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23 Accretion

23.1 Useful references

• Murray & Dermott, Ch. 3

• Choudhuri, Secs. 4.5.1, 5.6

• Hansen, Kawaler, and Trimble, Sec. 2.13

Much of our empirical knowledge of neutron stars and black holes
comes from accretion: the flow of material from some object (usually
a star) onto another. Accretion is a ubiquitous process in astrophysics,
contributing to the formation and growth of planets (< 10−3M�), stars
(∼ M�), stellar remnants such as white dwarfs, neutron stars and black
holes (� 40M�), and even the supermassive black holes that lie at the
centers of galaxies (106 − 109M�).

23.2 Lagrange Points and Equilibrium

Our first goal is to identify the points of equilibrium in a two-body bi-
nary system with orbital period P. Imagine a test particle (e.g., an atom
of potentially accretable gas) near the binary: what forces act on it? To
answer this we examine the system in a frame co-rotating with the bi-
nary, as sketched in Fig. 53. We have two objects with masses m1 > m2,

Figure 53: Schematic view of a coordinate frame co-rotating with a binary.
“CoM” indicates the center of mass.
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23.2. Lagrange Points and Equilibrium

total mass M, mass ratio q = m1/m2, and a systemic angular velocity
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P
ẑ

(588)
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ẑ

(589)

We expect to find a zone of influence near each body in the binary, such
that our test particle will remain near that body. Any material inside this
zone will stay on or near its dominating body; any material outside the
zone will not be bound and could accrete onto the other object. For two
stationary masses the effective potential would merely be the sum of
their gravitational wells; the key difference here is that since we are con-
sidering the test particle within a rotating (non-inertial) reference frame,
we must include a fictitious centrifugal force as well. In this Roche po-
tential, we then have

(590) ψR(�r) = −G
m1

r1
− G

m2

r2
− 1

2
Ω2r2.

Note that the Roche potential, including only the centrifugal term, is
just fine for considering equilibrium points (at which our test particle
would be stationary). To consider dynamics and particle trajectories (i.e.
nonzero velocities), we would also need to consider the (also fictitious)

Figure 54: Roche potential (Eq. 590) as a surface plot (above) and as contour
plot (below). Lagrange points 1–3 are noted; points 4 and 5 would be to either
side of the “figure eight.”

181



23. Accretion

Coriolis term:

(591) �FCor = 2m�v × �Ω.

But so long as v = 0, we can neglect it.

Fig. 54 depicts the Roche potential as both a 3D mesh surface plot and a
2D contour plot. Note several key features:

– The gravitational well of each star shows up prominently for small
�r1 and�r2. At large r, the centrifugal term dominates.

– If we take a cross-sectional cut along the line connecting the masses,
ψR shows three local maxima. These are the first three Lagrange
Points (actually found by Euler). L1 is between the two objects (it is
not the center of mass), L2 is outside the low-mass object, and L3 is
outside the high-mass object.

– Expanding from the cross-section to the full 2D plane, there are two
local maxima to each side: these are the final Lagrange points, L4
and L5. Furthermore, note that L1 − L3 are actually saddle points,
and not truly local maxima.

All five of the Lagrange points can be identified as equilibrium points
by setting

�∇ψR = 0.

As is apparent from Fig. 54, in the Roche description none of these five
points appear to be truly stable equilibria. As noted above, this is be-
cause we have neglected Coriolis forces. When these are included L1 − L3
remain at least mildly unstable (or worse), but spacecraft can still main-
tain orbits around these points with only minimal use of thrusters.

Points L4 and L5 turn out to be true equilibria: given a small perturbation
from those points, the Coriolis force will keep the test particle in funny-
looking orbits around one or the other of these two points. If given a rel-
atively small perturbation the test particle will exhibit so-called tadpole
orbits, oscillating around L4 or L5 with a greater displacement toward
L3 than toward L2. Thousands of asteroids are seen librating around
Jupiter’s L4 and L5 points; such objects are often terms Trojans. If given
sufficient impetus, the test particle can be sent into a horseshoe orbit,
wherein it oscillates around most of the system (as viewed from within
the rotating frame). An object is a horseshoe orbit is less tightly bound
and ranges over a much broader range of parameter space; nonetheless
numerous such objects are also known.

23.3 Roche Lobes and Equipotentials

In this rotating reference frame, a star in equilibrium will still satisfy the
equation of hydrostatic equilibrium. Now we no longer have spherical
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23.4. Roche Lobe Overflow

symmetry, so our 3D equivalent of Eq. 192 is

(592) �∇P = −ρ�geff = −ρ�∇ψR.

