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26.1 Temperatures

Like stars or brown dwarfs, planets are born hot. But they cool off quickly, and
so the energy budgets of all but the youngest exoplanets are dominated by
stellar irradiation reprocessed by the planet’s atmosphere (or surface). When
internal heat sources are small, a planet in energy balance should satisfy

(774) Eout = Eabs = (1 − AB)Einc

where the E’s above are the outgoing (emitted), absorbed, and incident ener-
gies, respectively. The term AB is the Bond Albedo of a planet, and indicates
the bolometric fraction of incident energy absorbed by the planet. (Thus the
reflected energy is ABEinc — shinier planets reflect, i.e. scatter, more light.)

Given a planet with radius Rp, orbital separation a, and stellar radius R∗,
energy balance then implies that over the entire planet

(775) 4πR2
pFp = (1 − AB)

�
R∗
a

�2
πR2

p.

Invoking the Stefan-Boltzmann law for the star in terms of its effective temper-
ature Teff, we can then calculate the equilibrium temperature of the planet’s
irradiated day side,

(776) Teq = Teff

�
R∗
a

�1/2

[ f (1 − AB)]
1/4

Here f accounts for the fact that on a planet with an atmosphere (or ocean),
bulk motion can transport heat from the hot day side to the colder night side:
in this case the planet effectively radiates with a greater effective surface area,
and so Teq is lower. Valid values of f range from 1/4 (lower Teq, indicating
full heat circulation around the planet) to 2/3 (no circulation). Note that the
equilibrium temperature is really just a parameterized incident irradiation
that lets us sweep our uncertainty about f and AB under the rug. There is
also an irradiation temperature,

(777) Tirr = Teff

�
R∗
a

�1/2
=

S1/4
0

σSB

which describes the incident radiation coming in at the substellar point (noon
on the equator). Here S0 is (for Earth) the Solar constant of about 1400 W m−2

incident at the top of the atmosphere.
Typical values for AB are 0.12 for Mercury, 0.75 for Venus, and ∼0.3 for

the other Solar system planets. Thus Venus actually has a lower Teq than the
Earth despite being closer to the Sun (i.e., having greater Tirr). Nonetheless the
Venerean surface is hot enough to melt lead. This hints at a key issue with the
use of equilibrium temperature: it is only a rough proxy and can sometimes
lead to expectations at variance with observations.
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26.2. Surface-Atmosphere Energy Balance

We know comparatively little about the albedos of most exoplanets. Most
measurements to date are of hot Jupiters (highly irradiated gas giants, Teq >
1000 K and Rp ∼ RJup) and indicate quite low albedos, AB � 0.2. But a
few exceptions have quite high albedos; these are thought to be covered in
especially reflective clouds.

26.2 Surface-Atmosphere Energy Balance

It may surprise you to consider that some planets have atmospheres, which
can absorb and emit radiation on their own. If the planet also has a solid
surface, then we can equate the radiation absorbed and re-emitted by both the
atmosphere and the surface to gain insight into the planet’s energy balance.

The overall picture is shown in Fig. 63. The scenario is similar in some
ways to the two-layer stellar model introduced in Sec. 7.2, but now we have
a surface. We split the radiation into two wholly separate components: in-
coming radiation from the star, and outgoing radiation from the surface and
atmosphere. For the Earth around the Sun, TP ≈ 290 K and T∗ ≈ 5800 K, so
from Wien’s Law (Eq. 82) λP,max ≈ 10µm while λ∗,max ≈ 500 nm. These very
different wavelengths are not typically affected by the same opacity sources,
and so we are justified in treating these two radiation streams separately. For
hotter planets and/or cooler stars, this assumption can break down: e.g. the
hottest of the hot Jupiters have Teq � 2000 K, not so much cooler than the
coolest stars.
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Figure 63: Energy balance on a planet with an atmosphere. Short-wavelength
(visible) radiation is shown in blue, and long-wavelength (thermal) radiation
in orange.
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26. Exoplanet Atmospheres

We assume that the atmosphere has a thermal emissivity �, where

(778) � = 1 − e−τ .

For a fairly thin atmosphere (like the Earth’s), τ < 1 and so � ≈ τ. We will
define FS and FA as the flux emitted by a blackbody at the temperatures of the
surface and atmosphere, respectively.

