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This problem set is worth 125 points

1. Stability against convection [10 pts]

(a) In lecture, we derived the condition ∣∣∣∣dTdr
∣∣∣∣ < T

P

(
1− 1

γa

) ∣∣∣∣dPdr
∣∣∣∣

for stability against convection. Using the appropriate equation(s) of stellar structure and noting the sign
of the radial gradients, show that this can be recast as a condition on the luminosity profile:

L(r) <

(
1− 1

γa

)
64πσSBT

4GM(r)

3κRP

(b) Show that to avoid convection in a stellar region where the equation of state is that of an ideal monatomic
gas, the luminosity at a given radius must be limited by

L(r) < 1.22× 10−18
µT 3

κRρ
M(r)

where µ is the mean molecular weight, T (r), κR is the Rosseland mean opacity, and M(r) is the mass
enclosed at radius r. All quantities are measured in the appropriate cgs units.

2. Polytropes: Analytic calculations [25 pts]
Polytropes are simple models of self-gravitating bodies, based on the assumption P = Kρ1+1/n. This assump-
tion leads to a single differential equation for the density profile that can be nondimensionalized to give the
Lane-Emden equation,

1

ξ2
d

dξ

[
ξ2
dφn
dξ

]
= −φnn

where φn is related to the star’s density by ρ = ρcφ
n
n, and ξ is related to radius by r = λnξ (λn is given below).

Some objects can be approximated as polytropes with an appropriate choice for n. For example n = 1 describes
a brown dwarf or giant planet pretty well; n = 3/2 describes a white dwarf; n = 3 does OK describing the Sun.
In this problem, you will work out some useful mathematical properties of this model.

(a) Show that the total mass of a polytropic star is

M = 4πρcλ
3
nξ

2
1

∣∣∣∣dφndξ
∣∣∣∣
ξ=ξ1

.

The factor λn is defined as

λn ≡

[
(n+ 1)

Kρ
(1−n)/n
c

4πG

]1/2
(you may assume this form), and ξ1 specifies the outer radius of the star: φn(ξ1) = 0.

(b) Show that the ratio of the mean density to the central density is

〈ρ〉
ρc

=
3

ξ1

∣∣∣∣dφndξ
∣∣∣∣
ξ=ξ1

.
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(c) Show that the central pressure is

Pc =
GM2

R4

[
4π(n+ 1)

∣∣∣∣dφndξ
∣∣∣∣2
ξ=ξ1

]−1
.

Notice that this justifies the scaling of central pressure with mass and radius we found using a crude order
of magnitude estimate in an earlier lecture.

(d) For a polytrope that also obeys the ideal gas equation of state, show φn = T/Tc, where Tc is the central
temperature.

3. Polytropes: Numerical calculations [35 pts]
In this problem you will calculate the density structure of various polytropes, including a model of the Sun.
Numerically integrate the Lane-Emden equation to find φn(ξ) for polytropic indices of n = 1.0, 1.5, 2.0, 2.5,
3.0, and 3.5. One possible approach is to break up the second-order differential equation into two first-order
equations,

dφn
dξ

= u,
du

dξ
= −φnn −

2u

ξ
.

Then use a 4th-order Runge-Kutta integration scheme to find φn(ξ). The boundary conditions at the center are
u(0) = 0 and φn(0) = 1. The surface of the star is defined by φn(ξ1) = 0.

(a) Show that near the center of the star,

φn(ξ) = 1− 1

6
ξ2 +

n

120
ξ4 − · · ·

To do this, first show that the polynomial expansions of φn(ξ) contain only even terms in ξ. Then substitute
such a polynomial into the Lane-Emden equation and find the first three coefficients.

For the rest of this problem, use this expansion to start your numerical calculation at small nonzero ξ.

(b) Plot the dimensionless temperature φn(ξ) and the dimensionless density φnn(ξ) for all 6 values of n. It
would be best to overlay all the temperature plots on a single set of axes, and all the density plots on
another.

(c) Compute for each model the dimensionless potential energy Ω ≡ Egrav/(−GM2/R) and the dimension-
less moment of inertia k ≡ I/MR2. Tabulate ξ1, −(dφn/dξ)ξ1 , Ω, and k for each of the 6 polytropic
models.

Next, you will use an n = 3 polytrope as a model of the Sun. One purpose of this exercise is to practice re-
dimensionalizing your dimensionless solution. Another is to perform some order-of-magnitude checks on the
applicability of this model.

Set the dimensional scales using the “known” values for the central density, temperature, and hydrogen mass
fraction: ρc = 158 g cm−3, Tc = 15.7× 106 K, X = 0.6.

(c) How do the total mass and radius of the model star compare to the actual Sun’s mass and radius?

(d) Plot the following quantities as a function of r/R� (with R� being the radius of the model star): (i)
log10 T with T in Kelvin; (ii) log10 ρ with ρ in g cm−3.

