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The observation and classification of supernovae go back over 1000 years,
making this one of the oldest branches of observational astronoy. The name
“nova” had been given to “new stars” (actually outbursts from accreting white
dwarfs), and “super”-novae were that much brighter. The names are similar
in other cultures; e.g., Chinese records refer to them as kexing, or “guest stars.”

Before the modern era began, there were ∼8 supernovae visible with-
out telescopes. The brightest of these, SN 1006, is estimated to have had
mV ≈ −7.5 mag, roughly 3 mag brighter than Venus and visible even in
the daytime. Another famous example os SN 1054, whose ejecta now span a
radius of ≈1.7 pc – this is the famous Crab Nebula3 The two most famous,
local (i.e., in the Milky Way) supernovae in “recent” times are Tycho’s and
Kepler’s supernovae; these occurred “only” 30 years apart, in 1572 and 1604,
and in Europe helped break down believes in a static, unchanging heavens
and to unleash the modern astronomical revolution. No SN have been seen in
the Milky Way since, although we think there should be 1–3 per year.

Like the classification of stars (discussed in Sec. 8), supernovae were clas-
sified into groups first and only later associated with underlying physical
mechanisms. The observationally-motivated nomenclature comes from optical
spectra of the supernova near peak luminosity (when it’s easiest to observe),
and it is:

• Type I: No H-α line seen.

• Type II: H-α line seen.

As simple as that! But this was subsequently clarified:

• Type Ia: No H-α, but Si lines seen.

• Type Ib: No H-α, but He lines seen.

• Type Ic: No H-α, and not much else.

• Type II: H-α line seen.

There are also multiple types of Type II supernovae, classified on the basis
of their light curve morphology. E.g. SN1987A (lightcurve shown in in the
rightmost panel of Fig. 41) was classified as Type IIpec, for “peculiar.”

A Type Ia supernova is caused by fusion detonation on a degenerate white
dwarf. Once the main source was thought to be mass transfer from a nearby
binary companion onto the white dwarf, until the WD’s degeneracy pressure
can no longer support itself. But we now know that there are many pathways
leading to SNe Ia; different pathways lead to different chemical abundances
in the SN ejecta, and these studies now indicate that most SNe Ia (at least
in dwarf galaxies) occur from white dwarfs of roughly ∼ 1M�, well below
the Chandrasekhar Mass of 1.4M�. These SNe Ia are typically brighter — less

3Note that its ejecta have moved ∼5 light years over the past millenium, implying an average
speed of 0.5% c – and presumably higher (and more relativistic) at earlier times.
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19. On the Deaths of Massive Stars

total energy is released, but more of the energy here goes into photons rather
than into neutrino luminosity.

Types II, Ib, and Ic are all different flavors of core-collapse supernovae
probably resulting from progenitor stars with different initial masses and evo-
lutionary histories.

In many supernovae, many of the photons we see actually come from the
radioactive decay of unstable isotopes produced in the explosion. The most
important pathway comes from the decay of 56Ni, which was itself produced
from fusion of Si with a succession of α particles:

(484) 28
14Si + 74

2He →56
28 Ni

or by direct, Si-Si fusion:

(485) 228
14Si →56

28 Ni.

The decay pathway after the supernova is over and nucleosynthesis has
ceased is

56Ni →56 Co + e+ + νe + γ (6.1 day half − life)
(486)

56Co →56 Fe + e+ + νe + γ (78 day half − life)
(487)

(488)

Note that the 56Co phase of SN1987A is indicated in Fig. 41. That SN was
estimated to produce just 0.075M� of 56Ni, but others produce as much as
∼ 1M� — these are extremely luminous.
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20 Compact Objects

20.1 Useful references

• Prialnik, 2nd ed., Ch. 10

• Choudhuri, Secs. 5.3–5.6

• Hansen, Kawaler, and Trimble, Ch. 10

20.2 Introduction

As we have discussed up to this point, mass is destiny when describing the
evolution and final fates of single stars. Fig. 43 breaks down the ultimate states
of stars of a range of initial masses. Furthermore, the mass of an objects final
remnant (after AGB mass loss, supernova, etc.) is similarly deterministic.

• Mfin < 1.4M�: White dwarf, supported by electron degeneracy pres-
sure.

• 1.4M� < Mfin � 3M�: Neutron star, supported by neutron degeneracy
pressure. The upper limit here is not known with great precision.

