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Problem Set 9

Due: Wednesday, May 1, 2019, in class
This problem set is worth 95 points

1. Numerical models of neutron stars (50 pts)
In this problem you will model a neutron star using a more realistic equation of state. To prepare for this
problem, please peruse the classic paper by Arnett & Bowers (1977). (There are more recent papers on this
subject, but they are a lot more complicated; Arnett & Bowers does a good job covering the key points and
presenting a representive sample of equations of state.)

(a) Show that a power law
P = KABρ

γAB

with γAB = 2, KAB = 105 ba (gm− cm−3)−γAB is a good “average” of the models A through G in
Figure 4 of Arnett & Bowers. (A “barye” [ba] is the cgs unit of pressure; 1 ba = 1 dyne cm−2 = 0.1 Pa.)
You will assume that this expression is valid down to arbitrarily low densities, including log10 ρ

<∼ 14.6
(where ρ is in g cm−3), the smallest value plotted in Figure 4.

(b) Consider a range of central densities 14 < log10 ρc < 16.5 (where ρc is in g cm−3), uniformly spaced in
log10 ρc. For each of these, integrate the Tolman-Oppenheimer-Volkoff equation to find ρ(r). Although it
is not necessary, you may find it useful to start by nondimensionalizing the equations

dρ

dr
=

1

KABγABργAB−1

(
dP

dr

)
TOV

(1)

dM

dr
= 4πr2ρ. (2)

In other words, introduce some fiducial density scale ρ0 and normalize ρ to that; deduce related length,
mass, and pressure scales, and scale those variables accordingly.
Hint 1: Some numerical integrators become quite sad if you begin integrating at r = 0 — because the
enclosed mass there is zero, you find lots of 0/0 type singularities. Start at some very small radius ε, and
assume that ρ varies very slowly in that region to put M(ε) ' (4π/3)ρcε

3.
Hint 2: If you elect to nondimensionalize, note that (Gρ)−1/2 is a time and so (Gρ0)−1/2 can be regarded
as a fiducial timescale. Likewise, in any relativistic calculation c is a relevant fiducial velocity.

(c) Plot the total mass as a function of log10 ρc for your models. What is the maximum mass of a neutron star
for this equation of state?

(d) Plot the radius as a function of log10 ρc (for masses corresponding to stable neutron stars).

(e) Plot the mass-radius relationship for your models (for masses corresponding to stable neutron stars).

(f) Finally, investigate a “maximally stiff” equation of state, for which (at high densities) the sound speed is
equal to the speed of light. Please repeat steps 1b and 1c using an equation of state

P = ρc2 for ρ > 1014.6 g cm−3 (3)

P = Kρ5/3 for ρ < 1014.0 g cm−3 , (4)

where K ≈ 5.5 × 109 (cgs) is the appropriate constant for a non-relativistic Fermi gas of neutrons.
For densities between 1014.0 and 1014.6 g cm−3, calculate log10 P as a function of log10 ρ via linear
interpolation between the two expressions given above.
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2. Pulsar spin-down properties (15 pts)
Consider a pulsar with spin period P = 2π/Ω that is losing energy and therefore spinning down.

(a) If the energy loss mechanism is magnetic dipole radiation, then

dE

dt
= −B

2Ω4R6 sin2 α

6c3
, (5)

whereB is the polar magnetic field strength,R is the pulsar radius, and α is the angle between the magnetic
and rotational poles. Show that this implies Ω̇ = −kΩ3 where k is a constant. Also show that in this case,
B ∝

√
PṖ .

(b) For the more general case Ω̇ = −kΩn, where n is the braking index, show that n = Ω̈Ω/Ω̇2.

(c) Show that if the braking index is n, the age of the pulsar may be estimated as

τ ≈ |P/Ṗ |final

n− 1

[
1−

Pn−1
initial

Pn−1
final

]
. (6)

3. Blackbody radiation from a compact object (15 pts)
Because general relativity is important for compact objects, even seemingly basic quantities such as luminosity,
temperature and radius need to be defined carefully, as you will see in this problem.

Consider a spherical blackbody of constant temperature and mass M and an outer surface defined by the radial
coordinate r = R. Two observers are measuring the blackbody radiation: an observer located at the surface of
the sphere, and a very distant observer.

(a) If the observer at the surface of the sphere measures the luminosity of the blackbody to be L, show that the
observer at infinity measures

L∞ = L

(
1− 2GM

Rc2

)
.

An important bit of physics to use here is the gravitational redshift zg associated with a photon travelling
radially in the Schwarzschild spacetime. It is given by

1 + zg =

(
1− 2GM

Rc2

)−1/2

. (7)

This is derived on p. 387-392 of Choudhuri. A photon that is emitted with energy E at radius R will be
measured to have energy E/(1 + zg) very far away. This redshift also applies to clocks — a time interval
dt at radius R is measured to be an interval dt(1 + zg) by observers far away. In other words, clocks deep
in a gravitational potential well run slow. (This is why GPS satellites need to correct for general relativity
— clocks in high orbit run demonstrably faster than clocks on the surface of the Earth.)

(b) Suppose both observers use Wien’s law,

λmaxT = 0.28978 cm K,

to determine the blackbody’s temperature. Here λmax is the wavelength corresponding to the peak in the
blackbody spectrum. Show that

T∞ = T

√
1− 2GM

Rc2
.

(c) Suppose both observers use the Stefan-Boltzmann law to determine the radius of the spherical blackbody.
Show that

R∞ =
R√

1− 2GM/Rc2

Thus, using the Stefan-Boltzmann law without accounting for general relativity will lead to an overestimate
of the size of a compact blackbody.
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4. Supernova explosion in a binary system (15 pts)
Two stars of mass m1 andm2 are in a circular orbit. Star 1 undergoes a supernova explosion in which mass ∆m
is blown away spherically symmetrically (in the frame of star 1) on a time scale that is very short compared to
the orbital period. Show that the condition for the orbit to remain bound is

∆m <
m1 +m2

2
.

Hint: Compute the total energy of the binary after the explosion in the (new) center of mass frame of the binary.
Assume that immediately after the explosion, the binary separation and the orbital velocities of both stars are
unchanged. A useful relation is that the total kinetic energy is (1/2)µv2

rel, where µ is the reduced mass and vrel

is the relative velocity.
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