
12 Stability, Instability, and Convection

Now that we have the fundamental equations of stellar structure, we would
like to examine some interesting situations in which they apply. One such
interesting regime is the transition from stable stars to instability, either in a
part of the star or throughout its interior. We will examine this by answering
the following question: if we perturb the system (or a part of it), does it settle
back into equilibrium?

12.1 Thermal stability

Suppose we briefly exceed thermal equilibrium; what happens? In equilib-
rium, the input luminosity from nuclear burning balances the energy radiated
away:

(281)
dEtot

dt
= Lnuc − Lrad = 0

If the star briefly overproduces energy, then (at least briefly) Lnuc > Lrad and
we overproduce a clump ΔE of energy. Over a star’s main-sequence lifetime
its core temperature steadily rises, so this slight imbalance is happening all the
time. Whenever it does, the star must be responding on the photon diffusion
timescale, τγ,diff ≈ 104 yr... but how?

From the virial theorem, we know that

(282) ΔE = −ΔEth =
1
2

ΔEgrav

So if nuclear processes inject an extra ΔE into the star, we know we will lose
an equivalent amount ΔE of thermal energy and simultaneously gain 2ΔE of
gravitational energy. Thus the star must have cooled, and – since its mass has
not appreciably changed –its radius must have expanded.

The temperature change is the more relevant for thermal stability, because
nuclear reaction rates depend very sensitively on temperature. For Sunlike
stars, � ∝ T16 – so even a slight cooling will strongly diminish the nuclear
energy production rate and will tend to bring the star back into thermal equi-
librium. This makes sense, because stars are stable during their slow, steady
evolution on the main sequence.

12.2 Mechanical and Dynamical Stability

Suppose that a fluid element of the star is briefly pushed away from hydro-
static equilibrium; what happens? We expect the star to respond on the dy-
namical timescale, τdyn ≈ 30 min... but how?

Let’s consider a toy model of this scenario, in which we squeeze the star
slightly and see what happens. (A full analysis would require us to compute
a full eigenspectrum of near-equilibrium Navier-Stokes equations, and is def-
initely beyond the scope of our discussion here.) If we start with Eq. 228, we
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can integrate to find P(M):

P(M) =

P�

0

dP

(283)

=

M�

Mtot

dP
dM

dM

(284)

= −
M�

Mtot

GM
4πr4 dM

(285)

Initially, in equilibrium the gas pressure must be equal to the pressure re-
quired to maintain hydrostatic support – i.e., we must have Phydro = Pgas.

If we squeeze the star over a sufficiently short period of time (shorter than
the thermal diffusion timescale), heat transfer won’t occur during the squeez-
ing and so the contraction is adiabatic. If the contraction is also homologous,
then we will have r ←→ r� = r(1 − �) ρ ←→ ρ� = ρ(1 + 3�)

How will the star’s pressure respond? Since the contraction was suffi-
ciently rapid, we have an adiabatic equation of state

(286) P ∝ ργad ,

where

(287) γad ≡ cP
cV

where cP and cV are the heat capacities at constant pressure and volume, re-
spectively. Statistical mechanics shows that we have γad = 5/3 for an ideal
monoatomic gas, and 4/3 for photon radiation (or a fully relativistic, degen-
erate gas).

Thus our perturbed star will have a new internal gas pressure profile,

P�
gas = Pgas(1 + 3�)γad

(288)

≈ Pgas(1 + 3γad�)
(289)

Will this new gas pressure be enough to maintain hydrostatic support of
the star? To avoid collapse, we need Pgas > Phydro always. We know from
Eq. 285 that the new hydrostatic pressure required to maintain equilibrium
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will be be

P�
hydro = −

M�

Mtot

GM
4π(r�)4 dM

(290)

= −(1 + 4�)

M�

Mtot

GM
4πr4 dM

(291)

= (1 + 4�)Phydro

(292)

Thus our small perturbation may push us out of equilibrium! The new
pressures are in the ratio

(293)
P�

gas

P�
hydro

≈ 1 + 3γad�

1 + 4�

and so the star will only remain in equilibrium so long as

(294) γad >
4
3

This is pretty close; a more rigorous treatment of the same question yields

(295)
M�

0

�
γad −

4
3

�
P
ρ

dM > 0.

