
14 An Introduction to Nuclear Fusion

14.1 Useful References

• Choudhuri, Secs. 4.1–4.2

• Kippenhahn, Weiger, and Weiss, 2nd ed., Chap. 18

• Hansen, Kawaler, and Trimble, Sec. 6.2

14.2 Introduction

Commercial nuclear fusion may be perpetually 50 years away, but stellar fu-
sion has powered the universe for billions of years and (for the lowest-mass
stars) will continue to do so for trillions of years to come.

Our two goals here are (1) to understand �, the volumetric energy produc-
tion rate (see Eq. 242), and how it depends on ρ and T; and (2) to identify and
describe the key nuclear reaction pathways that are important in stars.

14.3 Nuclear Binding Energies

Stars derive their energy from the fusion of individual atomic nuclei, as we
described briefly in Sec. 10.6. Fusion involves true elemental transmutation of
the sort that the ancients could only dream of. For better or for worse, our own
discussions of this natural alchemy will involve relatively more considerations
of the detailed physics involved and relatively less boiling of one’s one urine.

Figure 27: Rough sketch of the nuclear potential. Coulomb repulsion domi-
nates at large separations, and is overwhelmed by Strong nuclear attraction at
the smallest separations.
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14. An Introduction to Nuclear Fusion

For one nucleus to reach another and fuse, it must overcome the strong
Coulomb repulsion generated by the two positively-charged nuclei. Fig. 27
gives a rough sketch of the situation: Coulomb repulsion dominates at large
separations, but it is overwhelmed by Strong nuclear attraction at the small-
est separations. The fundamental nuclear size is set by the typical radius of
protons and neutrons, rp ≈ rn ≈ 0.8 fm, as

(324) rnuc ≈ 2rp A1/3

where A is the number of nucleons (neutrons plus protons, also approximately
the atomic weight). We will also deal shortly with Z, the nuclear charge (i.e.,
number of protons).

The key thing that matters is the nuclear binding energy. Strong force has
typical binding energies of a few MeV per nucleon. For astrophysical pur-
poses we don’t need to descend all the way into the realm of detailed nuclear
physics. For our purposes an empirically-calibrated, semiclassical model (the
“Bethe-Weizäcker formula) is sufficiently accurate. This posits that a nucleus’
binding energy EB is

(325) EB ≈ aV A − aS A2/3 − aCZ2

A1/3 − aA
(A − 2Z)2

A

Each of the terms in Eq. 325 has a particular signifance. These are:
aV ≈ 14 MeV Volumetric term, describes bulk assembly of the nucleus.
aS ≈ 13.1 MeV Surface term, since surface nucleons have few neighbors.
aC ≈ 0.58 MeV Coulomb term, describes mutual repulsion of protons.
aA ≈ 19.4 MeV Asymmetry term, preferring Nn = Np (Fermi exclusion).

This model does a decent job: Eq. 325 correctly demonstrates that the nu-
clei with the greatest binding energy per nucleon have Z ∼ 25. In fact the most
tightly-bound, and thus most stable, nucleus is that of iron (Fe) with Z = 26,
A = 56. Thus elements near Fe represent an equilibrium state toward which
all nuclear processes will try to direct heavier or lighter atoms. For example,
we will see that lighter atoms (from H on up) typically fuse into elements as
high as Fe but no higher (except in unusual circumstances).

14.4 Let’s Get Fusing

The Big Bang produced a universe whose baryonic matter was made of roughly
75% H and 25% He, with only trace amounts of heavier elements. Stellar fu-
sion created most of the heavier elements, with supernovae doing the rest.
For fusion to proceed, something must occur to either fuse H or He. Since
He will have a 4× greater Coulomb barrier, we’ll focus on H; nonetheless we
immediately encounter two huge problems.

Problem one is the huge Coulomb barrier shown in Fig. 27. At the separa-
tion of individual nucleons, the electronic (or protonic) repulsion is e2/fm ∼ 1 MeV,
of roughly comparable scale to the strong nuclear attraction at shorter scales.
But how to breach this Coulomb wall? Even at the center of the Sun where
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14.4. Let’s Get Fusing

Figure 28: Rough sketch of quantum tunnelling, with the wave function (just
barely) penetrating the forbidding Coulomb barrier.

Tc = 1.5× 107 K (Sec. 10) the typical thermal energies per particle are of order
kBTC ∼ 1 keV — a thousand times too low. (Problem Set 5 will show that even
all the way out on the tail of the Maxwell-Boltzmann distribution, there are
zero nuclei in a star with thermal energy sufficient to cross the barrier.) The
second problem is that the fusion product of two protons would be 2He, an
isotope so unstable it is not entirely clear whether it has ever been observed.

