
Suppl. to Ch. 3 of Astrophysical Processes Liouville’s Theorem
©Hale Bradt and Stanislaw Olbert 8/8/09

LT-1

Liouville’s Theorem

Hale Bradt and Stanislaw Olbert

Hale Bradt & Stanislaw Olbert

Supplement to Chapter 3 of Astrophysical Processes (AP)
by Hale Bradt, Camb. U. Press. 2008

(www.cambridge.org/us/catalogue/catalogue.asp?isbn=9780521846561)

What we learn in this Supplement

Liouville’s theorem tells us that the density of points representing particles –
“representative points” (RP) – in six dimensional (6-D) x, p phase space is
conserved as the RP propagate if certain conditions are met. Specifically, any forces
encountered by the particles must be conservative and differentiable (i.e.,
“smooth”); they must not change the total (kinetic plus potential) energies of the
particles nor can they be abrupt forces such as those arising from collisions. More
formally, the forces must be divergence free in momentum space (p-divergence =
0). The phase-space density is known as the distribution function f (m–3 (N
s)–3); see Section 3.3 of AP.

The theorem is first illustrated graphically and justified from Newton’s second law
for one-dimensional motion. Formally, the theorem follows from consideration of
the continuity equation applied to six-dimensional phase space, the Boltzmann
equation, which takes into account abrupt collisions, and the Vlasov (or
collisionless Boltzmann) equation. Finally, one examines the rate of change of
the distribution function (the total derivative), which describes the density change
in 6-D phase space as one follows the RP. The Vlasov equation tells us it is equal to
zero. Liouville’s theorem is thus proven.

Forces giving rise to energy losses due to radiation and dissipation do not satisfy
the p-divergence requirement, but magnetic forces and (Newtonian) gravitational
forces do.

The free propagation through phase space of the RP of a group of photons emitted
by a photon source is illustrated graphically. The volume occupied by their RP
in phase space is conserved and hence so is the phase-space density. Thus,
Liouville’s theorem is obeyed. The conservation of specific intensity, I(�, �, �)
with units W m–2 Hz–1 sr–1,  a basic quantity in astronomy, follows directly from
this.

Solutions to the problems are available on the associated password-protected portion
of the CUP website for this text (see URL above).
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1 Introduction

Liouville’s theorem underlies all of astronomy! It describes a fundamental characteristic of
photons as they propagate freely through space.  The conservation of brightness from source to
detector is a direct consequence of Liouville’s theorem.

In astronomy and space physics, one often encounters groups or “swarms” or streams of
particles or photons. Methods to describe these collectively have been developed by some of the
great physicists and mathematicians. These approaches extend beyond that of Newton who
successfully described the behavior of a single particle in a force field, under non-relativistic
conditions (v << c).

In this supplement, we use the concepts of phase space and phase-space density (the distribution
function f) introduced in Section 3.3 of Astrophysical Processes (AP; by Hale Bradt, Camb U.
Press 2008). Here we introduce the continuity equation, the Boltzmann equation, the Vlasov
equation, and finally Liouville’s theorem. These concepts are used in many branches of physics,
e.g. kinetic theory, plasma physics, and fluid dynamics as well as astrophysics. We have
demonstrated in Section 3.3 of AP that the specific intensity, I(�, �, �) with units W m–2 Hz–1 sr–1,
a fundamental quantity in astronomy, is directly related to the phase-space density f; see (3.26) of
AP.

Liouville’s theorem tells us that the density of points representing particles in 6-D phase space is
conserved as one follows them through that space, given certain restrictions on the forces the
particles encounter. Applied to photons, this is the theoretical underpinning of the equivalence of
surface brightness and specific intensity (see (3.27) of AP) or the conservation of specific intensity
as one follows the photons through space.

In Section 2, we develop the concept of phase space and motions of “representative points
(RP)” therein. In Section 3, we develop Liouville’s theorem. In Section 4, we examine the effect of
frictional and magnetic forces. In Section 5, we demonstrate graphically that photons traveling in
space obey Liouville’s theorem.
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2 Representative points (RP) in phase space

In this section, we first present a few relations from special relativity that permit us to
develop relations that are correct for relativistic particles, i.e., those that move close to the speed of
light. This is essential because a photon is the extreme case of a relativistic particle and photons are
intrinsic to most astrophysics. We then expand on our discussion of phase space and the
distribution function in Section 3.3 of AP and exhibit graphical examples of Liouville’s theorem in
a one-dimensional (1-D) world.

Relativistic Particles

Einstein’s special theory of relativity addresses the kinematics and dynamics of relativistic
particles, those with speed v approaching c, the speed of light. The basic ideas and equations of
special relativity are developed in Sections 7.2 and 7.3 of AP. The relations of special relativity
reduce to those of Newtonian mechanics at low speeds, v << c. Here we present a few of the those
relations.

In special relativity, the energy U of a particle of mass m is related to its rest energy mc2 and its
speed v as,

U =  mc2 (Relativistic energy) (1)

where

�  = 1– v
2

c2
–1/2

 
(Lorentz factor) (2)

which is known as Lorentz factor �. At speed zero, the relativistic energy is equal to the rest energy,
U  mc2.

The momentum p, a vector, is given in the theory by

 p =  mv (Momentum) (3)

which shows that p and v are parallel, as in the non-relativistic case; this is the non-relativistic
relation enhanced by the factor �. Since � is a measure of energy (1) which can increase without
limit, the momentum can also increase without limit as the energy is increased, even though the
speed is limited to v < c in special relativity.

A relation between U and p  |p| is obtained by evaluating the quantity U2 – c2p2 with (1) and
(3) while invoking (2) to eliminate v,

U2 –  pc 2 = mc2 2 . (4)

We find itequal to the square of the rest mass energy mc2 of the particle, which is invariant under
relativistic (Lorentz) transformations. The left-hand side of (4) is the square of the four vector
[cp,U], which is also therefore a Lorentz invariant; see discussion of (7.20) in AP.
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The momentum (3) depends on velocity directly through the term v and also through the term �
(2). Thus a relation between v and p may be obtained from (3) by eliminating � with (2), squaring
and solving for v,

 v = 
c p

p2 + m2c2
  =  

c2 p
U

(Velocity - momentum) (5)

The second equality follows from (4). This is (3.22) of AP.

The components of v will be vi = cpi/(p2 + m2c2)1/2 where the denominator is simply U/c and
p2 = px2 + py2 + pz2. Thus the x component of velocity depends on the y and z components of
momentum as well as the x component! At speeds v << c, one has from (3), p << mc, and then (5)
yields the usual (non-relativistic) expression, v = p/m.

A simple relation between v and U is developed later in this chapter (54). For the record, it is v =
�pU, where �p is the del operator in momentum space and �pU is called the p-gradient of U.

Phase space

Phase space is a 6-dimensional (6-D) space with the usual three spatial dimensions x, y, z
and also three dimensions of momenta: px, py, pz. Here we develop briefly the concept of phase
space and that of phase-space density. See also Section 3.3 of AP.

