({sin’ i}) evaluated between 0° and 90° has a value 37/16 =~ 0.589.7 However, since no |

2The proof is left as an exercise.
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FIGURE 7.7 The mass—luminosity relation. (Data from Popper, Annu. Rev. Astron. Astrophys., 18,
115, 1980.)

Doppler shift will be noticeable if the inclination angle is very small, it is more likely that
a spectroscopic binary star system will be discovered if # differs significantly from 0°. This
selection effect associated with detecting binary systems suggests that a larger value of
(sin® i} ~ 2/3 is more representative.

Evaluating masses of binaries has shown the existence of a well-defined mass—
Inminosity relation for the large majority of stars in the sky (see Fig. 7.7). One of
the goals of the next several chapters is to investigate the origin of this relation in terms of
fundamental physical principles.

Using Eclipses to Determine Radii and Ratios of Temperatures

A good estimate of i is possible in the special situation that a spectroscopic binary stat
system is observed to be an eclipsing system as well. Unless the distance of separation
between the components of the binary is not much larger than the sum of the radii of the
stars involved, an eclipsing system implies that i must be close to 90°, as suggested in
Fig. 7.8. Even if it were assumed that i = 90° while the actual value was closer to 75°,
an error of only 10% would result in the calculation of sin® i and in the determination of
iy + Hia.

From the light curves produced by eclipsing binaries, it is possible to improve the estimate
of i still further. Figure 7.9 indicates that if the smaller star is completely eclipsed by the
larger one, a nearly constant minimum will occur in the measured brightness of the system
during the period of occultation. Similarly, even though the larger star will not be fully
hidden from view when the smaller companion passes in front of it, a constant amount
of area will still be obscured for a time, and again a nearly constant, though diminished
amount of light will be observed. When one star is not completely eclipsed by its companion
(Fig. 7.10), the minima are no longer constant, implying that i must be less than 90°.

i
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Plane of the sky\

Orbital plane

FIGURE 7.8 The geometry of an eclipsing, spectroscopic binary requires that the angle of inclina-
tion i be close to 90°. '

Time

FIGURE 7.9 The light curve of an eclipsing binary for which i = 90°, The times indicated on the
light curve correspond to the positions of the smaller star relative to its larger companion. It is assumed
in this example that the smaller star is hotter than the larger one.

Time

FIGURE 7.10 The light curve of a partially eclipsing binary. It is assumed in this example that the
smaller star is hotter than its companion.
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Using measurements of the duration of eclipses, it is also possible to find the radii of each
member of an eclipsing, spectroscopic binary. Referring again to Fig. 7.9, if we assume that
i >~ 9(°, the amount of time between first contact (¢;) and minimum light (t), combined
with the velocities of the stars, leads directly to the calculation of the radius of the smaller
component. For example, if the semimajor axis of the smaller star’s orbit is sufficiently
large compared to either star’s radius, and if the orbit is nearly circular, we can assume that
the smaller object is moving approximately perpendicular to the line of sight of the observer
during the duration of the eclipse. In this case the radius of the smaller star is simply '

== 7.8
rs—'i(tb_ta)s ()

where v = v, + vy is the relarive velocity of the two stars (v, and vy are the velocities of the
small and large stars, respectively). Similarly, if we consider the amount of time between 1,
and t., the size of the larger member can also be determined. [t can be quickly shown that
the radius of the larger star is just

v v :
re = 2 (t: —t)=rs + 5 (e = 1) - (7.9)

Example 7.3.1. An analysis of the spectrum of an eclipsing, double-line, spectroscopic
binary having a period of P = 8.6 yr shows that the maximum Doppler shift of the hydrogen
Balmer Ha (656.281 nm) line is Ax; = 0.072 nm for the smaller member and only Ad, =
0.0068 nm for its companion. From the sinusoidal shapes of the velocity curves, it is also
apparent that the orbits are nearly circular. Using Eqs. (4.39) and (7.5), we find that the
mass ratio of the two stars must be

Me = rs = Bk = 10.6.
Mg Urg Akg

Assuming that the orbital inclination is i = 907, the Doppler shift of the smaller star
implies that the maximum measured radial velocity is

Ay
Al°c=33k_ms_l

Vpy =
and the radius of its orbit must be

‘ a="F 142 %107 m=95aU.