Problem one: quantum tunnelling

The first problem was solved by recognizing that at the nuclear scale one
doesn’t climb a mountain — rather, one tunnels through it. Quantum mechan-
ics states that each particle has a wave function Ψ(x) given by the Schrödinger
Equation, and the probability of finding the particle at x is ∝ |Ψ(x)|2. When
the particle’s energy is less than required to classically overcome an energy
barrier, the wavefunction decays exponentially but remains nonzero. To order
of magnitude, the protons only need to get close enough to each other that
their thermal de Broglie wavelengths overlap; when this happens, tunneling
becomes plausible (as sketched in Fig. 28).

The Coulomb barrier for two protons separated by a de Broglie wavelength
λD (which may be substantially larger than the nucleon size of ∼1 fm) is

(326) EC =
e2

λD
=

e2 p
h

.

If the protons only need enough thermal energy to reach a separation of λD,
then proton’s required thermal momentum will be

(327) p ≈
�

2mpEC.
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Solving for EC, we see that

(328) E2
C =

e4 p2

h2 ≈ 2e4mpEC

h2

and so

(329) EC ≈ 2e4mp

h2 .

If the nuclei have thermal energies of order that given by Eq. 329, then quan-
tum tunneling may happen. It turns out that EC is of order a few keV, compa-
rable to the thermal energy in the Sun’s core.

The discussion above was merely phenomenological, but a more rigorous
approach is the so-called “WKB approximation.” WKB is described in more
detail in advanced reference texts. Under certain fairly reasonable assump-
tions, the quantum wavefunction Ψ can be expressed as

(330) Ψ(x) ∝ exp
�

i
h̄

� �
2m (E − V(x)]dx

�

with probability ∝ |Ψ|2, as noted above. When one calculates the full prob-
ability by integrating from the classical turning point tothe bound state, one
finds that

(331) P ≈ e−bE−1/2

where

(332) b =
1
h̄

Z1Z2e2�2µ

where µ is the reduced mass of the system. So as the typical particle energy E
increases the probability of tunnelling becomes exponentially more likely. On
the other hand, more strongly charged particles have larger Coulomb barriers
and more massive particles have smaller de Broglie wavelengths; both of these
effects will tend to make tunnelling more difficult to achieve.

The probability of tunnelling given by Eq. 331 directly relates to the cross
section for nuclear interactions σ(E). This is given approximately by

(333) σ(E) ≈ λ2
De−bE−1/2

where

(334) λD =
h
p

∝
1√
E

.

This is pretty close. More accurate is a very similar form:

(335) σ(E) =
S(E)

E
e−bE−1/2
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Figure 29: Rough sketch of inverse beta decay: p + p yields p + n + e+ + νe.

where S(E) is essentially a fudge factor (albeit one that varies only slowly
with E).

Problem two: avoiding the 2He trap

The key to our second problem (that the product of H + H, 2He, is incredibly
unstable) lies in the humble neutron. Given sufficient neutrons we could form
the stable isotope 2H (deuterium) instead of 2He and open up new reaction
pathways.

The challenge is that the neutron halflife is only 15 min, after which they
undergo beta decay and produce p + e− + ν̄e. The opportunity lies in a related
reaction, inverse beta decay. In this process (sketched in Fig. 29) two of the
many, common protons interact via the weak process. The full reacion is

p + p → p + n + e+ + νe
and perhaps surprisingly, this can provide all the neutrons we need to produce
sufficient 2H to make the universe an interesting place to be. The cross-section
is tiny (it’s a weak process):

(336) σp−p ≈ 10−22 barnes = 10−46 cm2

(recall that the electron scattering, or Thomson, cross section of Sec. 9.5 was
σT = 0.67 barns!). Put another way, the reaction rate in the Sun will be just
once per ∼few Gyr, per proton. But it’s enough, and once we have 2H we
can start producing heavier (and more stable) He isotopes: fusion becomes
energetically feasible. Thus the solution to the 2He fusion barrier is similar
in a way to the H− story of Sec. 9.5: to get everything right required both
hydrogen and some imagination.

14.5 Reaction pathways

With these most basic rudiments of nuclear considerations laid out, we can
now start to consider some of the reaction pathways that might produce the
energy we need to support the stars we see. This means that we’re going to
return to our volumetric energy production rate, �, of Eq. 242 and determine
what the quantity really means.

Imagine we have a reaction

A + B → C
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Figure 30: Particle B, moving at velocity v and impinging on a sea of particles
A.

which releases Q units of energy and has some cross-section σ. What is �?
Fig. 30 shows the situation shortly before the reaction has occurred, with a
particle B moving at speed v relative to a sea of particles A with number
density nA. In a short period of time Δt, the total volume contributing to the
reaction is

(337) Veff = σvΔt

and so the total reaction rate (per time, per particle B) will be

(338)
nAvΔtσ

Δt
= nAvσ.

