
21 Neutron Stars

If a stellar remnant exceeds the Chandrasekhar mass, then even fully rela-
tivistic electron degeneracy pressure will be insufficient to support it. As we
discussed in Sec. 19.4, only neutron degeneracy pressure can possible halt its
final and inevitable collapse. Let’s now consider the astrophysics of neutron
stars in more detail.

21.1 Neutronic Chemistry

For starters: why don’t all the neutrons just decay away? An isolated neutron
undergoes the decay

(528) n → p + e− + ν̄e

because

(529) (mn − mp)c2 = 1.3 MeV.

The excess energy will be carried away by the electron and antineutrino.
But in a degenerate medium, the Fermi energy may exceed this 1.3 MeV

limit. When this happens, there are no accessible low-energy states for the
electron to occupy after decay – so the neutron decay is suppressed (alterna-
tively, imagine the neutron decays but it is energetically favorable for the new
electron to immediately recombine with an available proton). We expect this
beta-decay suppression to set in when

EF � (mn − mp)c2 = 1.3 MeV

(530)

�
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So to keep the neutrons around, the Fermi momentum must satisfy

(533) pF � mec

��
mn − mp

me

�2
− 1

�1/2

or roughly pFc � 1.2 MeV. In terms of density, we refer to Eq. 395,

pF =

�
3n3ρ

8πmp

�1/3

.
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21. Neutron Stars

So combining this with Eq. 533 we see that neutron decay is suppressed for

(534) ρ � 107 g cm−3.

As ρc reaches and exceeds this critical density, the neutron star establishes
an equilibrium between neutrons, protons, and electrons. One can develop a
Saha-like equation (recall Sec. 8.5) relating the populations of each type of
particle; see Sec. 2.6 of Shapiro & Teukolsky for further details. Above the crit-
ical density, the so-called neutron drip sets in and neutrons slowly leave the
individual nuclei. In the extreme end case, the star is indeed entirely neutrons.

21.2 Tolman-Oppenheimer-Volkoff

Note also that for neutron stars,

(535)
GM
rc2 ≈ 0.1 − 0.3

and so we are definitely in a range where Newtonian gravity alone will not
suffice. General relativity must be used instead.

Recall from Sec. 5 that gravity determines the geometry of spacetime, so
that the interval (or distance) ds between two events is

(536) ds2 = gµνdxµdxν

where gµν is the metric and dxµ is the coordinate displacement between two
events (see Eqs. 12 and 14).

For a spherical, static body, general relativity shows that the appropriate
metric is

(537) ds2 = −e2Φ(r)/c2
(cdt)2 +

dr2

1 = 2GM/rc2 + r2(dθ2 + sin2 θdφ2)

where as usual

(538) M(r) =
r�

0

= 4π(r�)2ρ(r�)dr�

and

(539)
dΦ
dr

= −G[M(r) + rπr2P(r)/c2]

r(r − 2GM(r)/c2)
.

The boundary conditions are that

e2Φ/c2
= 1 − 2GM

rc2 (r > R∗)

(540)

ρ(r) = 0 (r ≥ R∗)
(541)
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21.3. Neutron star interior models

These equations build in the relativity of distance and time, plus the fact
that all forms of energy (including pressure) contribute to gravity. Ultimately
the new, relativistic equation of hydrostatic equilibrium is

(542)
dP
dr

= −
�

G
r2

� �
M + 4πr3P/c2

1 − 2GM(r)/rc2

� �
ρ + P/c2

�
.

This is the Tolman-Oppenheimer-Volkoff equation (or TOV). Note that in
the limit of low densities and pressures, all terms with 1/c2 drop out and we
recover Eq. 192,

dP
dr

= −
�

G
r2

�
Mρ = −ρg.

21.3 Neutron star interior models

To make a neutron star model, we need to solve the TOV equation – but we
also need to have an equation of state to work with. The trouble is that neutron
stars push us into a regime where the physics is not accurately known! But
we can still consider a few limiting cases.

The first of these is to assume that the neutron star equation of state is so
stiff that it is incompressible, i.e., ρ(r) = ρ0 = constant. Then (as Problem Set
8 demonstrates),

(543) P(r) = ρ0c2

�
(1 − RSr2/R3∗)1/2 − (1 − RS/R∗)1/2

3(1 − RS/R∗)1/2 − (1 − RSr2/R3∗)1/2

�

where R∗ is the radius of the neutron star and

(544) RS =
2GM

c2

is the Schwarzchild radius. This incompressible model shows that P(r =
0) → ∞ if R∗ is too small (i.e., if the NS is too compact). The denominator
of Eq. 543 must be > 0, so we obtain the constraint that

(545) R∗ >
9
8

RS = 2.25
GM
c2 .