If we require energy balance at the planet’s surface, we have

(779)
S0

4
+ �FA =

ABS0

4
+ FS.

The atmosphere is transparent to the incoming radiation but absorbs some of
the thermal radiation from the surface, so atmospheric energy balance gives

(780) �FS = 2�FA.

Combining these two relations gives

(781) σT4
S = S0

1 − AB
4

1
1 − �/2

which relates the surface temperature TS to the planetary albedo and atmo-
spheric emissivity. If AB is low the planet’s surface will cool off – but as the
atmosphere becomes more opaque to thermal radiation (i.e., as � rises from ∼0
toward unity) the surface temperature will increase. This second point is one
simple version of the greenhouse effect. It is part of the reason that Venus’
surface is much hotter than its upper atmosphere (i.e., because �Venus ≈ 1),
and is one reason that Earth’s surface temperature is slowly but steadily in-
creasing (i.e., because �⊕ is being increased).

If one sets TS to 273 K and 373 K, with reasonable values of � one can
calculate the inner and outer orbital semimajor axes a for which liquid water
can persist on the planet’s surface. This is the first step toward calculating
the habitable zone; planets in this zone orbiting a star are often particularly
intriguing prospects for atmospheric characterization.

26.3 Transmission Spectroscopy

Long ago in Sec. 4.3 we briefly alluded to transiting planets. The transit
method is the most productive method to date for finding new planets; it
also provides a way to study the chemical composition of their atmospheres.
This is useful because planets are so much fainter than stars that measuring
their composition via spectroscopy of their thermal emission (as we do with
stars) is impossible in all but a few of the most favorable cases. Instead, we
use transmission spectroscopy.

In an atmosphere in hydrostatic equilibrium (Eq. 192), the pressure is

(782) P = nkT = P0e−z/H

where H is the atmospheric scale height, the characteristic e-folding scale of
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26.3. Transmission Spectroscopy

the atmosphere:

(783) H ≡ kBT
µgP

.

If we assume that the atmosphere is isothermal, then similarly

(784) n(z) = n0e−z/H .

When observing a transit at a particular wavelength, we will only observe
down to an altitude z such that the tangent optical depth is roughly unity. The
ray will travel from one side of the atmosphere through to the other, with a
minimum altitude z. The full optical depth along that tangent line is

τν = 2
R�

z

nσνds

= 2σνn0

R�

z

e−r/Hds.

Due to the dependence of z and s this integral isn’t totally trivial. What’s
important is that n drops off rapidly (exponentially!) with altitude, so that
the optical depth is dominated by the minimum altitude z hit by the ray. This
means that

(785) τν ∝ e−z/H = 1.

Because z depends on the opacity — which is wavelength-dependent — a
different altitude is reached for the rays at each wavelength. If we observe
transits at two different wavelengths, then the two altitudes probed will be

(786)
z1 − z2

H
=

δz
H

= ln
σ1

σ2
.

The result is that each transit observation probes effectively one scale
height of the atmosphere, modulated by the atmospheric opacity at that wave-
length. The characteristic transit signal of one scale height is just the ratio of
the projected area of the planet’s annulus to the area of the host star:

(787) δ =
δA
A

=
2πRPH

πR2∗
.

By observing the transit at multiple wavelengths, one builds up a transmis-
sion spectrum – the wavelength-dependent transit depth. The difference be-
tween the transit depths at two wavelengths is then just

(788)
�

δF
F

�

1
−

�
δF
F

�

2
≈ δ ln

σ1

σ2
.
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26. Exoplanet Atmospheres

In the strongest lines, the core-to-wing opacity ratio might be as high as 104,
but the logarithmic dependence means that only roughly 10H will be probed.
Most lines are weaker than this, so in practice transmission spectroscopy
probes a moderately narrow range of the atmosphere — frustrating because
we can’t measure pressures outside of this range, but nice because some of
our assumptions (such as that the atmosphere is isothermal) are moderately
valid.

One simple, analytic example is Rayleigh scattering, in which σ ∝ λ−4

due to small particles (molecules or tiny particulates) high in a planet’s atmo-
sphere. In transit, the transit depth will then scale as

(789) δ ln
σ1

σ2
∝ (−4 ln λ)

HRp

R2∗
.