• Mfin � 3M�: No known support can hold up the remnant; it collapses
into a gravitationally singularity, a black hole.

Figure 43: Mass is destiny: final fates of single stars. (Fig. 2.4 of Hansen,
Kawaler, and Trible, 2nd Ed.).
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20. Compact Objects

Fig. 44 shows the masses of known stellar remnants, emphasizing that we
know almost nothing about compact objects with masses between 2–5 M�.
But before we examine these most massive of remnants, let’s first reconsider
white dwarfs in a bit more detail.

20.3 White Dwarfs Redux

Let’s construct a more detailed model of a white dwarf than what we’ve man-
aged before. For example, we’ve talked before about the WD equation of state
and qualitatively estimated their radii, but we can do better.

White dwarf mass-radius relations

Assume we have N electrons that supply the supporting degeneracy pres-
sure, and N protons supplying the mass. Gravity packes the particles closely
together (though not as tightly as in a neutron star!). By the Heisenberg un-
certainty principle,

(489) ΔxΔp � h̄

the tight constraints on position imply a correspondingly large momentum
dispersion, and so the total kinetic energy will increase.

So the Fermi momentum of the electrons will be approximately

(490) pF ≈ h̄
Δx

≈ h̄n1/3.

Figure 44: Masses of known extremely compact objects: black holes (above)
and neutron stars (below), as of early 2019. Objects joined by arrows indicate
mergers observed via gravitational waves.
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And thus the total Fermi energy will be

(491) EF =
�

p2
Fc2 + m2

e c4.

Depending on whether or not the electrons are strongly relativistic, we will
have either

EF,NR ≈ mec2 +
p2

F
2me

(492)

≈ C +
h̄2

2me

�
N
R3

�2/3
(493)

or

EF,UR ≈ pFc

(494)

approx
h̄N1/3c

R

�
N
R3

�2/3
(495)

The total gravitational energy will be dominated by the more massive pro-
ton, and will be roughly

(496) EG ≈ −GM2

R
= −N

GMmp

R
.

Figure 45: Total energy of a white dwarf in the non-relativistic limit (see
Eq. 497). The energy minimum implies an equilibrium point: this will be the
radius of the white dwarf.
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Thus in the non-relativistic limit, the total energy of the system will be

(497) ENR ≈ C +
h̄2

2me

�
N5/3

R2

�
− GM2

R
.

This expression shows a clear minimum when plotted vs R (see Fig. 45) – this
minimum is the equilibrium point, and corresponds to the radius at which a
white dwarf is stable. This minimum radius occurs when

dE
dR

= 0

(498)

− h̄2N5/3

meR3 +
GM2

R2 = 0

(499)

or equivalently, when

(500) R =
h̄2

Gmem5/3
p M1/3

.

Thus a typical white dwarf with mass 1M� will have a radius of just about
1R⊕. Furthermore, note that R ∝ M−1/3 – so white dwarfs get smaller as we
add more mass, as we saw in Sec. 17.4. (We already encountered this while
discussing shell burning: as fusion ‘ash’ is steadily added to a core, it contracts
despite its mass having increased.)

Alternatively, in the ultra-relativistic case the total energy of the white
dwarf will be

EUR ≈ h̄cN4/3

R
− GM2

R

(501)

=
N2

R

�
h̄cN−2/3 − Gm2

p

�
(502)

This expression, in contrast to Eq. 497, has no extremum with radius. So rather
than a relation between mass and radius, a white dwarf in the ultra-relativistic
has a single, limiting mass, given when E = 0:

(503) h̄cN−2/3 = Gm2
p.

This limiting mass is the aforementioned Chandrasekhar Mass, which is ap-

156



20.3. White Dwarfs Redux

proximately

MCh ≈ Nmaxmp

(504)

≈ mp

�
h̄c

Gm2
p

�3/2
(505)

≈ 1.7M�
(506)

This is actually not too far off from what a further refinement would predict;
we will consider this next.

Polytropic White Dwarf

The next level of refinement is to return to our polytropic model of a white
dwarf, which we have discussed previously. As we’ve seen many times, for
white dwarfs we have either

• Non-relativistic degenerate gas: γ = 5/3, n = 3/2.

• Ultra-relativistic degenerate gas: γ = 4/3, n = 3.