The implication is that a star more compact than this cannot be supported
even by infinite pressure; it will collapse instead.

In reality, no fluid can be truly incompressible, since this would require an
infinite (and super-luminal) sound speed. Rhodes & Ruffini (1974) developed
as stiff a NS model as possible that was still consistent with relativity. Their
result was that neutron stars must have M < 3.2M�.

21.4 A bit more neutron star structure

More typically in modern studies, one chooses an equation of state – or at
least, builds up P(ρ) based on your favorite knowledge/assumptions about

165



21. Neutron Stars

dense matter. One picks a central density (informed by your previous model,
perhaps) and integrates Eq. 542 until P = 0 is reached; this is the surface. One
tabulates M∗ and R∗ for different equations of state; Fig. 47 shows the range
of possible models.

Inspection of Fig. 47 shows that predicted radii and maximum masses vary
by ∼50% for neutron stars. Typical models (plotted in black) assume “normal”
nuclear matter – just standard neutrons at low densities, but at higher densi-
ties condensations of hyperons, kaons, pions, etc. may all become important.
Different models make different choices for when various mesons (and other
particles) play a role. Until the critical density is reached, these models scale
roughly as R∗ ∝ M−1/3

∗ (as we saw for white dwarfs in Sec. 20.3) since the stars
are still explained decently well by straightforward degeneracy calculations.

Another family of models assumes that (under other assumptions) neutron
stars may be composed of so-called strange quark matter. These objects would
instead be hypothetical condensates of up, down, and strange quarks that
would be more stable than normal matter at the high densities involved. In
grossly simplified terms, these models amount to a uniform density fluid – so
R∗ ∝ M1/3

∗ .
There are also several forbidden regions:

• General Relativity: If a neutron star is to avoid becoming a black hole,
it must always satisfy R > 2GM/c2.

• Causality: This is the requirement that the soundspeed cs must satisfy
dP/dρ = cs < c2.

• Rotation: Neutron stars rotate (like stars and other stellar remnants). To
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Figure 47: Predicted masses and radii (black curves) for various suggested
neutron star equations of state. Orange curves show contours of R∞ = R(1 −
2GM/Rc2)−1/2. Adapted from Lattimer (2012), Ann. Rev. Nuc. Part. Sci..
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21.5. Neutron Star Observations

hold together, they must satisfy

(546) ω2R <
GM
R2

or equivalently

(547) ω2 <
GM
R3

and so a spinning neutron star must always satisfy

(548) Gρavg ≥ 3ω2

4π
.

Thus the “rotation” line corresponds to constant average density. In
Fig. 47, the particular line plotted corresponds to the fastest-known ro-
tation rate for any neutron star, f = ω/2π = 716 Hz.

The orange curves in Fig. 47 indicate lines of constant radiation radius
R∞. In principle one could observe the thermal (typically X-ray) spectrum of
a young neutron star of known distance, assume a blackbody, and estimate
the radius directly. But for such massive, compact objects general relativistic
effects will come into play: the temperature, size, and so luminosity observed
at large distances are not the “true” values that would be observed in the
neutron star’s rest frame. In particular, the radiation radius is

(549) R∞ = R∗(1 + zg)

where zg is the gravitational redshift (see Eq. 511). Similarly, the temperature
that will be inferred is

(550) T∞
eff =

Teff
1 + zg

.

21.5 Neutron Star Observations

Neutron stars are fairly unique among objects discussed thus far. Planets,
stars, nebulae, and galaxies were all observed for millenia before the true na-
tures of these objects were uncovered. In contrast, neutron stars (along with
black holes) were discussed theoretically long before any observational evi-
dence was found.

Unfortunately the observational measurements are frustratingly sparse.
Even the fastest spin rates don’t much push the physical limits. As far as max-
imum masses go, Fig. 44 shows that most measured NS masses are around
1.4M�. The few especially massive examples (M∗ � 2M�) do help kill quite a
few models, though. And for radii it’s worse: while some masses are measured
to � 2%, there are no comparably precise NS radius measurements (despite
many efforts). Anyway, only ∼10 neutron stars are close enough that we can
study their thermal emission (in X-rays; kT � 50 keV) — if they are more than
� 500 pc away then the ISM absorbs most of the radiation; and even when
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21. Neutron Stars

detections are made, detailed atmospheric modeling (with many unknowns)
is needed to accurately infer radii.

Most observational data of neutron stars come from pulsars – neither truly
pulsating nor truly stars, but rapidly-rotating neutron stars that emit periodic
radio (or other EM) emission. These were first discovered in 1967 by Jocelyn
Bell, a 2nd year graduate student.