Equivalently, this means that the apparent planetary radius should increase to
shorter wavelengths as

(790) RP(λ) ∝ −H ln λ ∝
T

µg
ln λ.

If transits and radial velocities have measured a planet’s RP, Mp, and so also
g, then by measuring the transit spectrum one obtains (in principle) a de-
generate measurement of the mean molecular weight µ and the atmospheric
temperature T.

In practice, only a few atmospheres obviously show a clear signature of
Rayleigh scattering; most have a multitude of opacity sources (often includ-
ing mid-level-sized clouds or hazes) which complicates the picture. But the
general result that transit-inferred planet size is proportional to ln σ remains
valid.

26.4 Basic scaling relations for atmospheric characterization

There are several fundamental ways that the atmospheres of exoplanets are
characterized:

• Transits. These measure the planet-to-star radius ratio δ = R2
P/R2∗. By

inferring the star’s properties, we measure the planet size. If we also
know its mass, then we know its density and so might know whether
it is a puffy gas giant or dense rock. However, the bulk compositions of
planets with sizes of 2–6R⊕ are degenerate – they cannot be uniquely
determined by mass and radius measurements alone.

• Transmission. As described above, the signal amplitude is roughly HRP/R2∗.
This is ∝ TRP/(µgPR2∗ ∝ T/(µρPR2∗). So a hot, low-density planet with
a H2-dominated atmosphere will have a large signal – as one moves to
cooler and denser planets with heavier atmospheric constituents (i.e., to-
wards more Earth-like planets) characterization becomes progressively
more difficult.

226



26.4. Basic scaling relations for atmospheric characterization

• Thermal Emission: eclipses. When a transiting planet passes behind its
host star, its thermal emission is blocked. To first order, if the planet and
star both emit as blackbodies then the measured signal is δ(Bν(TP)/Bν(T∗)).
If the planets are hot and we observe in the infrared near the Rayleigh-
Jeans tail, then (very roughly) we will instead have δTP/T∗ – infrared
eclipses give us the temperature of the planet. More specifically, this is
the brightness temperature of the planet’s day side (the only hemisphere
seen right around the time of eclipse).

• Thermal Emission: phase curves. Most exoplanets are hotter (and brighter)
on their daysides and colder (and dimmer) on their nightsides. By ob-
serving throughout a planet’s orbit, we can sometimes measure the roughly
sinusoidal change in system brightness during a full planet orbit. The
full (peak-to-valley) amplitude of this flux variation (assuming black-
body emission) will be δ(Bν(Tp,hot)− Bν(Tp,cold))/Bν(T∗)). In the Rayleigh-
Jeans limit, this becomes δ(Tp,hot − Tp,cold)/T∗. With the eclipse observed
“for free” during the phase curve, we thus measure the day-to-night tem-
perature contrast. We can actually get a low-resolution 1D (longitudinally-
averaged) temperature map of the entire planet.

• Thermal Emission: direct imaging. Most known exoplanets are in very
short periods and cannot be spatially resolved by telescopes. These ob-
servations are dominated by stellar flux and Poisson (photon) noise lim-
its the achievable precision. A few planets are on very wide orbits, such
that the stellar light is well-separated from the planet. In these cases
one can “simply” point a spectrograph at the planet and measure its
emission spectrum, just like one does for a planet. The relative signal
amplitude will be the same as for the eclipse case described above, but
the relative noise levels will be lower (all else being equal). Like eclipses
and phase curves, direct imaging can also in principle be done at visible
wavelengths; here the observed planet flux will often be dominated by
scattering (and so by the planet’s albedo) and not so much by TP.

The following table gives approximate estimates for the signal amplitude for
several different types of planetary systems. It should be apparent why so
many more hot Jupiters than habitable, Earthlike planets have been stud-
ied: the atmospheric signals for those hot gas giants are orders of magnitude
larger.