(e) Compute the implied nuclear luminosity of the polytropic model. Take the nuclear energy generation rate
per unit volume to be

εV = (2.46× 106) ρ2X2T
−2/3
6 exp(−33.81 T

−1/3
6 ) erg s−1 cm−3,

where ρ is in g cm−3, T6 is the temperature in units of 106 K, and X = 0.6 is the hydrogen mass fraction.
First, write the calculation as the product of a dimensioned constant and a dimensionless integral involving
φn and ξ. (For the Tc inside the integral you can use 15.7× 106 K.) Show the value of your constant, and
the form of the dimensionless integral. Then, evaluate the nuclear luminosity in erg s−1. Compare to the
actual luminosity of 3.839× 1033 erg s−1.
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4. Overcoming the Coulomb barrier [15 pts]
In this problem you will show that classical mechanics predicts that hydrogen fusion cannot happen in the Sun.

(a) Suppose two protons approach each other with equal speeds. What is the minimum speed needed to
overcome the Coulomb barrier and collide, neglecting quantum effects? Take the radius of a proton to be
≈1 fermi = 10−13 cm.

(b) Assuming the proton speeds obey a Maxwell-Boltzmann distribution

p(v) =

√
2

π

(mp

kT

)3
v2 exp(−mpv

2/2kT )

with T = 15.7× 106 K (the central temperature of the Sun), what is the most probable speed? How does
it compare to your answer to Prob. 4a?

(c) You might wonder whether a small minority of protons in the tail of the M-B distribution could fuse. Give
an order of magnitude estimate for the number of protons in the Sun, and for the number of those protons
that are energetic enough to fuse. You may find it useful to know that for large u0,

4√
π

∫ ∞
u0

u2e−u
2

du ≈ 2√
π
u0e
−u2

0 .

5. Tunneling through the Coulomb barrier [10 pts]
Now we compute the quantum-mechanical probability for two nuclei to tunnel through the Coulomb barrier.

Let the two nuclei have charges Z1, Z2 and atomic masses A1, A2. Assume the interaction potential between
the two nuclei is Z1Z2e

2/r, i.e., ignore the nuclear force until the nuclei are essentially touching (at a separation
of a few fermi).

Calculate the tunneling probability using the WKB approximation,

Trans. Prob. ' exp

−2

∫ rmax

rmin

√
2µ(V − E)

h̄2
dr

 ,
where µ is the reduced mass (not the mean molecular weight) and rmax is the classical turning point, and you
may approximate rmin ≈ 0. You should find that the probability varies as exp(−bE−1/2) where b is a constant.

6. Nuclear binding energies [10 pts]
The Q value of a nuclear reaction is the amount of energy released (or absorbed) in the reaction; Q > 0 means
energy is released. Compute the Q value in MeV for each of the following nuclear reactions.

(a) 12C + 12C→ 24Mg

(b) 12C + 12C→ 16O + 24He

(c) 19F + 1H→ 16O + 4He

(d) 1H + 1H→ 2H + e+ + ν

(e) 15N + 1H→ 12C + 4He

A useful source for this problem is the NIST table of atomic weights and compositions:

http://physics.nist.gov/cgi-bin/Compositions/stand alone.pl

You’ll need to convert from atomic mass units to MeV.
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7. Temperature dependence of thermonuclear reaction rates [20 pts]
Next you will derive the leading-order dependence of a thermonuclear reaction rate on temperature. For the
reaction A + B→ C which liberates an energy Q, the rate of energy production per unit volume can be written

εV [erg s−1 cm−3] = QnAnB〈σv〉,

where 〈σv〉 is the product of the cross-section and relative velocity, averaged over the Maxwell-Boltzmann
distribution of relative energies. The cross-section may be written

σ(E) =
S(E)

E
e−bE

−1/2

,

where the exponential factor arises from the tunneling probability, the E in the denominator arises from the
inverse square of the de Broglie wavelength, and S(E) represents the purely nuclear energy dependence.

(a) Show that εV is proportional to

εV ∝ QnAnBT−3/2
∫ ∞
0

S(E) exp
[
−(bE−1/2 + E/kT )

]
dE,

with the same constant b that appeared in the previous problem.

Since the integral cannot be done analytically, we will need to make an approximation. The quantity (bE−1/2 +
E/kT ) in the exponent is a falling function of E plus a rising function of E. The minimum in this quantity
corresponds to a maximum in the value of the exponential. For most situations in stellar interiors, the only
significant contributions to the integral occur when (bE−1/2 + E/kT ) is near its minimum E0. Therefore, we
will expand the exponent in a Taylor series about E0, and we will assume that S(E) is nearly constant over the
narrow range surrounding E0.

(b) Show that the Taylor series for the exponent is of the form:

−(bE−1/2 + E/kT ) = − 3b2/3

(4kT )1/3
− f(T )(E − E0)2 + . . .

where f(T ) is a function of the temperature.

(c) Complete the integration of over the Gaussian to get an expression for the temperature dependence of ρε.
You may drop any numerical prefactors, but be careful not to drop any factors that depend on temperature.
You should find that the result is proportional to e−B/T

1/3
6 , where T6 is the temperature expressed in

millions of degrees K, and B is a constant. Show in particular that B is

B = 42.6 (Z1Z2)2/3
(

A1A2

A1 +A2

)1/3

,

where Z1 and Z2 are the atomic numbers (nuclear charges) or the reactants, andA1 andA2 are their atomic
masses (sum of neutron and proton numbers).
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