Regardless of the exact details, Eqs. 294 and 295 indicate that a star comes
ever closer to collapse as it becomes more fully supported by relativistic par-
ticles (whether photon radiation, or a relativistic, degenerate gas).

The course reading from Sec. 3.6 of Prialnik shows another possible source
of hydrostatic equilibrium, namely via partial ionization of the star. γad can
also drop below 4/3, thus also leading to collapse, via the reaction H←→ H+ + e− .

In this reaction, both cv and cP change because added heat can go into ion-
ization rather then into increasing the temperature. cv changes more rapidly
than cP, so γad gets smaller (as low as 1.2 or so). Qualitatively speaking, a
stellar contraction reverses some of the ionization, reducing the number of
particles and also reducing the pressure opposing the initial squeeze. As in
the relativistic support case, when γad ≤ 4/4, the result is instability.

12.3 Convection

Not all structural instabilities lead to stellar collapse. One of the most common
instabilities is almost ubiquitous in the vast majority of stars: convection. Con-
vection is easily visualized by bringing a pot of water to a boil, and dropping
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in dark beans, rice grains, or other trace particles. We will now show how the
same situation occurs inside of stars.

Convection is one of several dominant modes of energy transport inside of
stars. Up until now, we have considered energy transport only by radiation,
as described by Eq. ,

(296)
dT
dr

= − 3ρκL(r)
64πσSBT3r2 .

In a few cases energy can also be transported directly by conduction, which is
important in the dense, degenerate white dwarfs and neutron stars. Whereas
radiation transports heat via photon motions and conduction transports heat
through microscopic particle motion, convection transports heat via bulk mo-
tions of large parcels of gas or fluid.

When a blob of stellar material is pushed upwards by some internal per-
turbation, how does it respond: will it sink back down, or continue to rise?
Again, a consideration of different timescales is highly relevant here. An out-
ward motion typically corresponds to a drop in both pressure and tempera-
ture. The pressure will equilibrate on τdyn ≈ 30 min, while heat will flow on
the much slower τγ,di f f 104 yr. So the motion is approximately adiabatic, and a
rising blob will transport heat from the lower layers of the star into the outer
layers.

The fluid parcel begins at r with some initial conditions P(r), ρ(r), and
T(r). After moving outward to (r + dr) the parcel’s temperature will remain
unchanged even as the pressure rapidly equilibrates, so that the new pressure
P�(r + dr) = P(r + dr). Meanwhile (as in the previous sections) we will have
an adiabatic equation of state (Eq. 286), which determines the parcel’s new
density ρ�.

The gas parcel will be stable to this radial perturbation so long as ρ� >
ρ(r + dr). Otherwise, if the parcel less dense than its surroundings, it will be
like a child’s helium balloon and continue to rise: instability! A full analysis
shows that this stability requirement can be restated in terms of P and ρ as

�
dP/dr
dρ/dr

�
<

dP
dρ

|adiabatic

(297)

< γad
P
ρ

.

(298)

Since dP/dr and dρ/dr are both negative quantities, this can be rearranged as

(299)
ρ

γadP
dP
dr

>
dρ

dr
.

If we also assume that the stellar material is approximately an ideal gas, then
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P = ρkT/µmp and so

(300)
����
dT
dr

���� <
T
P

����
dP
dr

����
�

1 − 1
γad

�

Eq. 300 is the Schwarzchild stability criterion again convection. The ab-
solute magnitudes are not strictly necessary, but can help to mentally parse
the criterion: as long as the thermal profile is shallower than the modified
pressure profile, the star will remain stable to radial perturbations of material.

Modeling convection

Fully self-consistent models of stellar convection are an active area of re-
search and require considerable computational resources to accurate capture
the three-dimensional fluid dynamics. The simplest model of convection is
to assume that the process is highly efficient – so much so that it drives the
system to saturate the Schwarzchild criterion, and so

(301)
dT
dr

=
T
P

dP
dr

�
1 − 1

γad

�

The somewhat ad hoc, but long-tested, framework of mixing length the-
ory (MLT) allows us to refine our understanding of convection. In MLT one
assumes that gas parcels rise some standard length �, deliver their heat there,
and sink again. Accurately estimating � can be as much art as science; at least
for nearly Solar stars, � can be calibrated against a host of other observations.