Method Scaling Earth, Hot Jupiter, Earth, Hot Jupiter,
G2 Dwarf G2 Dwarf M dwarf M dwarf

Teq Teff

�
R∗
2a

�1/2
280 K 1600 K 280 K 1000 K

Transit
�

RP
R∗

�2
10−4 10−2 6 × 10−4 6 × 10−2

Transmission HRP
R2∗

10−7 10−4 6 × 10−7 3 × 10−4

Emission (5µm)
�

RP
R∗

�2 Bν(TP)
Bν(T∗)

2 × 10−9 10−3 2 × 10−8 6 × 10−3
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26. Exoplanet Atmospheres

26.5 Thermal Transport: Atmospheric Circulation

Thermal phase curves in particular offer the intriguing possibility of studying
global conditions all around the planet — in contrast to eclipses (which probe
only the day-side) and transits (which probe only the day-night terminator).
Fully modeling a planet’s global atmospheric circulation requires so-called
general circulation models (GCMs) that solve some version of the Navier-
Stokes fluid equations (and perhaps also accounting for other physics such as
ionization, magnetic fields, etc.). Nonetheless we can build a simple thermal
transport model to describe what we might expect to see when observing
phase curves.

We will consider a day in the life of an individual gas parcel on a tidally-
locked, short-period exoplanet. The planet is on a circular orbit and receives
incident bolometric flux from its star

(791) Finc = σT4
eff

�
R∗
a

�2
.

However, the gas parcel only absorbs a fraction of this incident flux. This frac-
tion accounts both for the albedo (discussed previously) but also for planetary
geometry: planets are spheres, and a gas parcel near the planet’s limb or equa-
tor will absorb less stellar energy than at noon on the equator (the substellar
point). Another way of thinking about this is that solar cells tend to be a lousy
investment in Antarctica. Assume the parcel is at latitude θ and longitude φ.
We define θ = 0 at the North pole and π at the South pole, while φ = 0 at the
substellar longitude, −π/2 at dawn, and π/2 at sunset.

The net flux of the parcel will be

(792) ΔF = (1 − AB)Finc sin θ max(cos φ, 0)− σT4.

(The “max” function takes the maximum of the two arguments, and accounts
for the fact that when our atmosphereic parcel is on the night side, it absorbs
zero (not negative) flux.) If the parcel has density ρ, specific heat capacity
cP, and thickness H then we obtain a differential equation for the parcel’s
temperature:

(793)
dT
dt

=
1
ch

�
(1 − AB)F sin θ max(cos φ, 0)− σT4

�

where

(794) ch = ρcPH.

If we set dT/dt = 0 in Eq. 793, then we obtain an expression for the local
equilibrium temperature of the gas parcel.

Since one parcel is as good as another, if we can solve Eq. 793 for one gas
parcel and relate time to the parcel’s longitude then we will know how the
surface temperature of the entire planet varies with longitude – i.e., we will
have constructed a planetary temperature map.

228



26.5. Thermal Transport: Atmospheric Circulation

To make things a bit more tractable, we define a fiducial temperature

(795) T0 ≡ Teff(1 − AB)
1/4 sin1/4 θ

�
R∗
a

�1/2

and also define the radiative timescale

(796) τrad ≡ ch

σT3
0

.

If we then define a dimensionless temperature T� ≡ T/T0 and time t� ≡ t/τrad,
then Eq. 793 is simplified to

(797)
dT�

dt�
= max(cos φ, 0)− T�4.

This is a function of time, but we could also write things in terms of longitude
if we could describe the motion of our gas parcel around the planet. We as-
sume that our gas parcel is advected around the planet (e.g., by the globally
circulating winds predicted on hot gas giants) with a characteristic windspeed
vadv, giving rise to a characteristic advective timescale

(798) τadv ≡ 2πRP
vadv

.

An important quantity is the ratio of these two timescales, which we de-
note

(799) � ≡ τrad
τadv

.

When � � 1, radiation is “faster” (i.e., more efficient) than advection and en-
ergy is almost immediately radiated away before it can be transported around
the planet. When � � 1, the reverse is true and energy is swept away by winds
much more rapidly than it can be re-radiated. Eq. 797 then becomes

(800)
dT�

dφ
=

2π

�

�
max(cos φ, 0)− T�4

�
.