Since we have nB B particles per volume, the volumetric reaction rate (reac-
tions per time, per volume) will then be

(339) rAB = nAnBvσ.

Since each interaction liberates an amount of energy Q, the volumetric power
density (energy per time per volume) will then be

(340) � = QnAnBvσ.

To be more accurate, we need to account for the fact that there is not a
single relative velocity v but rather two separate velocity distributions (for
particles A and B). Each distribution is given by Eq. 95,

Φv = 4π n
�

m
2π kBTkin

�3/2
v2 exp

�
− mv2

2 kBTkin

�
dv

It is an intruiging (and not too onerous) exercise to show that for two species
in thermal equilibrium (and at the same T) that both obey Eq. 95, then their
relative velocities also follow the same distribution but with m now replaced
by µ, the reduced mass.
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Figure 31: The two exponential terms in Eq. 346 cancel out everywhere but in
a narrow region of overlap: the Gamow-Teller peak of nuclear energy produc-
tion.

Alternatively, Eq. 95 can also be written in terms of energy instead of v:

(341) ΦE =

�
2
π
(kBT)−3/2E1/2e−E/kBT

and it must be true that

(342) Φvdv = ΦEdE.

Then, instead of the simple Eq. 340 we have instead

(343) � = QnAnB

∞�

0

σ(E)v(E)ΦEdE

where σ(E) comes from Eq. 335 and

(344) v(E) =
�

2E/µ.

Neglecting everything but the T and E dependences, we then have

� ∝ QnAnBT−3/2
∞�

0

S(E)
E

e−bE−1/2
E1/2E1/2e−E/kBTdE

(345)

∝ QnAnBT−3/2
∞�

0

S(E)e−bE−1/2
e−E/kBTdE

(346)

The two exponentials inside the integral combine in an interesting way.
As shown in Fig. 31, they cancel each other out everywhere but in a fairly
narrow energy regime. This region of overlap, where � reaches its greatest
value, is known as the Gamow-Teller peak. This feature is all that’s left after
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we’ve combined the Maxwell-Boltzmann distribution with the energy needed
for tunnelling to proceed.

To actually solve the integral in Eq. 346 and calculate � directly is more
tricky. A straightforward and reasonable simplification is to approximate the
Gamow-Teller peak as a normal (Gaussian) profile centered on the energy E0
where � reaches its maximum. The result is then

(347) � ∝ QnAnBT−2/3S(E0)e−BT−1/3
6

where

(348) B = 42.6(Z1Z2)
2/3

�
A1 A2

A1 + A2

�1/3

and T6 = T/(106K).
Eq. 347 will go to zero in the limit of both large and small T, indicating that

there is some optimal temperature range for any particular nuclear reaction.
(Technically, this is an optimal range in T-n space.) The formula above can
also be recast in logarithmic form, by noting that

ln � = −2
3

ln T6 − BT−1/3
6 + C

(349)

= −2
3

ln T6 − B exp
�
−1

3
ln T6

�
+ C

(350)

It is common to then speak of a power index ν that describes the steepness of
the dependence of � on T, such that

(351) � ∝ Tν.

The index ν can be calculated

(352) ν ≡ d(ln �)

d ln T6
= −2

3
+

B
3

T−1/3
6 .

For one of the main reaction chains in the Sun, ν ≈ 3.8 — so nuclear power
generation depends fairly strongly on the central T. ν ≈ 5 for the lightest
nuclei, and for other, much larger values of B involving more massive nuclei ν
can take on much larger values, up to n ≈ 20. This occurs in the most massive
stars, which therefore show an extraordinary dependence of � on T.

Traditionally the reactions described above are termed thermonuclear be-
cause the reaction rates and power generation depend most strongly on T. In
dense environments with large compositions of heavy nuclei, electron shield-
ing leads to an additional dependence on density as well, such that

(353) � ∝
�

ρ

ρ0

�λ �
T
T0

�ν

.
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One then obtains

(354) ν =
B
2

T−1/3
6 − 2

3
− ED

kBT
; λ = 1 +

1
3

ED
kBT

and ED is the electrostatic energy when two nuclei are separated by the radii
of their electron clouds, rD,

(355) ED =
Z1Z2e2

rD
.

At high densities and moderate temperatures, ν decreases and λ steepens
considerably. This is the regime of pyconuclear reactions whose rates depend
primarily on density not temperature. These conditions are typically seen in
the latest stages of stellar evolution.
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