Another way to understand convection comes from examining the relevant
equations of stellar structure. Since the star is unstable to convection when
the thermal profile becomes too steep, let’s consider the thermal transport
equation:

(302)
dT
dr

= − 3
64π

ρκ

σSBT3
L
r2

Convection may occur either when |dT/dr| is especially large, or when the
Schwarzchild criterion’s factor of (1 − 1/γad) is especially small:

1. Large κ and/or low T: sometimes met in the outer layers (of Sunlike
stars);

2. Large F ≡ L/r2: potentially satisfied near cores

3. bf Small γad: near ionization layers and molecular disassociation layers.

Overall, we usually see convection across a range of stellar types. Descend-
ing along the main sequence, energy transport in the hottest (and most mas-
sive) stars is dominated by radiation. Stars of somewhat lower mass (but still
with M∗ > M�) will retain radiative outer atmospheres but acquire interior
convective regions. By the time one considers stars of roughly Solar mass,
we see a convective exterior that surrounds an internal radiative core. Many
years of Solar observations shows the outer surface of the Sun bubbling away,
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just like a boiling pot. Large, more evolved stars (e.g., red giants) also have
convective outer layers; in these cases, the size of the convective cells � � R�!

As one considers still lower masses along the main sequence, the convec-
tion region deepens; below spectral types of M2V-M3V, the stars become fully
convection — i.e., � = R∗. The Gaia DR2 color-magnitude diagram shows a
narrow break in the main sequence which is interpreted as a direct observa-
tional signature of the onset of full convection for these smallest, coolest stars.
These stars therefore have a fully adiabatic equation of state throughout their
interior.

12.4 Another look at convection vs. radiative transport

Again, we already know that radiative transport is the default mechanism for
getting energy from a star’s center to its surface. However, it turns out that
within a star, a second mechanism can take over from radiative transport and
become dominant. To understand when this happens, we need to bring back
two concepts we have previously discussed.

First, we have the temperature gradient. We will use the version that de-
fines the temperature change as a function of radius:

(303)
dT
dr

= − 3
4ac

κρ

T3
Lr

4πr2

Second, we have the definition of an adiabatic process: a process in which no
heat is exchanged between a system and its environment.

Again, we begin by considering a blob of gas somewhere within a star. It
has a temperature Tblob and is surrounded by gas at an ambient, local tem-
perature T∗. At this point, they are in thermal equilibrium so that Tblob = T∗.
What happens if this blob is given a quick nudge upward so that now it is
warmer than the gas around it: Tblob > T∗? Just as warm air does, we expect
that it will rise. In order for the blob to stop rising, it must become cooler than
its environment.

There are two ways for our blob to cool. One way is for it to radiate (that
is, exchange heat with its environment). The other way is for it to do work on
its environment (essentially, to expand in order to reach pressure equilibrium
with its surroundings). Which one is going to be more effective in a star? To
answer this, we can just look at time scales. Heat exchange will occur on a
roughly thermal (or Kelvin-Helmholz) time scale. For the sun, this time scale
is on the order of ten million years. In contrast, work can be done on the blob’s
environment on a dynamical time scale (technically, the sound-crossing time
scale, as this work is done by the expansion of the blob due to pressure). For
the sun, this time scale is only about 30 minutes. The enormous difference
in magnitude of these scales suggests that there will be almost no chance for
the blob to exchange heat with its environment over the time scale in which
it expands to reach pressure equilibrium with its environment: our blob will
expand and cool nearly entirely adiabatically.

Once the blob has expanded enough to cool down to the ambient temper-
ature, it will cease its upward motion and become stable again. The question
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is: how quickly will this happen? If an overly warm blob can quickly become
cooler than the surrounding gas, then it will not travel far, and upward gas
motions will be swiftly damped out. As the gas does not then move in bulk,
energy in the star is transported just through the radiation field. However, if
the blob cannot quickly become cooler than the ambient gas, it will rise and
rise until it encounters a region where it finally satisfies this criterion. This
sets up a convective zone in the star: an unstable situation that results in sig-
nificant movement of gas in the star (think of a pot of water boiling). Warm
gas travels upward through this region and eventually reaches the top of the
convective zone (which could be the surface of the star, or a region inside the
star where the physical conditions have changed significantly) where it is able
to cool and return downward. Through the work that it does on its environ-
ment over this journey, it carries significant energy from the inner to the outer
regions of the star. For this ‘convective’ zone of the star (which could be a
small region or the entire star) convective transport is then the primary means
by which energy is transported.

