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Problem Set 3

Due: Friday, March 1, 2019, in class
This problem set is worth 110 points

1. Apparent intensity and angular resolution [10 pts].
Photons are produced in a spherical cloud of radius R at a uniform rate Γ photons cm−3 s−1. The cloud is a
distance d away. Neglect absorption of the photons, i.e., assume the medium is optically thin. A detector on
Earth has an effective area ∆A, and an angular acceptance of half-angle ∆θ (i.e. the detector is sensitive to
incoming photons that are arriving within a cone of half-angle ∆θ).

(a) Suppose the angular size of the source is much larger than ∆θ (the source is completely resolved). What is
the observed photon intensity toward the center of the cloud, in photons s−1 cm−2 sr−1? You should find
that the answer is independent of d as well as the properties of the detector (∆θ and ∆A).

(b) Now suppose the angular size of the source is much smaller than ∆θ (the source is unresolved). What
is the observed average intensity when the source is in the beam of the detector? Does it depend on the
properties of the detector?

2. Angular diameters and effective temperatures [10 pts].

(a) Show that if you can measure the bolometric flux F and the angular diameter φ of a star, then you can de-
termine the effective temperature Teff even if you do not know the distance to the star. Note, “bolometric”
means “integrated over all frequencies.”

(b) In one recent application of this technique, astronomers used optical interferometry to measure the angular
diameters of both stars in the binary system β CrB. The results were 0.699 ± 0.017 mas for star A, and
0.415± 0.017 mas for star B, where “mas” means milli-arcseconds. The bolometric apparent magnitudes
of stars A and B are 3.87 ± 0.05 and 5.83 ± 0.10, respectively. The bolometric absolute magnitude of
the Sun is 4.75, and the effective temperature of the Sun is 5777 K. Use this information to calculate the
effective temperatures of stars A and B. You need not calculate the uncertainties.
(In case you are curious to learn more, the reference is Bruntt et al. 2010, Astron. & Astrophys., 512, 55.)

3. Saha equation and pure hydrogen [20 pts]. Consider a gas of pure hydrogen at fixed density and temperature.
The ionization energy of hydrogen is χ0 = 13.6 eV. You may assume that all the hydrogen atoms (whether
neutral or ionized) are in their ground energy state.

(a) Write down the Saha equation relating the number densities of neutral and ionized hydrogen (n0 and n1,
respectively). Make reasonable approximations to use numerical values for the partition functions.

(b) To find the individual densities, further constraints are required. Reasonable constraints are charge neu-
trality (ne = n1) and conservation of nucleon number (n1 + n0 = n), where the total hydrogen number
density n is a constant if the density ρ is fixed. Rewrite the Saha equation in terms of the hydrogen ion-
ization fraction x = n1/n, eliminating n1, n0, and ne. Does this equation have the expected limiting
behavior for T → 0 and T →∞?

(c) Use the relation ρ = mHn (where mH = 1 gm/NA, where NA = 6.023× 1023 is Avogadro’s number) to
replace n with ρ. Find an expression for the half-ionized (x = 0.5) path in the ρ-T plane. Plot this path on
a log-log plot for densities in the interesting range from 10−10–10−2 g cm−3
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4. Saha equation and pure helium [30 pts].
Consider a gas of pure helium at fixed density and temperature. The ionization energies for helium are χ0 =
24.6 eV (from neutral to singly ionized) and χ1 = 54.4 eV (from singly to doubly ionized). You may assume
that all the helium atoms (whether neutral, singly ionized, or doubly ionized) are in their ground energy state.
Let ne, n0, n1, and n2 be the number densities of, respectively, free electrons, neutral atoms, singly-ionized
atoms, and doubly-ionized atoms. The total number density of neutral atoms and ions is denoted by n. Define
xe as the ratio ne/n, and let xi be ni/n where i = 0, 1, 2. You should assume that the gas is electrically neutral.
The degeneracy factors you need for the atoms and ions are 2 for He, 4 for He+, and 2 for He2+.

(a) Construct the ratios n1/n0 and n2/n1 using the Saha equation. In doing so, take care in establishing the
zero points of energy for the various constituents.

(b) Apply charge neutrality and nucleon number conservation (n = n0 + n1 + n2) and recast the above Saha
equations so that only x1 and x2 appear as unknowns. The resulting two equations have T and n [or,
equivalently, ρ = nmHe = n(4 gm/NA)] as parameters.