Momentum space

The momentum p can be illustrated in terms of its cartesian components px,  py,  pz (Fig.
1a). A rectangular volume element dVmom  d3p in this space is described by the product dpx dpy
dpz ,

dVmom = dpx dpy dpz  d3p  . (Volume element;
momentum space)

(6)

In spherical coordinates, the volume element in momentum space is (from Fig. 1c),

dVmom = p2 sin � d�p d�p dp    d3p (Spherical coordinates) (7)

The angles are subscripted as �p, �p because they specify angles of the momentum vector p in
momentum space rather than the position angles of a position vector x for a particle in physical (x,
y, z) space.
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Figure 1: Volume elements in momentum space. (a) The element in cartesian coordinates. Each of the
particles in the element have vector momentum close to p. The components of the vector are measured on
the axes. (b) The element for a group of particles each with momentum p and directions within a cone. (c)
The volume element in spherical coordinates.

The element of solid angle element in physical space d� = sin � d� d�. Analogously, in
momentum space,

d�p = sin �p d�p d�p (Solid angle in mom. space) (8)

which allows one to rewrite (7) more compactly,

 dVmom = p2 d�p dp (9)

The expression p2 d�p is simply the area occupied by the element on the sphere in Fig. 1b. This is
a special case of a conical volume element.

Phase-space density

Consider a sample of particles streaming through space. At some given instant of time one
can note the spatial position and momentum of any given particle. The 6 coordinates, x, y, z, px, py,
pz  (or xi, pi) of a particle locate a point in phase space. Each particle can be represented similarly.
As time progresses and forces are applied to a group of particles, the points representing them move
to new positions in this six dimensional space. We call these “representative points” (RP).

A particle density in phase space at any given position and time can be determined by counting
the RP within the 6-dimensional volume element defined by x  x + dx, y  y + dy, z  z + dz, px

 px + dpx, py  py + dpy, pz  pz + dpz,
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dVphase = dx dy dz dpx dpy dpz   d3x  d3p (Volume element in phase
space; m3 (N s)3)

(10)

where we note that units of momentum may be written as newton seconds (from F = dp/dt).

The distribution function f may be defined with

dN  =  f(x, p, t)  d3x  d3p  , (Number in volume element

d3x  d3p  at x, p)

(11)

where dN is the dimensionless number of particles at time t in the aforementioned volume element.
The particle number dN divided by the size of the 6-D volume element equals f , which may
therefore be treated as the density of RP at the position in question, x, p. This density is a function
of the six coordinates and time t; it is called the phase-space density or the distribution function f:

f(x, y, z, px, py, pz, t)  f(x, p, t) . (Distribution function;

m–3 (N s)–3)

(12)

The distribution function is thus the number of RP per unit 6-D phase space.

The function f(x, p, t) describes the density of RP in phase space in the limit of very small
volume elements. It can apply to an infinitesimal volume element because the volume of the element
and the number of particles in the element scale proportionally. However, the differential volume
element must be large enough to contain sufficient numbers of particles for the density to be
evaluated.

The utility of the distribution function stems in large part from its Lorentz invariance; see Section
7.8 of AP.

Derived quantities

The distribution function f is a very useful quantity. It is directly related to the particle
specific intensity J as shown in AP (3.23),

J = p2f Particle specific
intensity;

s–1 m–2 J–1 sr–1

(13)

and to the photon (energy) specific intensity I� (3.26),

I� = h
4�3

c2
 f 

 

Energy specific
intensity;

W m–2 Hz–1 sr–1

(14)

It also significant that all possible measurements of numbers, energies, and directions of travel of
an incoming flux of particles can be described as an integral over the distribution function, for
example the particle density n in physical space, (3.15) of AP or (20) below, the particle flux (3.16)
or the bulk velocity,
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vb = vav = v f n d3p 

 .

(Bulk velocity; m s–1) (15)

The velocity vector v in the integrand of (15) is the velocity of the particles in a given cell of
momentum space; it is thus a function of p as given by (5). The integration averages v, weighted by
the density in momentum space f/n, over all directions to yield the bulk velocity vb.

Motion in phase space

We comment on different types of forces and give graphical examples of representative
points (RP) moving in a 2-D phase space., x, px.

Forces, positions and momenta

Particles may be acted upon by forces that change their trajectories, either abruptly, e.g.,
through collisions, or smoothly through magnetic, electric or gravitational fields. A “smooth” force
is one that produces an infinitesimal change in momentum �p in an infinitesimal interval of time �t.
That is, it is differentiable with respect to the position, momentum and time variables.

The path followed by a given particle depends upon its initial momentum and initial x, y, z
position and also upon the forces imposed upon it as it travels. The RP of a group of particles with
similar positions and momenta will occupy a small region in phase space, and they will propagate
more or less together as the associated particles encounter similar forces along their paths.

We will find that the density of RP in phase space remains constant if the force is conservative,
i.e. it does not change the mechanical (kinetic plus potential) energy of a particle. A force that
depends only on position is conservative while forces that depend on momentum generally are not.
The magnetic force is an excepion as it does not change the momentum magnitude; it is a
conservative force.

Constant velocity in a 2-dimensional phase space

The tracks followed by RP in a 6-D space can not be plotted simply on a 2-D piece of
paper. Accordingly one may choose to plot the two coordinates, x, px, of the RP in a one-
dimensional world wherein particles are constrained to move only in the x direction.

Consider the RP in the 2-D phase space that occupy a differential rectangular volume with a
range of momenta �p and range of position �x (Fig. 2a).
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Figure 2: Two-dimensional phase space (x, px). (a) No forces encountered by particles. A group of
representative points (RP) occupying a differential rectangular area evolves from a rectangle to a
parallelogram wherein the RP with the most momentum travel the farthest. (b) Conservative constant
“smooth” force that depends on neither position nor momentum. The resultant (vertical) momentum change
�px = F�t is superposed on the horizontal motion due to the initial velocity to yield final positions 1�–4�.
In both cases, the area of the region containing the RP is preserved. If no particles are lost (e.g., through
collisions), the density of RP in phase space is conserved.

Suppose there are no forces acting on these particles. How will they move? Consider the four
sample RP located at the corners of the rectangle, RP 1, 2, 3, and 4. Since each of the particles has a
positive momentum in the x direction, each will be displaced to a new, greater x position, according
to,

 �x =  vx �t  =  
px
m �t (Position displacement;

non-relativistic, v << c)
(16)

or, more generally, for particles of all speeds up to v = c, from (5),

�x =  vx �t  = 
cpx

p2 + m2c2
 �t (Position displacement;

all speeds v  c)
(17)

The particles do not change their momenta because there are no forces on them. The particles 1
and 4 have identical momenta initially. Thus, their RP each move the same distance in the time �t;
their spacing remains constant as they move. The same is true of RP 2 and 3, but they move farther
than 1 and 4 because the particle momentum is greater. (For extremely relativistic particles, the
distance traveled becomes independent of px, �x  c �t.) The RP at other locations in the rectangle
will move a distance that is related to the individual momenta; see (17).

