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Due: Wednesday, May 8, 2019, in class

This problem set is worth 102 points

1. Orbits of black holes (15 pts)
In the notes, we derived the following equation describing the orbit of a body around a non-rotating black hole:(

dr

dτ

)2

=
E2

c2
− Veff(r) , where
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(
1− 2GM

rc2

)(
c2 +

`2

r2

)
.

E is the orbital energy and ` the orbital angular momentum (each per unit mass of the orbiting body).

(a) By requiring that r be constant along the orbit and that the orbit “sit” at the minimum of the effective
potential, derive expressions for E and ` as functions of r for circular orbits.

(b) As we move deeper into the strong field (i.e., to smaller values of r), the potential’s shape changes. Com-
pute the radius at which the minimum in Veff goes away and stable circular orbits cease to exist. This radius
you should find is known as the “innermost stable circular orbit,” or ISCO. It is a starkly non-Newtonian
characteristic of black hole orbits.
(Hint: An easy mistake to make is to substitute the solutions for E and ` that you derived in the previous
part too early in your calculation. Develop your criterion for whether a minimum exists or not assuming E
and ` are constants; only then substitute the expressions appropriate for a circular orbit that you derived.)

2. Orbital rearrangements due to mass transfer (20 pts)
Two stars of massM1 andM2 are in a circular orbit. Star 2 transfers matter onto star 1 via Roche-lobe overflow.
Assume that no mass is lost from the system, and also that the orbit remains circular during mass transfer. Use
Newtonian physics for your analysis.

(a) Using only conservation of mass and orbital angular momentum, find the fractional change in binary
separation (∆a/a) in terms of the mass ratio q = M2/M1 and ∆M/M . You may assume ∆M/M � 1.
Show that transfer from the lighter to the heavier star leads to a widening of the orbit (∆a/a > 0), while
transfer from the heavier to the lighter star leads to a shrinking of the orbit (∆a/a < 0).

(b) The Roche lobe radius1 around star 2 is given very approximately by

RL2 '
a

2

(
M2

M1 +M2

)1/3

.

Find the change in the Roche lobe radius, ∆RL2, caused by the mass transfer. Express your answer in
terms of ∆M/M , q, and a.

(c) Next we want to calculate the change in radius ∆R2 of star 2 in response to the mass loss. For simplicity,
assume that star 2 is fully convective, and thus well-described by an n = 3/2 polytrope, for which R ∝
M−1/3. From this relation, find ∆R2/R2 in terms of ∆M/M and q. Then, using the fact that R2 = RL2

right at the onset of mass transfer, find ∆R2 in terms of a, ∆M/M , and q.

(d) Argue that the mass transfer will be an unstable runaway process if ∆R2 > ∆RL2. Find the maximum
value of the mass ratio q for stable mass transfer.

1The “Roche lobe radius” is the radius of a sphere whose volume is equal to the volume of a star that fills its Roche lobe — i.e., a star that is
distorted so that it just touches the Lagrange point L1. A star whose physical size is smaller than this radius will be distorted, but will not transfer
mass to its companion; and vice versa if it is larger than this radius.
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The Shakura-Sunyaev accretion disk model.

Problems 3–6 are based on the Shakura-Sunyaev (S-S) accretion disk model we discussed in lecture.

3. Luminosity of the accretion disk (20 pts)
In the S-S accretion disk model, the dependence of the effective temperature Teff on radial distance r is

Teff =

[
3GMṀ

8πσr3

]1/4 (
1−

√
r0/r

)1/4

(1)

where σ is the Stefan-Boltzmann constant.

(a) Show that the total power radiated from the disk (including both sides!) is

L =
1

2

GMṀ

r0

where r0 is the radius of the inner edge of the accretion disk.

(b) Denote by L(> r) the power radiated from the portion of the disk with radius greater than r. Find an
analytic expression for the ratio

ratio =
L(> r)
1
2
GMṀ
r

Sketch the ratio as a function of r. This result demonstrates that the gravitational potential energy that is
released as the matter migrates inward does not emerge locally, but is instead redistributed by the viscous
stresses.

4. Temperature structure of the accretion disk (10 pts)

(a) Use Eq. (1) to find the location r(Tmax) where the temperature is a maximum. Express your answer in
terms of r0, the radius of the inner edge of the disk. If the central star is a non-rotating black hole, then
r0 = 3Rs where Rs = 2GM/c2 is the Schwarzschild radius. In this case, express your answer for the
location of the maximum temperature in terms of Rs.

(b) Compute Tmax for the following two cases:

Accretor Mass Ṁ r0 Source type

white dwarf 1.0 M� 1017 g s−1 9.0× 108 cm cataclysmic variable
neutron star 1.4 M� 1018 g s−1 1.2× 106 cm low-mass X-ray binary

5. Inward radial speed of accreting material (17 pts)
We will now show that the radial inspiral speed vr for material in the disk is always much smaller than the
Keplerian orbital speed vK . First, use the following expressions for ρ(r) and H(r) to compute an expression
for vr, the radial speed of inspiral for material in the disk:

H ' 1× 108 α−1/10 Ṁ
3/20
16 r

+9/8
10 f3/5 cm

ρ ' 7× 10−8 α−7/10 Ṁ
11/20
16 r

−15/8
10 f11/5 g cm−3

where Ṁ16 is the mass accretion rate in units of 1016 g sec−1, r10 is radius in units of 1010 cm, and f =
(1−

√
r0/r)

1/4, where r0 is the inner edge of the disk (which was denoted ri in lecture).

Next, find the ratio of vr to vK . Finally, show that for all reasonable choices of parameters the ratio is smaller
than unity.

Take the minimum plausible neutron star mass to be about 0.5 M�, the maximum plausible accretion rate to be
that which gives Ṁc2 ∼ 10LEdd, and the maximum size of the accretion disk to be ∼1 AU.
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6. Spectrum of a Shakura-Sunyaev accretion disk (20 pts)

(a) Write an integral expression for the spectral luminosity Lν (erg s−1 Hz−1) of the accretion disk. Do this
by treating each annulus in the disk as a blackbody radiator with temperature Teff(r) as defined in Problem
3. Don’t bother trying to evaluate the integral analytically.
For reference, the Planck function is:

P (ν) =
2πhν3

c2
1

ehν/kT − 1

(b) Make the following approximations to calculate Lν analytically: (i) Approximate the Planck function

by P (ν) = 2πhν3c−2e−hν/kT ; (ii) In the expression for T (r), take the factor
(

1−
√
r0/r

)1/4

to be
approximately unity; (iii) Carry out the integration from r = 0 to r =∞, even though a real disk obviously
has narrower limits. Show that Lν ∝ ν1/3.
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