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Problem Set 4

Due: Friday, March 8, 2018, in class
This problem set is worth 120 points

1. Opacity due to Thomson scattering [15 pts] (from Choudhuri, page 59)

Consider an atmosphere of completely ionized hydrogen having the same mass density as Earth’s atmosphere at
sea level (ρ = 1.23 kg m−3). Calculate the path length over which a beam of light would be attenuated to half
of its original intensity, due to Thomson scattering by free electrons.

2. Protons or photons? [10 pts]
At the center of the Sun, the density is approximately 150 g cm−3 and the temperature is about 15 × 106 K.
Which is larger: the number density of protons, or the number density of photons? Give an order of magnitude
estimate of each.

3. Isothermal atmosphere [20 pts]
Suppose the photosphere of a particular star (or planet) can be modeled as a parallel-plane atmosphere with
a constant temperature T down to very large optical depth. Further assume the gravitational acceleration g is
constant throughout the photosphere, because most of the mass is in the deeper layers beneath the photosphere.
The opacity is κ0, a given constant. The gas pressure P = ρkT/µmp (with µ the mean molecular weight) is
much larger than the radiation pressure.

(a) [10 pts] Find P (τ), the pressure as a function of vertical optical depth, in terms of given quantities and
fundamental constants. You may assume the surface gravity is constant throughout the photosphere, and
that P = P0 at τ = 2/3. (Hint: Combine the equation of hydrostatic equilibrium with the relationship
between τ and z. Recall that the opacity is constant.)

(b) [10 pts] Let z be the vertical height in the photosphere, increasing away from the center of the star, with
z = 0 at the fiducial level where τ = 2/3. Show that ρ(z) ∝ ρ0 exp(−z/H). Find H in terms of given
quantities and fundamental constants.

4. The Eddington limit [20 pts]
A star with sufficiently high radiation pressure will spontaneously eject material from its surface. This sets a
practical limit on the maximum luminosity of a star of a given mass.

(a) [14 pts] Start with the radiative diffusion equation and the equation for hydrostatic equilibrium. Assume
the opacity to be frequency-independent, and show that the luminosity at which the radiation pressure
gradient equals the hydrostatic pressure gradient is given by

LEdd =
4πGMc

κ
, (1)

where M is the stellar mass. This is the “Eddington luminosity.”

(b) [6 pts] For ionized hydrogen, a minimum value for κ arises from Thomson scattering, which has cross-
section σT = 6.65× 10−25 cm2. Show that for this case

LEdd ≈ 3× 104 L�

(
M

M�

)
, (2)

where L� = 3.839× 1033 erg s−1 and M� = 1.989× 1033 g.
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5. A fictional star [20 pts]
Consider a star of luminosity L with density distribution ρ = ρ0 × (R/r), where R is the star’s outer radius.
Please don’t ask how it manages to have such a simple density profile; this star exists only in the homework
universe.

All of the star’s energy is generated from a very small region near r = 0, and is transported entirely by radiation
(not convection). The opacity is dominated by electron (Thomson) scattering, with opacity κT .

(a) [4 pts] What is the star’s effective temperature Teff , in terms of the given quantities and fundamental
constants?

(b) [16 pts] Solve for the temperature as a function of r, in terms of ρ0, Teff ,R, κT , and fundamental constants.
For the outer boundary condition, assume r = R represents the τ = 2/3 level of the photosphere, and use
the gray-atmosphere result T (τ = 2/3) = Teff .

6. Pressure due to both particles and radiation [30 pts]
The pressure P that appears in the equations of stellar structure may include contributions from both gas pressure
and radiation pressure. For Sun-like stars, gas pressure is dominant. However, the centers of more massive stars
are hot enough for radiation to provide a significant fraction of the total pressure. In this problem you will
investigate this regime using a simplified model in which the gas pressure is a specified fraction of the total
pressure. We will limit our attention to fully ionized material of solar composition (mean molecular weight
µ ≈ 0.6), where the gas and radiation field are at the same temperature, and the ideal gas law is applicable.

(a) [10 pts] First, let us get a feeling for the densities and temperatures involved. Write an expression for
β ≡ Pgas/(Pgas + Prad), in terms of the gas density ρ and temperature T . Using this result, obtain the
relationship between density and temperature in a gas for which β = 0.1, i.e., gas provides only 10% of
the total pressure. Evaluate the temperature required to satisfy this condition for ρ = 10 g cm−3.

(b) [10 pts] Instead of a gas-radiation fluid of fixed density and temperature, instead consider one of fixed
density and total pressure. Derive a quartic equation for β in terms of P and ρ. This is known as the
Eddington quartic. Show that β → 1 for sufficiently small P , and β → 0 for sufficiently large P . What
is the characteristic pressure separating these two regimes, in terms of ρ and the fundamental constants
h, c and mp? You may find it useful to recall that the Stefan-Boltzmann constant is defined as σ =
2π5k4/(15c2h3). (Hint: Begin by writing Pgas = βP , and using the ideal gas law rewrite the equation
you derived for β using P instead of T .)

(c) [10 pts] Let Eint = Egas + Erad be the total internal energy in a star, including both gas and radiation.
Assume that β is uniform throughout the star (not very realistic). Using the same steps that are used to
prove the virial theorem (see Sec. 3.2.2 of Chaudhuri), show that

Etot = Eint + Egrav =
β

2
Egrav,

where Egrav is the gravitational binding energy. What can you conclude about how strongly bound a
massive, radiation-dominated star is compared to a low-mass star with negligible radiation pressure?
Hint: To set this problem up, first use the fact that the gravitational binding energy is

Egrav =

∫ M

0

Φgrav(M)dM = −4πG

∫ R

0

rρ(r)M(r) dr

where Φ(M) is the gravitational potential at the surface of a sphere of massM , and M(r) is the mass con-
tained in a sphere of radius r. Note we do not know M(r), so use the equation of hydrostatic equilibrium
plus integration by parts to rewrite this as an integral over pressure P . The pressure P is the sum of the
gas pressure Pgas and the radiation pressure Prad.
Next, use the fact that the density associated with the internal energy of the gas is ugas = 3

2ngaskBT and
that the internal energy associated with the radiation is urad = aT 4, with a = 4σ/c (and σ is the Stefan-
Boltzmann constant). Relate these two energy densities to their associated pressures. With some labor, the
result you need to prove will follow.
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(d) Course feedback. [5 pts] Are you getting what you hoped for out of 8.901? What is working well for
you? What improvements would you like to see?
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