For the non-relativistic case (16), the distance traveled is linear in px. The result is that all the RP
in the original rectangle come to occupy a region shaped as a parallelogram at time t + �t. Since the
base length and the height of the rectangle and the parallelogram are the same, the areas of the two
shapes are identical. As these RP continue to move in phase space at constant velocity, the
parallelogram will become more and more tilted, but it will always have the same area. In the
relativistic case (17), the left and right sides of the rectangle would become curved according to
(17). Since the left and right sides would have the same shape, the area in phase space would still be
preserved.
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The areas as defined here contain the same RP before and after the move. Their number is
preserved. This together with the area conservation just demonstrated tells us that the density of RP
is conserved as one follows the RP in phase space – for the no-force case,

Constant force in a 2-dimensional phase space

Now, suppose a group of RP in a small element of phase space (e.g. a parallelogram) moves
under the influence of a constant force Fx that depends on neither position nor momentum. Thus in
the time �t, all the RP in the parallelogram will experience the same displacement in the px direction,

�px = Fx �t (18)

This moves all the RP upward by the same amount in phase space. This preserves the shape of the
parallelogram and its area, as illustrated in Fig. 2b.

This vertical motion �px is superposed on the rightward motion �x during �t, which arises from
the velocity at the beginning of the time interval (Fig. 2b) just as in the no-force case. For
differential motions, the force does not materially affect the distance traversed because the distance
change varies only as (�t)2; recall that, for v << c, �x = at2/2 where a = Fx/m and m is the particle
mass. In other words, the additional momentum �px developed during this interval has no time to
cause develop a significant modification to the position displacement. The true differential motion
(diagonal line in Fig. 2b) can thus be approximated as the illustrated two step process.

The net result of the motions in x and px, both of which conserve area, is that the area in phase
space area is conserved. A sequence of such displacements will yield macroscopic displacements in
both x and px with the area containing the RP remaining the same.

The conservation of area has been illustrated here for the 2-D phase space x, px. In a six-
dimensional space, one could in principle apply the same graphical argument to a six-dimensional
volume element. Thus one might not be surprised to find that a six-dimensional volume element
containing a group of RP would maintain its volume as the RP move through phase space. The
element might change shape, but its volume would remain constant. Since the number of RP in the
volume is conserved, their density is conserved.

We illustrated this for a constant force. Forces can depend on position and momentum. A formal
proof given below demonstrates that the phase space density is conserved if the force is
conservative  (see above), or more formally, if the “p-divergence” of the force equals zero.
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3 Liouville’s theorem

The constancy of the density of RP in phase space as one follows the RP, as illustrated
above, is known as Liouville’s theorem. The density function is known as the distribution function
f(x, p, t). Thus,

f(x, p, t) = constant at phase-space 
positions that follow a group of 
representative points (RP) as time 
progresses.

or equivalently, as we shall demonstrate,

df
dt

 = 0
 

(Liouville’s theorem) (19)

This, as we have stated and shall see below, is valid if the forces are conservative and differentiable.

Liouville’s theorem will be derived formally. We begin with a general conservation law, the
continuity equation, which is applied to phase space to yield the Boltzmann equation. In turn, this is
modified to produce the collisionless Boltzmann equation (or the Vlasov equation), which may be
restated as Liouville’s theorem.

Continuity equation

The concept of continuity is presented here. This is a formal way to relate the rate of change
of density of particles at a point in space to the velocities, density gradients, and forces under the
assumption that the number of particles is conserved. We carry the concept from physical space
(x, y, z), to momentum space, and finally to 6-D phase space (xi, pi).

Physical-space continuity

First we present the concept of continuity in ordinary physical space. This is a macroscopic
description of flowing matter, such as fluid flow. The motion of any small volume element of the
fluid is a superposition of individual atomic motions which may be quite random, e.g. from thermal
motions, in the frame of reference of an element of the fluid.

Consider a closed surface fixed in physical (x, y, z) space, Fig. 3a. Particles are streaming
through the region with a bulk velocity vb(x), which can vary in magnitude and direction with x, y, z
position and with time. In doing so, some of the stream will pass through the volume enclosed by
the closed surface. The density of particles at any position is designated n(x) (m–3), which is related
to the distribution function as (3.15),

n(x,y,z,t) =  f  d3p (m–3; number density
in x,y,z space)

(20)

The total number of particles within the volume is,
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 N =  
vol

 

n dV 
(Total number of particles within

closed surface)
(21)

(a) Particle flux = n v�dS

Flow line

Closed surface Particle (b)

�

v �t

n
�

Element of 
surface,
area dS.

dS cos �

dS

v

Figure 3. Flow of particles through a closed surface. The particles in the speckled area pass through an
element dS (from the inside to the outside) in time �t. Their number is nv�t dS cos �. The number
passing through unit area in unit time, i.e., the particle flux, is thus nv cos �, or in vector notation, nv·dS.
This sketch could equally well represent the flow of RP in phase space.

The flux of particles (number/m2-s) passing outward through any given position of the surface at
some given time is obtained as a function of velocity v and density n from the geometry of Fig. 3b.
The flux is seen to be the dot product of the normal component of the velocity and the density at
each point on the surface, n vb�dS, where dS is the element of surface area, with the positive
direction being outward. Integration of this quantity over the entire surface yields the total rate at
which particles cross the surface in the outward direction. This is equivalent to the negative rate of
change of the number N of particles within the volume, N/ t.

N
t
  =  –  

closed
surface

 

n vb�dS 
(Continuity equation;

integral form)
(22)

The partial differentiation indicates that the variation with time of number N is evaluated at a fixed
set of positions, i.e. at the positions surrounded by the closed surface.

The continuity equation can be written in differential form by making use of Gauss’s theorem,

  A·dS =  div A dV
(Gauss’s theorem) (23)

for an arbitrary vector field A(x, t), which can vary with position x and time t. The left side is an
integration of the flux of A over a closed surface, and the right side is an integration of “divergence
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A” over the volume enclosed by the same closed surface. Apply Gauss’s theorem to the right side
of (22), apply (21) to the left side,

   

 

n
t
 dV  =  –  

 

div nvb dV 
(24)

The two integrals are over the same volume, namely that enclosed by the surface, and this volume
can have any arbitrary shape or be at any arbitrary location. Hence, they can be equal in general
only if the integrands themselves are equal. The differential form of the continuity equation is thus

 
n
t
  =  – div nvb  

(Continuity equation;
differential form)

(25)

The left term is the time rate of change of the particle density at a fixed position, and the right
term represents, qualitatively, the “source” or “sink” of the vector nvb. Since particles are
conserved by assumption, the particle density at any point in space can increase only if there is
more flux entering the differential region than leaving it, i.e. the divergence is negative. This can
occur, for example, as a high-density bubble of particles flows into a region of space. A positive
divergence represents a net outward flux, which leads to a reduction of n.

Introduce the definition of the del operator,

�   i 
x

  +  j 
y

  +  k 
z
 

(Del operator) (26)

where  i, j, k are unit vectors in the x, y, z directions respectively. The divergence of some vector
A = Axi  + Ayj  + Azk  is defined as the dot product ��A,

div A   ��A  =  
Ax

x
 + 

Ay

y
 +  

Az

z
  

(Divergence defined) (27)

where the partial derivative / x specifies that only variation with respect to x is considered; all other
variables are held constant, e.g., y, z, and t. We thus can write (25) in the del notation,

n
t
  =  – �� nvb  

(28)

where the number density n and bulk velocity vb are both macroscopic quantities and are functions
of x, y, z, t.