(c) Simultaneously solve the two Saha equations for x1 and x2 for temperatures in the range 4× 104 ≤ T ≤
2 × 105 K. Do this for a fixed density with the three values ρ = 10−4, 10−6, or 10−8 g cm−3. You may
find it more convenient to use the logarithm of your equations. Choose a dense grid in temperature because
you will soon plot the results. Once you have found x1 and x2, also find xe and x0 for the same range of
temperature. Note that this is a numerical exercise; you will want to use a tool like Mathematica or Matlab
for this.

(d) Plot all your xs as a function of temperature for your chosen value of ρ. (Plot x0, x1, and x2 on the same
graph.) Identify the transition temperatures (half-ionization) for the two ionization stages.

5. Limb darkening [20 pts].
In this problem you will derive a relation between the measured limb darkening of a star, and the source function
of its photosphere. Let the intensity of the stellar disk be Iν(r), where r is the distance from the center of the
stellar disk in units of the stellar radius (i.e. r = 0 at the center, and r = 1 at the limb).

(a) Instead of r it is traditional to express Iν as a function of µ ≡
√

1− r2. Show that µ = cos θ, where θ is
the angle between the line of sight and the normal to the stellar surface.

(b) We want an expression for the intensity at the stellar surface in terms of the source function. Start from the
the radiative transfer equation for a plane-parallel atmosphere. Show that for an upward-propagating ray
coming from far below to the top surface, the formal solution is

Iν(µ) =

∫ ∞
0

dτν
Sν(τν)

µ
e−τν/µ, (1)

where τν is the vertical optical depth.

(c) Suppose the (unknown) source function can be represented by a polynomial,

Sν(τν) = a0 + a1τν + a2τ
2
ν + · · ·+ anτ

n
ν . (2)

Show that under this assumption the emergent intensity is given by

Iν(µ) = a0 + a1µ+ 2a2µ
2 + · · ·+ (n!)anµ

n, (3)

using the definite integral
∫∞

0
xn exp(−x)dx = n!. In this way the measured limb-darkening law can be

used to determine the source function, and therefore the temperature stratification for an LTE atmosphere.

(d) Show that for a gray LTE atmosphere, the predicted limb darkening law for the wavelength-integrated
intensity at the stellar surface is

I(θ)

I(0)
=

2

5
+

3

5
cos θ.
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6. Radiative transfer in spherical coordinates [20 pts].
After this week’s classes you should be familiar with the radiative diffusion equation for a plane-parallel atmo-
sphere, an appropriate model for a thin photosphere. In this problem you will repeat those steps for a spherical
atmosphere, as appropriate for the bulk of a star. We will assume the star is spherically symmetric and that
consequently Iν = Iν(r, θ), where r is the radial coordinate and θ is the angle of a ray relative to the local
radius vector (and not the polar angle referring to the position with respect to the stellar center). See Fig. 1.

(a) Use the chain rule,
dIν
ds

=
∂Iν
∂r

dr

ds
+
∂Iν
∂θ

dθ

ds
, (4)

to show that the radiative transfer equation (RTE) can be written

cos θ
∂Iν
∂r
− sin θ

r

∂Iν
∂θ

+ ρκνIν − jν = 0. (5)

In this expression, κν is the opacity, measured in units of cm2 g−1; and jν is the emission coefficient,
measured in units of erg cm−3 s−1 sr−1 Hz−1 [both as defined by Rybicki & Lightman (p. 9-10)].

(b) Integrate the RTE over all solid angles to show

dFν
dr

+
2

r
Fν + cρκνuν − ρεν = 0, (6)

where εν is the (angle-averaged) emissivity as defined on p. 9 of Rybicki & Lightman.

(c) Multiply the RTE by cos θ and integrate over all solid angles to show

c
dpν
dr

+ ρκνFν = 0, (7)

where you have assumed jν to be isotropic, and Iν to be nearly isotropic. Here, pν is the specific radiation
pressure given by

pν =
1

c

∫
Iν cos2 θ dΩ. (8)

(d) Use the preceding equation, as well as the blackbody formula for radiation pressure, the relation F =
L/4πr2 and the definition of the Rosseland mean opacity κR to show

dT

dr
= − 3ρκRL

64πσr2T 3
. (9)
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Figure 1: Geometry relevant to Prob. 6. A photon propagates a distance ds along a direction θ from the local radius
vector. As a result its radial coordinate increases by dr and the angle to the local radius vector decreases by dθ.
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