Eq. 800 has two solutions, depending on whether the parcel is on the day
side (absorbing energy while re-radiating) or on the night side (emitting only).
The analytic solution for the night-side temperature can be found by integrat-
ing from dusk (when the parcel stops absorbing energy, φ = π/2) until some
later phase φ (up until dawn). The solution is

(801) T�
night(φ) =

�
6π

�

�
φ − π

2

�
+ (T�

dusk)
−3

�−1/3
.

If advection is extremely efficient, then the first term in parentheses is zero and
Tnight = Tdusk — the planet’s night side has a uniform temperature. But as ra-
diative transport begins to dominate advective heat transport, the night side
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26. Exoplanet Atmospheres

temperature will drop steadily from dusk (consisting of parcels that only just
stopped seeing their star) to dawn (after they have been radiating away ther-
mal energy for the entire night). Note that this process happens even though
the planet itself is tidally locked; global winds still circulate.

On the day side, there is no general analytic solution to Eq. 800 (though it
can be solved numerically). Nonetheless (as with the night side) the solution
will depend sensitively on the ratio of advective and radiative timescales. If
� � 1 then advection is very efficient, and

(802)
dT�

day

dφ
= 0 → Tday = const.

If energy transport is very efficient, the temperature is the same, day and
night. On the other hand, if � � 1 then radiation is extremely efficient and
winds have negligible effect on heat transport. In that case,

(803) T�
day = cos1/4 φ.

As the next-order approximation, one can assume that T� is a quadratic
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Figure 64: Planetary temperature vs. longitude for a simple energy transport
model, for different values of � = τrad/τadv. The substellar longitude is at
φ = 0. The solid curves on the day side are the second-order approximate
solutions of Eq. 804, while on the night side are plotted the exact solutions of
Eq. 801. The broken black curves are the exact solutions for the limiting cases
indicated, i.e. atmospheres dominated by radiation (dashed) and advection
(dotted).
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26.5. Thermal Transport: Atmospheric Circulation

function of φ and similarly expand cos φ to second order. This is a pretty
crude model, but it provides one or two final insights. Under this assumption,
setting � ≡ τrad/τadv yields

(804) Tday ≈
�

1 − �2

64π2

�
+

�

32π
φ − 1

8
φ2.

These approximate solutions are plotted in Fig. 64 for several values of �. Note
that the low-� curves are a decent match to the exact analytic solution for � = 0
(i.e., Eq. 803), but the quadratic models overpredict the temperature at dawn
and dusk. They also leave a discontinuity in T� at dawn; this can be fixed by
computing the full numerical solution to Eq. 800.

The temperature of our circulating gas parcel reaches a maximum when
dT�/dφ = 0, which implies a longitude of maximum temperature

(805) φmax ≈ 1
8π

τrad
τadv

.

Thus the hottest part of the planet is located to the East of the substellar point;
this shift in peak temperature is the phase offset, and gives an estimate of the
relative timescales operating in a planet’s atmosphere. (This is not the reason
that on Earth it’s warmer in the early afternoon than at dead noon; that’s
because of the Earth’s thermal intertia and its rapid rotation, Prot/Porb � 1.)

By setting φ = φmax in Eq. 804, we obtain the maximum dayside tempera-
ture:

(806) T�
day,max = T�

day(φmax) ≈ 1 − 7�2

512π2 .

Thus radiative-dominated atmospheres have the maximum possible day side
temperatures. As advection plays an increasingly important role, more energy
is distributed around the planet and the maximum day side temperature de-
creases. In the exact solution, the maximum temperature also correlates with
the phase offset, as

(807) T�
max = cos1/4 φmax

down to a minimum of π−1/4 (as plotted in Fig. 64).
Many typical hot Jupiters have phase offsets of ∼ 20o — indicating typical

values of � ≈ 10, day side temperatures 10–15% cooler than in local equilib-
rium, and moderate day-to-night temperature contrasts. As one observes hot-
ter and hotter planets (e.g., Teq � 2000 K), radiation increasingly dominates
over heat transport, � → 0, day sides become hotter, and day-night tempera-
ture contrast increases. In practice, processes other than radiation and advec-
tion become important when considering atmospheric circulation; in particu-
lar, various drag forces and their associated timescales can become at least as
relevant as the advective processes that they inhibit.
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