Phase-space continuity

Let us now move to a microscopic description of the motions of the individual particles. In
the presence of known forces, one can describe each particle sufficiently to define its future motion
with the 6 coordinates of position and momentum. Each particle can be represented as a point in
this space, and they must flow smoothly through the space if the forces are smooth (e.g. no
collisions, or they are differentiable). A closed surface can be constructed in this six-dimensional
space and the density defined as f (RP per unit phase-space volume).
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One can then construct a continuity equation for this space just as we did to arrive at (28). The
result is a simple generalization wherein the temporal variation of the distribution function at a fixed
position in phase space depends on a six-dimensional divergence,

 
f
t
  =  –�� f v   – �p� f F  

(Continuity equation
in phase space)

(29)

The rightmost term of (29) may be called the “p-divergence” of f F. The symbol �p is the del
operator in momentum coordinates; the variables pi replace the xi in (26),

 �p    i 
px

  +  j 
py

  +  k 
pz

 
(Gradient operator with

momentum coords.)
(30)

Finally, the force F in the rightmost term replaces v in the central term, because a “velocity” in
momentum space is a force; compare dx/dt = v and dp/dt = F.

Since the right-most term of (29) is a scalar (as are all divergences), it is invariant to rotations of
the frame of reference. Thus we can choose the directions  i, j, k  in p space to be the same as those
in ordinary (physical) x, y, z space. The force may thus be described in the usual manner as

 F = Fx i  + Fy j  + Fz k (31)

The expression (29) is the desired differential continuity equation in 6-D space. Its validity
depends upon the particles (or fluid) being conserved and the forces being differentiable.

Boltzmann equation

p–divergence forces

The six-dimensional continuity equation (29) can be expanded by the rules of
differentiation,

 
f
t
 = – v ��f  –  f  ��v  –  F��pf  –  f  �p�F  .

(Continuity equation in
phase space)

(32)

If necessary, write out the components of (29) to see that (32) follows from (29). Here, we see the
two divergences ��v and �p�F and have introduced the gradient �f and �pf . In the spatial case,
the gradient is

 grad f  �f =  
f
x
 i + 

f
y
 j +  

f
z
 k 

(Definition of gradient) (33)

Note that the gradient is a vector. In momentum coordinates, �pf is simply (33) with the xi replaced
by the pi.

�pf  =  
f
px

 i + 
f
py

 j +  
f
pz

 k 
(34)
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The ��v in the third term of (32) is equal to zero because, in phase space, the partial derivative
with respect to a spatial variable (e.g. / y) implies that all other coordinates are held constant,
including the momentum variables pi. In our case, the arguments of the spatial derivatives in the
divergence are the components of v, which are functions only of the components pi (5). Thus the
partial derivatives with respect to the spatial variables, e.g, �vx /�x, are zero. In vector notation, one
says that the divergence of velocity is zero,

��v  =  0
 

(Identity) (35)

The second term on the right side of (32) is thus identically equal to zero with no physical
assumptions required to make it so.

In contrast, we choose to apply a physical restriction so that the fourth term on the right side may
be set to zero. Here we have derivatives with respect to pi of the force components Fi. The fourth
term will therefore go to zero if the forces do not depend on particle momentum. (Recall that this
was a condition in our graphical presentation above.) In vector notation, the restriction is more
general, namely that the p-divergence (in momentum space) of the force must equal zero,

 �p�F = 0 (p-divergence-free force) (36)

Collisions added

With this knowledge, one can write a generalized continuity equation by including a
collision term (�f/�t)coll that incorporates not only abrupt collisions but any force for which �p�F 
0. This enables us to drop the �p�F term in (32) and to write without loss of generality the
Boltzmann equation,

f
t
 = – v ��f   –  F��pf  + f

t coll
  

(Boltzmann
equation)

(37)

In this context, the forces F in (37) are only those that satisfy �p�F = 0, i.e., they are differentiable
conservative forces.

The Boltzmann equation has wide utility in fluid mechanics and kinetic theory.

Vlasov equation

Boltzmann equation without collisions*

If the collision term in (37) is set again to zero, one obtains the collisionless Boltzmann
equation, also known as the Vlasov equation,

 
f
t
  +  v ��f   +  F��pf  =  0  .

(Vlasov equation =
Liouville’s theorem)

(38)

This equation does explicitly require that the p-divergence term in (32) equal zero. The forces F in
(38) must be differentiable and conservative. The collision term has been omitted under the
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assumption that collisional effects are negligible. This is acceptable in highly rarified gases (e.g.,
“collisionless” plasmas, a cosmic-ray “gas” in outer space, or a gas of photons in outer space).

Preview of Liouville’s theorem

In the particulate view (in contrast to the fluid view), the velocity v represents the rate of
change of the coordinates of the particles, dxi/dt where the subscripts designate the 3 dimensions, x,
y, and z. Similarly, the force F represents the rate of change of the momentum coordinates, dpi/dt.
We can thus express (39) as follow,

 
f
t
 + 

f
xi

 dxi
dt

i

 

  + 
f
pi

 
dpi

dt
 

i

 

  =  0 
(Vlasov equation =

Liouville’s theorem)
(39)

You may recognize the left side of (38) as the total derivative, df/dt. We will demonstrate below
that the total derivative is a measure of the density of RP in phase space as one follows a local
group of RP through phase space. Equation (39) or (38), being equal to zero, df  = 0, thus tells us
that the phase space density is conserved as one follows the RP. Equation (38) is thus a statement
of Liouville’s theorem. If the reader readily accepts these statements, he or she may wish to skip
ahead to (44). Otherwise, continue on for discussion of the terms in the Vlasov equation and the
physical significance of the total derivative.

Density gradient and speed: physical space

Let us pause a minute to gain some insight into the Vlasov equation in its component form
(39) and the partial time derivative of the distribution function.

Consider the motion in the x direction of a cylinder of RP of cross sectional area 1 m2 (Fig. 4a).
Let the gas have a spatial density gradient in the x direction f/ x = 5 RP m–3 (N s)–3/m; that is, the
phase-space density increases to the right by 5 units per meter. The unit of volume in x, p phase
space is m3 (N s)3. Also, let this gas have an x component of velocity dx/dt = 3 m/s as shown in the
figure, with no motion in the other five directions of phase space.

The temporal variation of the density of RP at a fixed position in space is obtained by the partial
���t because it holds all other coordinates fixed. The differential volume element (Fig 4a) thus stays
fixed in position while the gas moves to the right at 3 m/s. The time rate of change of density at the
fixed position of the volume element decreases. It is equal to the negative of the product of the
density gradient and the speed,

 
f
t
  =  – 

f
x
  dx

dt
  =  – 15 

particles m–3 N s –3

s  . (40)

The product of derivatives reproduces one term of the first summation of (39), or equivalently of
(38), and hence illustrates its significance. If there were finite components of the gradient and
velocity in the y and z directions, the density would be affected by all three terms of the summation.