! 2m
In the same manner, the orbital vclociﬁy and radius of the other star are v, = 3.1 km s~' and

a: = 0.90 AU, respectively. Therefore, the semimajor axis of the reduced mass becomes
a=a, +a; = 104 AU,

confinued
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The sum of the masses can now be determined from Kepler’s third law. If Eq. (2.37) is
written in units of solar masses, astronomical units, and years, we have

ms +mg=a>/P?=152M,.

Solving for the masses independently yields m; = 1.3 Mg and m; = 13.9 M.
Furthermore, from the light curve for this system, it is found that 1, — 7, = 11.7 hours
and ¢, — #, = 164 days. Using Eq. (7.8) reveals that the radius of the smaller star is

_ (Urs + Ur&)

re = > (ty —t,) =76 x 10°m = 1.1 Rg,

where one solar radius is 1 Rg = 6.96 x 10® m. Equation (7.9) now gives the radius of the
larger star, which is found to be 7 = 369 Rg.
In this particular system, the masses and radii of the stars are found to differ significantly.

The ratio of the effective temperatures of the two stars can also be obtained from the light
curve of an eclipsing binary. This is accomplished by considering the objects as blackbody
radiators and comparing the amount of light received during an eclipse with the amount
received when both members are fully visible,

Referring once more to the sample binary system depicted in Fig. 7.9, it can be seen
that the dip in the light curve is deeper when the smaller, hotter star is passing behind
its companion. To understand this effect, recall that the radiative surface flux is given by
Eq. (3.18),

4
Fro=Fyt =0T,

Regardless of whether the smaller star passes behind or in front of the larger one, the
same total cross-sectional area is eclipsed. Assuming for simplicity that the observed flux
is constant across the disks,? the amount of light detected from the binary when both stars
are fully visible is given by

Bo=k(JTr£2Frg+7T?’3Fr.¢),

where k is a constant that depends on the distance to the system, the amount of intervening 4
material between the system and the detector, and the nature of the detector. The deeper, 7
or primary, minimum occurs when the hotter star passes behind the cooler one. If, as in
the last example, the smaller star is hotter and therefore has the larger surface flux, and the
smaller star is entirely eclipsed, the amount of light detected during the primary minimum l :
may be expressed as ' i

= k;n:r’g2 Foe
while the brightness of the secondary minimum is
By =k (mrf —mrl) Fog + kmri Fps.

3Stars often appear darker near the edges of their disks, a phenomenon referred to as /imb darkening. This effect ’
will be discussed in Section 9.3. 4
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Since it is generally not possible to determine & exactly, ratios are employed. Consider
the ratio of the depth of the primary to the depth of the secondary, Usmg the expressions
for By, By, and B,, we find immediately that

By — Bp Frs :
—r = : 1
| Bo— B, Fy (710
or, from Eq. (3.18),
By — Bp 7, * -
55 (7). Ty

Example 7.3.2. Further examination of the light curve of the binary system discussed in
Example 7.3.1 provides information on the relative temperatures of the two stars. Photo-
metric observations show that at maximuom light the bolometric magnitude is Moo = 6.3,
at the primary minimum s, , = 9.6, and at the secondary minimum Mpo),; = 6.6. From
Eq. (3.3), the ratio of brightnesses between the primary minimum and maximum light is

By _ qo0(mao—menn)s = 048,
0

Similarly, the ratio of brightnesses between the secondary minimum and maximum light is

_gi = 100(msio—mar)/3 — 76,

0
Now, by rewriting Eq. (7.10), we find that the ratio of the radiative fluxes is

Fs _ 1=B,/By

= =3.97.
Fre 1—Bs/By

Finally, from Eq. (3.18),

A Computer Modeling Approach

The modern approach to analyzing the data from binary star systems involves computing
détailed models that can yield important information about a variety of physical parame-
ters. Not only can masses, radii, and effective temperatures be determined, but for many

systems other details can be described as well. For instance, gravitational forces, combined =

with the effects of rotation and orbital motion, alter the stars’ shapes; they are no longer
simply spherical objects but may become elongated (these effects will be discussed in more
detail in Section 18.1). The models may also incorporate information about the nonuniform