This means that the contours of ψR shown in Fig. 54 correspond to sur-
faces of constant pressure.

One often speaks of a Roche lobe radius – i.e., the radius of a sphere
with the same volume as the Roche lobe. For star one, an approximation
good to 1% is

(593)
R1

a
=

0.49q2/3

0.6q2/3 + ln(1 + q1/3)
.

If q � 1, then an even simpler approximation is

(594)
R1

a
≈ 1

2
q1/3.

In particular, the outermost layer of the star will itself be shaped like
one of these contours; in binary-speak, we say that the star only par-
tially fills its Roche lobe. If neither star completely fills its Roche lobe,
then we have a detached binary. As we consider a larger and larger star
(of constant mass), the star will become increasingly almond-shaped.
Eventually it will become so large that it completely fills its Roche lobe;
if it becomes any larger, some of its material will fall through the nar-
row neck of the hourglass and enter the potential well of the other mass.
An astronomer would say that the star is overflowing its Roche lobe; we
then have a semi-detached binary (Algol is a classic example). If both
stars fill their Roche lobes, then the “binary” is now a dumbbell-shaped
contact binary rotating at the Keplerian period. In the most extreme
case, a common-envelope binary, the cores of two stars can orbit to-
gether deep inside of a single, common envelope that now may rotate
at a speed wholly unrelated to the Keplerian period. Regardless of the
type of overflow, substantial mass transfer will occur and so the stellar
evolution of the stars involved can be significantly affected.

23.4 Roche Lobe Overflow

When Roche lobe overflow occurs, material spills over at L1 and falls
down the companion’s gravity well. Roche Lobe overflow can dramat-
ically complicate stellar evolution in a binary system. Given a binary
composed of two main-sequence stars, we might naively expect the
smaller lobe to overflow first. But the more massive star (with the larger
Roche lobe) will have a shorter life and will evolve first into a giant.

At this point, something interesting happens: as the star (say, m1) ex-
pands and mass transfer begins, by Eq. 594 its Roche radius will shrink.
The combined effect is to accelerate mass transfer; until in some cases
m2 may become more massive than m1. Material may even slosh back

183
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and forth between the two objects a time or two, but before too long one
object or another will end its stellar life, as either a white dwarf, neutron
star, or black hole.

23.5 Accretion Disks

Once our binary contains a compact stellar remnant, if the binary sepa-
ration and mass ratio are right then one last phase of mass transfer can
occur. When overflow occurs in a system with a compact object (WD,
NS, or BH; call it m2), the material has a long way to fall. It is pushed
over the brink by the unbalanced pressure at L1, and falls down toward
m2 with a velocity v ≈ cs ∼ 10s km s−1 — much smaller than the or-
bital speeds of ∼ 100 km s−1. When m2 had a large radius this material
would easily hit its target, but in this later phase of evolution the target
is far smaller.

Now, the overflowing gas heads down, down toward m2 — but all the
while, the �v × �Ω Coriolis force is steadily acting on the material, causing
it to veer away from a direct path. The combined potential leads to the
matter entering into an orbit around m2, with the material’s trajectory
passing through its former position and smashing into the material that
was coming along behind it.

Shock heating sets in where the infalling stream impacts the growing
disk of matter, converting bulk kinetic energy into heat. Radiation can
try to cool the hot, shocked material but it can’t transport much angular
momentum: so the accreted material ends up in a circular accretion disk.

Further evolution of the disk is set by its ability to transport mass inward
through the disk while simultaneously moving angular momentum out-
ward – these parameters are set in turn by the viscosity of the disk. Each
concentric annulus of material in the disk wants to travel at a slightly
different Keplerian speed. Very close to m2 at the center of our accretion
disk, orbits are determined solely by m2 and so travel at the Keplerian
angular velocity

(595) ΩK(r) =
v
r
=

�
GM
r3 .

Meanwhile, the angular momentum per unit mass is

(596) �(r) = rv = r2ΩK =
√

GMr.

So as we go outward through successive annuli of the disk, Ω decreases
but � increases. These rings, rotating at different speeds, are coupled by
viscosity – this effectively acts like friction. So each interior ring tries to
speed up the rotation of its exterior neighbor, sending angular momen-
tum outward and pushing out that exterior neighbor. At the same time,
the ring interacts viscously with the next ring inward, trying to slow it
down and so causing it to fall inward. The net effect is that the disk
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