The application of a differentiable force in the x direction does not change our graphical
description of this differential expression. A force would change the speed v only after a significant
passage of time; recall v = v0 + at where a is the acceleration.
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(a) Physical space

(b) Momentum space

(c) Phase space px, x

px

x

� px

x

“vphase”  Fx =  
dpx /dt

vx = dx/dt

Volume element

RP px
dpx

dt
  =  Fx =  4 N dVp

1 (N s )2

 
f

px
 = 7 

RP m–3 N s –3

 N s
 

x

Volume element

Representative
points (RP)

1 m2 dx
dt

 =  3 m/s
dV

 
f
x

 = 5 
RP m–3 N s –3

 m

�

Figure 4: Density gradients and velocities in phase space as incorporated into the Vlasov equation
(collisionless Boltzmann equation). (a) Representative points (RP) shown in x, y, z space, the “spatial” part
of phase space. The cylinder has a gradient of RP density, increasing to the right, and it is moving to the
right. The product of the gradient and speed yield the time dependence of the density f/ t at the fixed
location of the differential volume element dV. (b) RP in momentum space. The geometry and formalism
are exactly the same as in (a). This yields an expression for f/ t at a fixed position in momentum space.
(c) Area element �x�px at fixed position in two-dimensional phase space. The “phase-space velocity” of
the RP is toward the upper right with components dx/dt, the spatial velocity, and dpx/dt, the force. The
value of f / t at the fixed rectangular element depends on both of these “velocities” and the gradients of
density (indicated by density of dots).

Density gradient and speed: momentum space

Now, let us look at momentum space, and in particular px (Fig. 4b). Hold the other five
components constant. Here we have an exact analog to the spatial case. There may be a density
gradient in the px direction, e.g. f/ px = 7 RP m–3(N s)–3/(N s), that is, the density of RP increases
with momentum. Let all the RP move to the right with “speed” 4 (N s)/s (Fig. 4b). In momentum
space, this “velocity” is a time rate of change in momentum dpx/dt which is a force, Fx = dpx/dt =
4 N. The force is applied to all the particles, regardless of their momenta. This motion leads to a
time rate of change of the density (in momentum space) at fixed px,

 
f
t
  =  – 

f
px

  
dpx

dt
  =  – 28 

RP m–3 N s –3

s  (41)

Again the product of derivatives is one term of the second summation of (39). If the gradient and
force had y and z components, all three terms in the summation would contribute to f/ t.
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The total change of f in six dimensions would be due to gradients and velocities in all six
dimensions, as given in (38). The gradients and velocities in a two-dimensional phase space, x, px,
are shown in Fig. 4c. It is apparent that the number of particles in the area �x �px is due to the flow
and gradients in both directions.

This provides, we hope, some physical insight into the meaning of the products in the Vlasov
equation and of the partial time derivative of the distribution function, �f��t. The Vlasov equation is
basically an illustration of continuity in 6-D phase space with particle conservation and only
conservative differentiable forces.

Rate of change of distribution function

The determination of the total rate of change of the distribution function df/dt is the final
step in our quest for Liouville’s theorem.

Two positions in phase space

The quantity f is defined as the phase-space density at time t in a volume element at x, p.
Now, consider the density at a nearby position x�, p� and at a slightly different (later) time t�, where
the positions and times are separated by the differentials dx, dp, dt (Fig. 5). This new position
could, in principle, be at any arbitrary nearby point.

px

x

vRP

 f(x, p, t)

 f( x  p�, t  )��,

p� = p + dp
x  = x  + dx
t  =   t  + dt
�
�

Representative
points

Figure 5: Observer frame of reference in two-dimensional phase space following the RP. The relative phase-
space densities f are compared at two differentially separated positions by means of the total derivative df/dt,
which specifies that these positions be on the path followed by the RP. The total time derivative turns out
to be zero (see text), that is df/dt = 0, thereby demonstrating that the phase-space density f  does not change
with time if one follows the RP.

Compare the two positions/times by means of the definition of the total differential,

  f  � – f   df  =  
 

 f
xi

  dxi  +  
 

 f
pi

 dpi  +  
f
t
 dt 

(Compare two
positions)

(42)

where again we sum over the components of the spatial and momentum coordinates. The last term
gives the temporal change at a fixed position (fixed x, p) while the other six terms yield the
differential changes due to the translation to the new position in phase space. Next, divide by the
time interval dt to obtain the total change per unit time,
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f� – f

dt
   df

dt
 =  

 

 f
xi

  dxi
dt

  +  
 

 f
pi

 
dpi

dt
  +  

f
t
  . (Total derivative)

(43)

which is the total derivative.

The velocity components dxi/dt and dpi/dt are the changes of phase-space coordinates divided by
the time interval between the two measurements. Thus they are the velocity components of the frame
of reference of the observer who travels in phase space from the unprimed position to the primed
position in time dt. Since we have defined the xi to be the coordinates of the RP in phase space,
these velocity components are also the velocity components of the RP.

The total derivative df/dt (43) thus is the rate of change of density f in a frame of reference that
follows the RP in phase space. This is the quantity addressed by Liouville’s theorem. The question
is, then, what is its value?

Liouville’s theorem, finally!

The right hand side of (43) is equal to the left side of the Vlasov equation (39). In turn, the
Vlasov equation tells us that these terms sum to zero. Thus we find that the time rate of change of
RP density in phase space, as one follows the RP, is zero,

  df
dt

 =  0 
 

 .
(Liouville’s theorem;

first version)
(44)

Equation (44) is a statement of Liouville’s theorem that particle density in phase space is constant
as one follows the particles. This is the result we anticipated in (19) and previewed in (39). There is
yet another form of the theorem that we now present.

Conservation of phase-space volume

The statement of Liouville’s theorem (44) was that the particle density in phase space is
conserved as one follows the RP. This was derived from the continuity equation which is based on
the conservation of particles, or equivalently the conservation of RP in phase space. The
conservation of RP and the conservation of RP density together tell us that the volume occupied by
the RP in phase space is also conserved. This conservation of phase-space volume is the other
statement of Liouville’s theorem.

Let us write this out formally. The conservation of RP within the six-dimensional element is,
from (11),

 d
dt

f(x, p, t)  d3x  d3p  =  0 
 

(RP number conserved) (45)

which can be expanded,

 d3x d3p d
dt

f(x, p, t)   +  f(x, p, t)  d
dt

 d3x d3p   =  0 
 

(46)

The density conservation, df /dt = 0 (Liouville’s theorem) given in (44), tells us that the first term of
(46) is zero. The phase-space density f may take on arbitrary values, so that
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 d
dt

 d3x d3p   =  0
  

(Liouville’s theorem; second version.) (47)

Thus, as claimed, the volume occupied by the RP sample is conserved as one follows the particles.
This is the aforementioned other statement of Liouville’s theorem.

The conditions for the validity of (44) and (47) are that the forces be p-divergent free and
differentiable (e.g. no collisions). The former requirement is equivalent to requiring that the forces
be conservative, that is, dependent only on position. This usually means the forces are independent
of momentum, but, in fact, the forces can depend on momentum if the p-divergence (taking into
account all three momentum variables) is zero. Magnetic forces are an example of this as we
discuss below.

4 Special forces

We have shown that Liouville’s theorem is valid if the force is divergence free in
momentum coordinates, �p�F = 0. Here we examine two cases: friction or radiation forces that do
not satisfy Liouville’s theorem and magnetic forces, which do satisfy it.

Radiation and dissipation

Let the particles experience frictional forces such that they are all slowed with the highest-
momentum particles slowing the most. The effect of this is to move particles to lower momenta with
the higher momenta particles being moved the most. This serves to squash the volume occupied in
momentum space (Fig. 2). (It does not affect the spread in x for particles of any given momentum.)
Thus the phase-space volume is not conserved, and Liouville’s theorem is not satisfied.