And as you just saw in Problem Set 7, the mass of a polytropic white dwarf
is

(507) M = 4πρcλ3
nξ2

sur f
dφn

dξ

����
ξsur f

where

(508) λn

�
(n + 1)Kρ1−n/n

c
4πG

�1/2

and where ξsur f is the Lane-Emden surface coordinate, introduced in Sec. 13.
This means that we have either
M ∝ ρ1/2

c (for n=3/2), or
M ∝ ρ0

c =const (for n=3)
and so the mass will steadily increase up to some maximum value, as

shown in Fig. 46. To find the transition point and calculate the maximum
mass, we need more details. Of particular import is the polytropic constant
KUR. The full equation of state turns out to be

(509) P =

�
3
π

�1/3 hc
8m4/3

p

�
ρ

µe

�4/3
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which leads to a more accurate version of the Chanrasekhar Mass,

(510) MCh = 1.4M�
�µe

2

�−2
.

Observations of White Dwarfs

The observational history of white dwarfs is much messier – possibly even
more complicated than solving polytropic equations of state. Observations
established the existence of unusual celestial objects, but their natures weren’t
known for some time.

We now know that the first white dwarf was identified in 1783 by William
Herschel. He noticed a dim companion to the V = 4.4 mag star 40 Eri. The
colors of the faint companion indicated that it must be hot (we know now it’s
∼ 104 K, hotter than 40 Eri), but it is 5 mag fainter. Thus it must be tiny.

Another, similar object was identified four-score years later; this was Sir-
ius B, discovered using a telescope in Cambridgeport, Massachusetts. Its grav-
itational connection to Sirius was quickly recognized, and using the tools dis-
cussed in Sec. 4.3 its mass, luminosity, and (after a “high-contrast” spectrum
was obtained in 1915) its temperature were all measured. These indicated
M ≈ M�, Teff ≈ 25, 000 K, and R ≈ 0.01R� — implying ρ ≈ 106 g cm−3.

These numbers were nonsense according to 19th century astrophysics. Quan-
tum mechanics was needed to understand such a bizarre object. It wasn’t until
1926 that electron degeneracy pressure was described, and only in 1931 did
Chandrasekhar identify his eponymous mass limit. Even so, conservative as-
tronomers resisted for many years.

Other bibs and bobs about white dwarfs:

• As discussed in Sec. 17.7, the final composition of a white dwarf de-
pends on its formation history. If it reached the 3α process, it should
be carbon-oxygen. Otherwise, it’s probably just a helium white dwarf.
(There may be a chance to have O-Ne-Mg WDs, but there’s no strong
empirical evidence.)

• Some white dwarfs pulsate, permitting asteroseismlogy to more pre-
cisely determine their interior structure from the Fourier spectrum of
oscillation modes.

Figure 46: Mass of a white dwarf as its central density increases.
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• Gravitational redshifts have been measured from some stars. Since a
photon’s energy as it leaves a gravitational well changes by

(511) ΔE = hνΔΦg/c2 = hν
GM
c2

�
1
∞

− 1
RWD

�

one can measure the wavelength/frequency/energy of a known line rel-
ative to its expected location

(512)
ΔE
E

= −GMWD
RWDc2

and so directly measure the WD’s mass-to-radius ratio.

• As has been alluded to before, white dwarfs gradually cool down on
cosmic timescales. By modeling this, we can estimate the ages of indi-
vidual (isolated) WDs and also of star clusters. WDs in globular clusters
provided one of the first signs that the universe was >10 Gyr old!

20.4 White Dwarf Cooling Models

White dwarfs start out extremely hot as the cores of giant stars, but once the
stellar envelope is ejected they cool down: first rapidly, then slowly.

White Dwarfs: The Simple Model

In the simplest model of white dwarf cooling, the WD is an isothermal object
radiating at temperature T, and its total internal energy is the kinetic energy
of its constituent particles. Thus the total energy available to the WD is

(513) Etot ≈ NkT =
M
mp

kT

and its luminosity is

(514) L = −dEtot

dt
= 4πR2σT4.

Since the white dwarf is degenerate we will assume that its radius is con-
stant throughout its evolution. Then we have

(515) − M
mp

k
dT
dt

= 4πR2σT4

which, after some algebraic manipulation, yields

(516) −T−4dT =
4πR2σmp

Mk
dt
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