21.6 Pulsars

First discovered in 1967, thousands of pulsars are now known (see Fig. 48).
Most are detected in radio, but a subset are also seen in X-rays and even
gamma rays. The period of the EM emission ranges from as long as 10 s in a
few cases to just 1–2 ms at the other extreme.

It was recognized almost immediately that these objects must be very
small. E.g., the Crab nebular pulsar (the remnant of SN 1054) has a period
of P = 33 msec, implying a maximum diameter of

(551) L � cP = (3 × 105 km s−1)(0.033) ≈ 105 km.

The size is consistent with a white dwarf but the period isn’t. From Eq. 547

Figure 48: Pulsar observations in the traditional P-Ṗ plane. Straight lines indi-
cate characteristic ages, spin-down luminosities, and maximum magnetic field
strengths. (from https://www.cv.nrao.edu/~sransom/web/Ch6.html).
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21.6. Pulsars

a white dwarf spinning that fast couldn’t hold together, and the timescale for
pulsations (whether freefall, Eq. 198, or sound-crossing, Eq. 201) shouldn’t be
lower than a few seconds. And a black hole shouldn’t have any surface with
which to anchor coherent, precisely-repeatable EM radiation. Thus by process
of elimination, a neutron star is the most likely culprit.

The phenomenological view is that an intense beam of EM radiation is
misaligned with the neutron star’s rotation axis. This presumably arises from
a magnetic dipole misaligned with the NS’s spin axis; nonetheless many de-
tails remain unclear, and pulsar emission mechanisms remain an active area of
research. But it must somehow involve a rotating magnetic field generating a
large electric field from equator to pole. This in turn accelerates electrons and
generates synchrotron radiation that is highly coherent and highly polarized.

Rotation and Magnetic Fields

To explain the observed emission requires rapid rotation and an extremely
strong magnetic field; both can be understood from basic conservation prin-
ciples. As noted previously, white dwarfs typically have PWD ∼ 1000 s and
B ∼ 106 G (the Earth and Sun both have magnetic fields of just ∼1 G). Assum-
ing angular momentum is conserved during the collapse from white dwarf to
neutron star, then we should expect

(552) IWDΩWD = INSΩNS

and so

(553)
PNS
PWD

=
MNSR2

NS
MWDR2

WD
∼

�
10−3

�2
.

Thus we should expect

(554) PNS ∼ 10−6PWD ∼ 10−3 sec

which is roughly consistent with the shortest periods seen in Fig. 48.
As for the strong magnetic field, that can also be inferred from the known

field strengths of white dwarfs. Magnetohydrodynamics tells us that magnetic
flux ΦB is conserved through any surface moving with a plasma. Thus the
magnetic flux through a loop enclosing solid angle ΔΩ around either the WD
progenitor or NS progeny should be

(555) ΦB = BWDΔΩR2
WD ≈ BNSΔΩR2

NS

and so

(556)
BNS
BWD

≈
�

RWD
RNS

�2
≈ 106.

Thus, we expect neutron stars to have surface magnetic field strengths of order
1012 G.

These strong magnetic fields induce an electromagnetic “backreaction,”
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21. Neutron Stars

slowing the rotation over time. Unlike most stellar objects, which are in quasi-
steady state, this spindown is precisely measured in many pulsars. The tradi-
tional value is the time derivative of the period, or Ṗ (i.e., P-dot), a dimension-
less quantity plotted as the vertical axis of Fig. 48. Because neutron stars spin
down we almost always see Ṗ > 0 (i.e., spin period increasing). Occasionally
some neutron stars will show transitory “glitches” indicating sudden rear-
rangements of their moments of inertia (like a spinning ice skater rearranging
their limbs). Glitches are usually seen in young, relatively hot neutron stars
whose interiors are still stabilizing and reaching a more stable equilibrium.

When P and Ṗ are plotted against each other as in Fig. 48, we obtain
the observational equivalent of the HR diagram – but for neutron stars. The
periods span a range of 10−3 − 10 s, with a peak near 0.5 s; meanwhile Ṗ has
a much broader range, from 10−20 − 10−10 with a peak near 10−15. For the
lowest values of Ṗ, the emission from these pulsars is more stable than the
most precise atomic clocks (which have comparable stabilities of ∼ 10−16).

Pulsar luminosity

Fig. 48 also lets us estimate the energy loss rate of pulsars. Assuming that
their energy reservoir is mainly rotational kinetic energy, then (in the classical
approximation)

Erot =
1
2

Iω2

(557)

= 2π2 I
P2

(558)

≈ 4π2

5
M

�
R
P

�2
(559)

and so

dE
dt

=
d
dt

�
1
2

Iω2
�(560)

= Iωω̇
(561)

=
8π2

5
M

R2

P3 Ṗ.