Consider a friction force  Ffric = Fxi   –bpxi where b is a constant. The divergence of the force
is therefore,

 �p�Ffric.  =  
Fx
px

    – 
bpx
px

  =  –b    0 
(p-divergence of friction

force is non-zero)
(48)

This more formally indicates that particles acted on by such a force will not obey Liouville’s
theorem. Losses of energy due to radiation of energy by the particles (e.g. synchrotron radiation;
Ch. 8 of AP) will have the same effect.

Magnetic force

Another special case is the magnetic force. In this case, the force does depend upon the
momentum,

FB = q v � B. (Magnetic force) (49)

Ordinarily a momentum-dependent force would not yield p-div = 0. However, this particular force
where the force is normal to the velocity is an exception. Here we demonstrate formally that the
magnetic force is p-divergence free (�p�FB = 0).

The p-divergence of (49) is

 �p�FB = �p� qv  B     qB� �p  v  – qv � �p  B  (50)
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where we used a vector identity to expand the divergence. The quantities in parentheses (right
terms) are the “p-curl v” and “p-curl B” in momentum space, respectively, where the p-curl
operation is defined as

 curl A p  �p A 

   
Az
py

 – 
Ay
pz

 i +  
Ax
pz

 – 
Az
px

 j + 
Ay
px

 – 
Ax
py

 k 

(Curl in
mom.
space)

(51)

Both of these curl terms on the right side of (50) are zero. The curl B term is zero simply
because the magnetic field is an externally imposed field that depends on position but does not
depend upon the momentum of the individual particle. As a consequence, all the derivatives with
respect to momentum components are zero.

The (curl v)p term in (50) goes to zero because v is a p-gradient of a scalar function, and the curl
of a gradient is identically zero (Prob. 41). Consider the p-gradient of the relativistic energy U,

 grad U p  �pU =  
U
px

 i + 
U
py

 j +  
U
pz

 k 
(p-grad) (52)

where, from (4),

 U = c px2 + py2 + pz2+ m2c2  (Relativistic particle energy) (53)

Evaluation of (52) yields (Prob. 41) �pU = c2 p/U, which from (5) equals v, giving the useful and
relativistically correct relation between v and U,

 v = �pU (v as fcn of U) (54)

Thus v indeed is the p-gradient of a scalar, and the p-curl of v is

 �p�v  =  �p��pU  =  0 (curlp v = 0) (55)

as substitution of the components of (52) into (51) readily confirms.

Both terms on the right side of (50) are thus zero for the magnetic force. Hence the magnetic
force is p-divergence free,

 �p�FB  =  �p� q v � B   = 0 (Magnetic force is divergence
free in mom. space)

(56)

and Liouville’s theorem (df/dt = 0) is valid for the magnetic force.

Particles emerging from a slit in a magnetic field

The conservation of phase space volume for particles in a magnetic field may be
demonstrated with the example of Fig. 6. Negatively charged particles emerge from the slit on the
right which has width �x. The particles all have the same magnitude of momentum but have a small
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spread of directions �� about the vertical. A uniform magnetic field directed out of the paper
pervades the region. This causes the particles to travel in circular trajectories of radius R. The figure
shows the two extreme and central circular trajectories that all emerge from the center of the slit.
The emerging particles have many other trajectories, those that emerge at intermediate angles and at
different positions.

�x

��

x

y

zout

Entrance
slit

�y

R

�x

��

�p
1

Bout Circle 
centers

|p1| = |p�1| = |p2| 

= |p�2|  ≡ p

p�
2

� p
2

p
2

�� 

p
1

p�
1

Figure 6: Demonstration of validity of Liouville’s theorem for a magnetic force. Charged particles leave the
right slit with a large spread of directions (transverse momenta �p1) and small range of lateral positions
�x. At the top of the trajectory the spatial spread �y has become quite large while the momentum spread
�p2 has become quite small. The four-dimensional phase space volume thus remains constant.

Let us look at the phase-space volume of a small group of particles traveling in the x, y plane.
(We suppress the z coordinate.) The phase-space has four coordinates, x, y, px, py, and the volume
element is:

�Vphase = �x �y �px �py (57)

At the entrance slit, the momentum spread is equal to the magntude of �p1, or �px = p �� and the
spatial spread is simply �x. The two x components of the phase space volume at the slit thus give,

�Vphase,x = �x �px = �x  p��   =  p �� �x (�V in x direction at slit) (58)

At the top of the trajectories, the initial spread of momentum px = p1  has been converted into
a large spread of spatial positions �y. The vertical spread of the extreme circle centers (upper and
lower black dots) for these trajectories is R��, and hence �y = R��.

The other dimension of interest at the center at the top of the trajectories is the vertical spread of
momentum, �py. The trajectories shown are all horizontal at this position because their centers are
displaced vertically from one another (in the limit of small �� ). However a small spread of
momentum does arise from the trajectories (not shown) that emerge from other positions within the
slit, e.g., at the edges. These trajectories will be circles displaced horizontally from those shown,
with a spread of �x. This results in a small spread of propagation directions �� = �x/R at the top
of the central trajectory (see geometry in Fig. 6). This corresponds to a vertical spread of
momentum, �py = p�� = p �x/R. The two y components of the phase-space volume at the top thus
give
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�Vphase,y = �y �py = R��  p�x/R = p �� �x (Volume at top) (59)

The phase-space volumes of (58) and (59) are equal.

One can also show that the phase-space components omitted in (58) and (59) yield equal
products at the two positions. At the slit, a range �y represents the small spread of vertical positions
occupied by our group of particles, and a range �py represents a range of momentum magnitudes.
To first order, the initial spread in y position becomes a similar spread in x position at the top, and
the initial spread in py becomes a similar spread in px at the top. Thus the missing components also
balance. We therefore find that the four-dimensional phase-space volume (57) is the same at the slit
as at the top, which demonstrates Liouville’s theorem.

The particles continue on and refocus at the left slit, but with small deviations from their
configuration at the right slit. Close examination (Prob. 42) shows that again the phase-space
volume is conserved. Finally, Liouville demands that the phase-space volume remain constant for
our group of particles all along their trajectories, not just at the points discussed here.

Cosmic rays in the Galaxy

Particles that wend their way along magnetic field lines in the Galaxy and in the earth’s
magnetic field thus obey Liouville’s theorem. The phase-space density of a group of particles does
not change. The conditions on this are that particles not be lost to a volume element by collision or
radiation processes. These conditions are met in large part for cosmic-ray ions in the Galaxy
spiraling around the interstellar magnetic fields and by solar particles streaming into the earth’s
magnetic field.

The particle specific intensity J (s–1 m–2 J–1 sr–1) is directly related to the phase-space density f
as J = p2f (13). Thus, if Liouville’s theorem tells us that the phase space density is constant if the
forces encountered are conservative, the particle specific intensity is also conserved. This condition
is largely satisfied in interstellar space. Thus, satellite measures of the cosmic-ray intensity J
directly tell us conditions (specifically the quantity J) far away in distant parts of the Galaxy from
which the cosmic rays may have originated.

5 Photons in phase space

Photons are a particularly simple example of particles traversing the spaces between stars.
They travel at the speed of light and in “straight” lines (in a vacuum in the absence of gravity). It is
instructive, as an example, to follow in phase space a group of photons emitted from a distant
diffuse source. We will demonstrate graphically that they occupy an unchanging volume in phase
space; i.e., Liouville’s theorem is satisfied.