I
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FIGURE 7,11 A synthetic light curve of RR Centauri, an eclipsing binary star system for whicl
the two components are in close contact. The open circle represents the size of the Sun. The orbita
and physical characteristics of the RR Cen system are P = 0.6057d, ¢ = 0.0, M, = 1.8 Mg, M; =
.37 Mg. The spectral classification of the primary is FOV (see Section 8.1 for a discussion of stella
spectral classifications). (Figure adapted from R. E. Wilson, Publ. Astron, Sec. Pac., 106,921, 1994
©Astronomical Society of the Pacific.) ‘

distribution of flux across the observed disks of the stars, variations in surface temperatures
and so on. Once the shapes of the gravitational equipotential surfaces and other parameter:
are determined, synthetic (theoretical} light curves can be computed for various wavelengtt
bands (U, B, V, etc.), which are then compared to the observational data. Adjustments in
the model parameters ‘are made until the light curves agree with the observations. One such
model for the binary system RR Centauri is shown in Fig, 7.11. In this system the two stars
are actually in contact with each other, producing interesting and subtle effects in the light
curve.

In order to introdiuce you to the process of modeling binary systems, the simple code
TwoStars is described in Appendix K and available on the companion website. TwoStars
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makes the simplifying assumption that the stars are perfectly spherically symmetric. Thus
TwoStars is capable of generating light curves, radial velocity curves, and astrometric data
for systems in which the two stars are well separated. The simplifying assumptions imply
that TwoStars is incapable of modeling the details of more complicated systems such as
RR Cen, however.# :

The study of binary star systems provides valuable information about the observable :
characteristics of stars. These results are then employed in developing a theory of stellar
structure and evolution,

7.4 MTHE SEARCH FOR EXTRASOLAR PLANETS :

For hundreds of years, people have looked up at the night sky and wondered if planets
might exist around other stars.> However, it wasn’t until October 1995 that Michel Mayor .
and Didier Queloz of the Geneva Observatory anmounced the discovery of a planet around |
the solar-type star 51 Pegasi. This discovery represented the first detection of an extrasolar
planet around a typical star.® Within one month of the announced discovery of 51 Peg, i
Geoffery W. Marcy and R. Paul Butier of the University of California, Berkeley, and the
Carnegie Institution of Washington, respectively, announced that they had detected planets
around two other Sun-like stars, 70 Vir and 47 UMa. By May 2006, just over ten years after
the original announcements, 189 extrasolar planets had beern discovered orbiting 163 stars
that are similar to our own Sun.

This modern discovery of extrasolar planets at such a prodigious rate was made possible
by dramatic advances in detector technology, the availability of large-aperture telescopes,
and diligent, long-term observing campaigns. Given the huge disparity between the Jumi-
nosity of the parent'star and any orbiting planets, direct observation of a planet has proved
very difficuit; the planet’s reflected light is simply overwhelmed by the luminosity of the
star.” As a result, more indirect methods are usually required to detect extrasolar planets,
Three techniques that have all been used successfully are based on ideas discussed in this
chapter: radial velocity measurements, astrometric wobbles, and eclipses.® The first method,
the detection of radial velocity variations in parent stars induced by the gravitational tug
of the orbiting planets has been by far the most prolific method at the time this text was
wrilten,

More sopbhisticated hinary star modeling codes are available for download on the Internct or may be purchased,
Examples include WD95, originally written by Wilson and Devinney and later modified by Kallrath, et al., and
Binary Maker by Bradstreet and Steelman.

1 tact, itis thought that Giordaro Bruno (1548-1600), a one-time Dominican monk, was executed for his belief
in a Copernican universe filled with an infinite number of inhabited worlds around other stars; recall Section 1.2,
%In 1992, Alexander Wolszczan, of the Arecibo Radio Observatory in Puerto Rico, and Dale Frail, of the National
Radic 'Astronomy Observatory, detected three Earth- and Moon-sized planets around a pulsar (PSR 1257+12),
an extremely compact collapsed star that was produced following a supernova explosion; see Section 16.7. This
discovery was made by noting variations in the extremely regular radic emission coming from the collapsed star.
7In April 2004, G. Chauvin and colleagues used the VLT/NACQO of the European Southern Observatory to obtain
an infrared image of a giant extrasolar planet of spectral type between L5 and L9.5 orbiting the brown dwarf
IMASSWI1207334-393254. HST/NICMOS was also able to observe the brown dwarf's planetary companion.
& Another technigue has alsc been employed in.the search for extrasolar planets; it is based on the gravitational
lensing of light; see Chapter 17.