(562)

For the Crab Nebula (P = 33 ms, Ṗ ∼ 10−13, M∗ ≈ 1.5M�, R∗ ≈ 10 km) we
find

(563) L = −dE
dt

≈ 1038 erg s−1
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21.6. Pulsars

which is comparable to the bolometric luminosity of the entire Crab Nebula;
pulsars essentially convert their rotational energy into light. (Also, note that
this power far outstrips the Solar luminosity of L� ≈ 4 × 1033 erg s−1).

The mechanism of that radiation, as previously noted, is the strong, rapidly
rotating magnetic field. For a given magnetic moment m, the magnetic equiv-
alent of the Larmor formula gives the emitted power as

(564) P =
2|m̈|2
3c3 .

Following Rybicki & Lightman (pp. 323–324), the surface magnetic field is

(565) B0 =
2m
R3 .

The component of �m along the rotation axis is constant; given an angle α
between the rotation and magnetic dipole axes,

(566) |�̈m| = ω2|�m| sin α.

Thus the total radiated power is

(567) L =
sin2 α

6c3 B2
0ω4R6.

Setting Eqs. 562 and 567 equal to each other, we see that

(568) B2
0 ∝ PṖ

and so the P-Ṗ diagram of Fig. 48 should allow us to directly estimate the
magnetic field strength of a pulsar. Typical values are 108 − 1015 G; objects
with the strongest fields are termed magnetars. These sometimes exhibit huge
outbursts, affecting terrestrial satellites and modifying the Earth’s ionosphere
from kpc away.

Pulsar ages and the braking index

Most importantly, the combination of P and Ṗ allows us to estimate the age
of a pulsar. If we assume that the spindown rate depends on the current spin
rate to the nth power, then

(569) ω̇ = aωn.

If we fold in information about the second derivative,

(570) ω̈ = anωn−1ω̇,

then

(571) ω̈ω = anωnω̇2

171



21. Neutron Stars

Figure 49: Period evolution of the famous Hulse-Taylor pulsar, with P =
7.75 hr.

and so

(572) n =
ωω̈

ω̇2

is defined as the braking index of the pulsar. For magnetic dipole radiation
as described by Eqs. 562 and 567, we have

(573) Iωω̇ ∝ ω4

and so the braking index n = 3 for pure magnetic dipole radiation.

Traditionally, one then models the period evolution as

(574) P(t) = ct1/(n−1)

which yields

(575) Ṗ =
c

n − 1
t1/(n−1)−1 =

P
t(n − 1)
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21.6. Pulsars

and so the characteristic age of a pulsar is given by

(576) τpulsar =
1

n − 1
P
Ṗ
=

P
2Ṗ

(for n = 3).

Note from Eq. ?? that τpulsar actually corresponds to the time for the period
to increase by a factor of two. Nonetheless it’s a pretty good age indicator: for
the Crab pulsar (P = 33 ms, Ṗ = 4.2 × 10−13) we find τ = 1200 yr. Since this
pulsar formed in SN 1054, our estimate is in pretty good agreement.

As seen for the Crab, characteristic ages are only approximate. Note from
Fig. 48 that many millisecond pulsars have inferred ages > 10 Gyr, older than
the universe! These are thought to have massively spun up by accreting high-
angular-momentum material that inspiraled from a neighboring star (note that
almost all ms pulsars are in binary systems). For other stars, the ages seem
reasonable but the measured braking index (from P, Ṗ, and P̈) is not 3.0 – for
example, ncrab = 2.515 ± 0.005. This reflects the fact that the radiation is only
approximately dipolar

Other tidbits, bibs, and bobs about pulsars:

• Binary neutron stars. When one (or both) of the objects in a binary is a
neutron star, we can use the variations in the pulse arrival times to pre-
cisely map the orbit. Fig. 49 shows 40 years of data on the Hulse-Taylor
pulsar, indicating inexorable inspiral of the binary due to emission of
gravitational radiation. These provide excellent tests of GR, and also
provide some of the most precise NS masses known.

• Pulsar planets. A diminutive, multibody of binary pulsars. It is not com-
monly known that the first confirmed planets beyond the Solar system
were discovered by pulsar timing measurements. These revealed a three-
planet system with orbital periods of 25, 66, and 98 days and masses of
0.02 (!!), 3.9, and 4.3 M�, respectively. These have withstood the test of
time, but they are not representative of the general population of extra-
solar planets. Only ∼ 6 such planets are known, in 3–4 systems.
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