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Due: Wednesday, April 24, 2018, in class
This problem set is worth 90 points

1. Nuclear statistical equilibrium [25 pts] (Adapted from Hansen, Kawaler, & Trimble, Problem 6.7).

In the normal course of evolution of a massive star, the end products of nuclear burning are elements in the
iron region of nucleon number. If the temperatures get high enough, the radiation field is capable of initiating
photodisintegration, and all the iron-peak elements end up as individual nucleons. This reduces the effective adi-
abatic index below 4/3, and is responsible for the final collapse of the star once it enters the photodisintegration
regime. This can happen on such rapid time scales that the abundances of nuclei (as functions of temperature
and density) can be calculated approximately as if the gas were in chemical equilibrium using a version of the
Saha equation.

To look at this in a very simplified way, consider a gas composed only of 56Ni and 4He where the “chemical
reaction” between them is

14 4He 
 56Ni +Q,

where you may compute the Q-value from the mass excesses,

(M −Amn)c2 = 2.42 MeV for 4He (A = 4)
(M −Amn)c2 = −53.9 MeV for 56Ni (A = 56).

The numerical value of the nucleon mass mn is not needed for this problem, though you can look it up.

In equilibrium, the chemical potentials obey the relation

14µHe = µNi.

Since the nuclei are non-degenerate, the number density of species i (either He or Ni) obey the Maxwell-
Boltzmann distribution,

ni = gi

(
2πmikT

h2

)3/2

exp

(
µi −mic

2

kT

)
.

(a) Set up an equivalent of the Saha equation for the reaction, pretending that you are dealing with atoms and
ions and assuming that both nuclei are in their ground states. To do this, substitute the Maxwell-Boltzmann
relation for the number densities into the equilibrium relation for the chemical potentials, and derive an
equation whose left hand side is an appropriate ratio of number densities. Let the statistical weights be
unity (which is appropriate since the ground state spins are zero).

Note that there will be two differences from the Saha equation you encountered earlier in the term: First,
there are only two species so there will only be two different n’s. Second, the multiple He nuclei in the
reaction will result in a nonlinear dependence on nHe. The Q-value plays the role of the ionization energy.

(b) Re-cast your Saha equation so that the unknowns are the mass fractionsX4 andX56 whereX4 +X56 = 1.

(c) Fix the density to be ρ = 107 g cm−3 and solve for X4 and X56 for temperatures in the range 4.5 < T9 <
6.5, where T9 is the temperature in units of 109 K.

(d) Plot your results for the mass fractions versus temperature. At what temperature is X4 = X56?
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2. White dwarf cooling [50 pts]
Because a white dwarf has no internal power source, it cools and fades. In this problem you will calculate the
cooling rate by modeling the white dwarf as a degenerate core containing most of the mass, and a thin non-
degenerate atmosphere from which the core’s internal energy is radiated into space. This was first done by Leon
Mestel in 1952.

The degenerate core is nearly isothermal because the degenerate electrons have a very large thermal conductivity.
The total thermal energy is

U =
M

Amp

3

2
kTc, (1)

where M is the core mass, A is the atomic weight, mp is the mass of a proton, and Tc is the core temperature.
Radiation from the atmosphere causes the energy to be lost at a rate L = 4πR2σT 4

eff , but Teff is not the same as
Tc. We need to derive the connection between L and Tc, which depends on the opacity of the atmosphere.

(a) Suppose the atmosphere is radiative (not convective), and the opacity obeys Kramer’s law, κ ∝ ρT−3.5.
Specifically

κ = κ0

(
ρ

1 g cm−3

)(
T

1 K

)−3.5

where κ0 = 4.34 × 1024 Z(1 + X) cm2 g−1. (X is hydrogen mass fraction, and Z is the “metal”
mass fraction; numerical values for these parameters will be provided later in the problem when they are
needed.) Combine the equation of hydrostatic equilibrium and the equation of radiative diffusion to obtain

dP

dT
=

4ac

3

4πGM(r)

κ0L

T 6.5

ρ
, (2)

where a ≡ 4σ/c is the “radiation constant.”

(b) Because the atmosphere is thin, M and L are nearly constant throughout the atmosphere. Use this fact,
and the ideal gas law, to integrate the preceding equation from top of the atmosphere (P ≈ 0, T ≈ 0) to a
point within the atmosphere (P , T ). Then show that within the atmosphere,

ρ =

(
4

17

16πac

3

GM

L

µmp

κ0k

)1/2

T 13/4. (3)

(c) The preceding equation is valid all the way down to the degenerate core (i.e., the bottom of the atmosphere).
By setting the non-relativistic electron degeneracy pressure equal to the ideal gas pressure, show that this
boundary occurs when the temperature T and pressure P obey

T

(ρ/µe)2/3
≈ 1.20× 105 K cm2 g−2/3, (4)

where µe is the mean molecular weight per electron. Recall that the non-relativistic degenerate electron
equation of state is

PNR =

(
3

π

)2/3
h2

20mem
5/3
p

(
ρ

µe

)5/3

(5)

Problem continues on the next page

2



(d) Use this condition and your result from part (b) to show that L and Tc obey

L ∝ µ

µ2
e

M

κ0
T 7/2
c . (6)

You should also specify the proportionality constant (you will need it below).

(e) Evaluate L/L� numerically for a carbon-oxygen white dwarf with µe = 2, M = M� and Tc = 107 K.
Assume the atmosphere is fully ionized with hydrogen mass fraction X = 0, helium mass fraction Y =
0.9, and metal mass fraction Z = 0.1.

(f) Set L = −dU/dt to derive the Mestel cooling law,

Tc(t) = T0

(
1 +

5

2

t

τ0

)−2/5

, (7)

where τ0 is a characteristic timescale you should calculate in terms of the properties of the white dwarf
and fundamental constants.

(g) Evaluate the numerical value of τ0 for a carbon-oxygen white dwarf with µe = 2, M = M� and L =
104 L�, typical of the planetary nebula phase.

Note: This calculation neglects the electrostatic energy of the ions. In real white dwarfs, crystallization occurs
when the electrostatic potential energy between neighboring ions dominates their thermal energy. An associated
latent heat of crystallization is released, providing a new source of thermal energy that delays the further cooling
of the star. See, e.g., chapter 4 of Shapiro & Teukolsky.

3. Maximum rotation speed [15 pts]
In this problem you will estimate the rotation speed for a neutron star at which it will break up.

(a) Find an expression for the minimum rotation period, Pmin, of a neutron star of a function of its mass M
and radius R. To do this, consider a parcel of mass on the surface of the neutron star, near the equator.
When does the centrifugal force begin to exceed the gravitational force? (You may neglect the effects of
general relativity; GR changes things at the level of about 20%, which is more precise than we need here.)

(b) Evaluate Pmin for a neutron star with M = 1.4 M� and R = 10 km. For comparison, the fastest known
millisecond pulsar is PSR J1748-2446ad, which has a spin period of 1.3959 ms (Hessels et al. 2006,
Science, 311, 1901).

(c) Newton studied the equatorial bulge of a homogeneous fluid body of mass M that is rotating with angular
velocity Ω. He showed that the equatorial radius Re exceeds the polar radius Rp by an amount given by

Re −Rp

Rm
=

5Ω2R3
m

4GM
, (8)

where Rm ≡ (Re + Rp)/2. Use this formula to estimate Re − Rp for a neutron star with M = 1.4 M�,
Rm = 10 km, and a rotation period equal to twice the minimum period you found in Prob. 3b.
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