A photon is a relativistic particle with zero rest mass, m = 0. Its velocity-momentum relation is,
from (5),

 v  = 
cp

p2 + m2c2
  

m = 0

 
 c 

p
p  (Velocity-mom. relation

for photon)
(60)
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Photons leaving an extended source

The photons that leave the surface of a source occupy larger and larger volumes of ordinary
(physical) space as they recede from the source; consider the vertical spread of the photons as they
move to the right in Fig. 7. In contrast, as one moves farther and farther from the source, the spread
of angles of photon trajectories from the source at a given position in space become smaller and
smaller. Thus the spread of the vertical components of the momenta at any given position also
becomes less and less, �p2 < �p1. These two factors lead to the conservation of area in x, px space
occupied by a specified group of photons as they travel outward, as we demonstrate below.

� 1
�p

1
2

Small 
spatial
volume

Large spatial
volume

2�
�p

Figure 7: Photons leaving an extended source. As a group of photons travels outwards, the range of
physical space occupied by the photons increases while the range transverse momentum at each position in
physical space decreases. When mapped in phase space (Fig. 8), these changes cancel to yield conservation
of the phase space area occupied by the photons. If no photons are lost, the phase-space density remains at a
fixed value as one follows the photons.

In Fig. 8, we examine explicitly a particular group of photons, namely all those that leave the
source A during a time �t and intercept a (mathematical) surface B at a horizontal distance DB and
of vertical extent xB.

Transverse position and momentum

For simplicity, the angle subtended by the surface B from the source is taken to be small.
That is, the angle between each of the several rays and the horizontal is small, � << 1. Also, let all the
photons have approximately the same magnitude of momentum. The momentum of a photon is
simply its energy divided by the speed of light,

 p  =  h�
c  (N s; momentum of

photon)
(61)
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(b) Phase space
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Figure 8: (a) Photons tracks 1–4 representing the extremes of x position and angle for all photons leaving
the source A and traversing surface B with |x| < xB. The angle of a track from the horizontal represents the
transverse momentum px of the photons that follow that track. The track “5” to the right originates at the
top of the source A. The track 1�, parallel to track 1, originates at the bottom of the source. (b) The
locations, in two-dimensional phase space, of the points representing photons (RP) on tracks 1 – 4 at the
three locations A, B, and C. At each location, they form a parallelogram of area equal to the parallelograms
at the other locations. Since the RP move at constant velocity, they move only horizontally in phase space.
As the range of positions increases, the range of momentum at each x position decreases. The area is
thereby preserved.

The component of momentum in the transverse direction px (up in the figure) and the position x
in the same direction constitute one plane (x, px) of the phase space. It is this plane that we
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consider. The other transverse plane (y, py; out of page) would yield similar results. The z, pz plane
(left-right) yields a trivial result since the motion is strictly horizontal at constant speed, similar to
that described for Fig. 2a.

The angle from the horizontal axis is proportional to the transverse momentum px, in the limit of
small angles; specifically px  p�. It is positive for the rays with a positive (rising) slope and
negative for those with negative slope. The tracks of four photons 1–4 are shown; they leave the
source A and pass through the surface B at distance |xB| from the axis. The four rays include the
extremes of angle and position x of the group of photons we wish to follow, namely all those
intersecting surface B. Photons 1 and 3 arrive at the same position on the surface enroute to the
more distant surface C. Tracks 2 and 4 also intersect at surface B. Track 1� is parallel to track 1.

The possibility of conservation of volume in phase space is seen again in Fig. 8a. The photons
we consider are constrained at the source to the small distance 2xA, but at each point on the source,
the range of transverse momenta is quite large because the angle between rays 1 and 2, ��1,2, is
quite large (within our constraint of small angles). At the surface B, the range of distance 2xB is
greater, but the range of momenta at a given position (angle ��1,3) is smaller. Similarly, at C, the
range of positions is greater ~2xC , while the range of momenta at each position is smaller (e.g.
��4,5 ). In each case, the area occupied by the particles in x, px phase space at each of the three
positions A, B, and C must be plotted and compared quantitatively.

Areas in x, px  phase space

Distribution at source

The x, px coordinates in phase space of the four photons as they leave A are indicated in
Fig. 8b. They are the corners of parallelogram A. Note that 1 and 2 each have positive x (top of
source) while 1 has positive momentum (rising) and 2 has negative momentum (descending). Also
note that the difference in the momenta px of 1 and 3 is quite small because the angle ��1,3 is small,

 � 1,3 =  2 xA
DB

 (62)

In contrast the momentum difference between 1 and 2 is much larger because xB > xA, since

 � 1,2  =  
2 xB
DB

 (63)

The parallelogram A includes all the points (RP) representing the  photons that leave the source
from all positions between its top and bottom |x| < xA with tracks that intercept B at |x|< xB.

The surface area SA of parallellogram A in the px, x plane (Fig. 8b) constitutes the “volume” of
the 2-dimensional plane of phase space we are considering. The surface area of a parallelogram is
its base times its height (distance normal to the base to the opposite side). If the base is taken to be
the side 1-2, the base length is p��1,2, and the height is 2xA. The area SA is thus,

 SA = 2xA p� 1,2   =  4p xAxB
DB

 (N s m; Phase space
        occupied at A)

(64)

where we used (63).
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Distribution at surface B

Now follow the four photons to position B. There is no force, as in Fig. 2a, so the vertical
velocity components px of the photons remain constant; i.e. the RP move horizontally in our phase
space (Fig. 8b). RP1 and RP3 move to the right (greater x), the latter moving faster because of its
greater transverse momentum px. Thus, photon RP3 eventually overtakes RP1, and by definition
this takes place at the surface B. At this time tB, the two points have the same value of x = +xB.
Similarly, RP2 and RP4, with negative momenta, move to negative x and reach x = – xB together.

At surface B, the RP of the four photons again form the corners of a parallelogram, and this
parallelogram contains all of our RP, i.e., those whose photons intercept B at x< |xB|. Take the base
of the parallelogram to be side 1–3 (length p ��1,3) and the height to be the perpendicular distance,
2xB. The surface area SB is thus

 SB = 2xB p� 1,3   =  4p xB xA
DB

 (Phase space occupied at
B)

(65)

where we used (62). The area is equal to the area at A (64). This illustrates the validity of
Liouville’s theorem for the case where photons are moving radially out from different portions of a
source, for small angles �.

The horizontal extent of a parallelogram at fixed px in Fig. 8b (e.g., 1–1�) represents the range of
position at a given transverse momentum. This dimension remains constant as the RP propagate.
(The photon tracks 1 and 1� in Fig. 8a illustrate this range; the latter track originates at the bottom
of the source and is parallel to track 1.)

Distribution at surface C

Finally, follow the photons to surface C (Fig. 8a). Since there is no force on them, they
continue to move horizontally in the phase diagram. Photons 1 and 3 arrive at C with different
values of x; photon 3 is at a greater x because of its greater momentum. We set the displacement xC
to be midway between the positions of 1 and 3.

The area of the parallelogram C is the product of the “height” 2xC and the “base” 4–5. (This
product can be shown to equal the product of the actual base and height of the parallelogram.) The
“base” 4–5 represents the range of momenta at a given position x at surface C. Consider the
position 4 at C in Figs. 8a,b. The range of momenta found at this one position is indicated by
angular range ��4,5 defined by tracks 4 and 5 where track 5 projects back to the top of the source
at A (not drawn). This angle is ��4,5 = 2xA/DC, and the range of momentum is thus �p4,5 = p
��4,5 = p 2xA/DC. The surface area of the parallelogram is thus, for our small angle
approximations,

 SC = 2 xC p� 4,5 = 4p xC xA
DC

 = 4p xB xA
DB

 (Phase space at C) (66)

where we invoke the relation xB/DB � xC/DC from the geometry of Fig. 8a.

Here again, we see that the x,px phase space occupied is the same at C as at surfaces A and B. As
stated after (61), the other dimensions also yield conservation of area. Since the phase space area is
conserved in each of the 3 2-D planes, the 6-D volume is also be conserved.
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Consistency with Liouville’s theorem

This again demonstrates consistency with Liouville’s theorem. Note that we have assumed
no forces and have restricted our discussion to small angles �, i.e., for photons near the axis of
symmetry. For larger angles and for force fields, we rely on the more general derivations given
earlier.

The underlying assumption in this discussion is that the individual photons in the sample are
neither destroyed nor otherwise abruptly removed from the phase space element occupied by the
sample, for example, by collisions. Given the conservation of photons (and hence RP) in the sample
and also the conservation of phase space volume as demonstrated in this example, it follows that the
density of RP in phase space must also be conserved as one follows the RP.

This conservation directly yields the conservation of specific intensity of radiation as it transits to
us from a distant astronomical source if redshifts, absorption and scattering are negligible; see
discussion in Section 3.3 of AP.

Problems

2 Particles in phase space

Problem 21 (a) Demonstrate that the energy-momentum relation (4) follows from (1) and
(3) where the definition of � (2) must also be invoked. (b) Show that the velocity-
momentum relation (5) follows from (2) and (3). Since v is always parallel to p, you may
carry out your algebra with scalar quantities, p  |p| and v  |v|, or the square of the
magnitudes, e.g., p2  p·p.

Problem 22.  A gas of N particles occupies a volume V. The probability of finding a particle
of a gas in a given volume element d3x is independent of its x, y, z position. The probability
of finding a particle in a given momentum state is independent of the direction of motion but
does depend on the magnitude of the momentum, i.e., the motions are isotropic. The
distribution function is  f x, p, t  = A exp – ap2  

 
. (a) Integrate the distribution function

according to (20) to obtain the number density n in x, y, z space. (b) The function f given
here is the Maxwell-Boltzmann distribution if a = 2mkT –1, where k is Boltzmann’s
constant, m is the particle mass, and T is the temperature. If the gas contains N particles in
an (x, y, z) volume V, what is the normalization factor A? [Ans. A(	/a)3/2;
(N/V)(2	mkT)–3/2]

3 Liouville’s theorem

Problem 31.  (a) Demonstrate graphically in a two-dimensional x, px space how a friction
force F = – c1px changes the phase space volume of a group of representative points (RP)
where c1 is a constant. In other words, how would you modify Fig. 2b? Is the area occupied
by the RP conserved? Find an expression for the fractional area change per unit time in
terms of given quantities. Calculate the p-divergence of F and comment. (b) (b) Repeat (a)
for the smooth force, Fx = c2 x, that varies only with position.. [Ans: –c1, –c1; 0; 0]

Problem 32. A gas is characterized by the Maxwell-Boltzmann distribution function
 f x, p, t  = A exp  ap2   where p2 = px2 + py2 + pz2. There is no dependence on position; i.e.,
the density in x, y, z space is uniform. The effect of collisions between molecules may be
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characterized by a “friction” force, F = –bp, applied to each particle in the direction
opposed to its motion and with magnitude proportional to momentum; that is, b is a
constant. No other collision term is needed. (a) Use the continuity equation (32) to find

f/ t, the rate of change of the distribution function at a fixed position in phase space under
the influence of the given force, in terms of f, b, and p. (b) Find df/dt, the rate of change of
the distribution function as one follows a group of RP. (c) Do your answers to (a) and (b)
seem reasonable? Consider Problem 31a (if you did it) and plots similar to Fig. 4.
Comment on signs and magnitudes. Note that f decreases with p unlike in Fig. 4b. (d) Find
the same quantities, f/ t and df/dt, if the force is dependent on position only; specifically it
is F = –k r . The motion is harmonic. The function f remains the same as before. Again
discuss whether your results seem reasonable. [Ans. bf 3 – 2ap2 ; 3bf; ––; –2akf r�p , 0]

Problem 33. It can be demonstrated that any function f of the constants of motion alone is a
solution to the Vlasov equation. As an example, show that the one dimensional Vlasov
equation can be satisfied by the following distribution function (phase-space density),

 f = e–aE
 

  where  E = kx2
2

  + 
px2

2m
 

What is the condition on the force Fx for the equation to be satisfied? Consider only non-
relativistic motion. (b) Can you justify the value of f/ t you obtain? Hint:  consider the
particle density distribution and the motion of a group of particles in the x, px plane, where
the axes are adjusted to be x(k/2)1/2 and px/(2m)1/2; make a sketch. [Ans. –kx; circular
track]

4 Special forces

Problem 41 (a) Carry out the missing steps in the text to demonstrate that the velocity v is
identically equal to the p-gradient of the relativistic energy (54). Use the given relativistically
correct expressions. (b) Demonstrate that, in general, the curl of a gradient is zero. Use an
arbitrary scalar function �(x,y,z) and cartesian coordinates.

Problem 42. Consider again the argument that the charged particles emitted from a slit in
the presence of a uniform magnetic field obey Liouville’s theorem; see Fig. 6. In particular
compare the areas in x, px space at the right and left slits. (The x direction is horizontal in
Fig. 6.) Let a group of particles with momentum p leave the right slit uniformly distributed
across its width �x at the same time with a small range of directions, �� << 1, that is
constant across the slit. All trajectories are circles of radius R and the slit centers are
separated by 2R. (a) Consider first particles leaving the center of the right slit. A vertical
beam will pass through the center of the left slit, which is sufficiently wide to encompass all
arriving particles. Calculate the x shift at the left slit if the emission angle at the right slit is at
the extreme value of +��/2 from the vertical; sketch your geometry. What is the x shift for
–��/2? What is the value of px in each case. (b) Make an x, px plot and locate with dots the
x and px positions at the two slits of the central and two extreme (in angle) beams emerging
from the center of the right slit. Then add dots for the three beams (� = 0, ±��/2) emerging
from each of the two extremes of position, again for each of the two slits. Finally connect
the dots to illustrate the regions occupied by all the particles at the two slits; use your result
from part (a). Compare the areas at the two slits. [Ans. �x� = R(��)2/4, px = ±p��/2; areas
match]
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5 Photons in phase space

Problem 51. Consider the surfaces A and B in Fig. 8a. Let surface B be the emitter, and
consider all the leftward-moving photons that intercept surface A. (a) Draw, as in Fig. 8a,
the tracks of the four extreme photons that encompass these photons as they proceed from
surface B to A; omit the surface C of Fig. 8. Draw in x, px phase space, analogously to Fig.
8b, the regions occupied by the RP of all the photons intercepting surface A when they are
at the two surfaces, B and A. (b) Determine that the area occupied by the RP in this phase
space is the same at the two positions, B and A. Again, assume small angles.