To determine whether convection will dominate, we compare the temper-
ature gradient of the star (the ambient change in temperature as a function
of radius) and the rate at which a parcel of gas will cool adiabatically (the
so-called adiabatic temperature gradient). These are shown visually in Figure
25 for both convective stability and instability.

If the adiabatic temperature gradient is steeper than the temperature gra-
dient in a star (as set by purely radiative energy transport) then the rate at
which a blob of gas will rise and expand and cool will be more rapid than the
rate at which the ambient gas in the star cools over the same distance. As a
result, if a blob experiences a small displacement upward, it will very quickly
become cooler than its surroundings, and sink back to its original position. No
significant motion or convection will occur (this region is convectively stable)
and the star will continue to transport energy radiatively.

However, if the adiabatic temperature gradient is shallower than the (ra-
diative) temperature gradient in a star, then the rate at which a parcel of gas
expands and cools as it rises will be slower than the rate at which the sur-
rounding gas of the star cools over the same distance. Because of this, if a
blob is displaced upward, it will remain hotter than its surroundings after
it adiabatically expands to reach pressure equilibrium with its surroundings,
and it will continue to rise. This sets up convection in the star: as long as
the adiabatic temperature gradient is shallower than the radiative tempera-
ture gradient, the blob will rise. Only when the blob reaches an area of the
star with difference physics (such that the temperature gradient becomes shal-
lower than the adiabatic gradient) will it stop rising. The region in which

(304)
�

dT
dr

�

ad
<

�
dT
dr

�

∗

defines the convective zone and the region in which convection dominates the
energy transport.

Convection can then be favored in several ways. One way is through mak-
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Convective instability
The adiabatic temperature 
gradient is shallower than the 
ambient temperature gradient

Stability
The adiabatic temperature 
gradient is steeper than the 
ambient temperature gradient

dTad
dr

dTad
dr

Figure 25: Left: An illustration of convective instability in a star. The ambient
(background) temperature gradient, set by radiative transport of energy in the
star, is steeper than the rate at which a parcel of gas can cool adiabatically. Be-
cause of this, a parcel of gas that becomes slightly warmer than the gas around
it will rise uncontrollably, resulting in convection, which then is responsible
for transporting energy in that region of the star. Right: An illustration of a
stable situation. The ambient (background) temperature gradient, is shallower
than the rate at which a parcel of gas can cool adiabatically. Because of this,
a parcel of gas that becomes slightly warmer than the gas around it will very
quickly become cooler than the gas around it, and will not rise significantly.
In this situation, radiative energy transport dominates.

ing the adiabatic temperature gradient more shallow (this is set by the equa-
tion of state for the gas, and requires a deviation from the ideal gas law that
lowers the adiabatic exponent). While this can and does occur, it is beyond the
scope of this class, so we will not consider this in more detail. Alternatively
then, we can ask what causes the temperature gradient of a star to steepen?
Looking at Equation 303, we can see that the temperature gradient in a star is
proportional to a number of variables, including the opacity κ and the energy
flux Lr. Regions of high opacity are in fact a significant cause of convective
zones in stars. As we saw in Section 18.1, many of the processes that cause
opacity in stars favor conditions in which there are bound electrons. This will
occur in cooler regions of a star, particularly in regions where the gas (Hy-
drogen or Helium) is only partially ionized. In fact, partially ionized gas also
has a slightly lower adiabatic exponent than fully ionized gas, which further
contributes to the development of convective instability. The sun’s outer lay-
ers are convective for these reasons (its core is radiative, as this region is fully
ionized). Cooler stars like red dwarfs are actually fully convective from their
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core to surface. As we will discuss further when we reach the topic of nuclear
burning in stars, nuclear processes that release substantial amounts of energy
can significantly increase Lr and thus also drive convection. This is the reason
that stars more massive than the sun (which have a slightly different fusion
reaction occurring) have convective cores.

Note that in defining convective instability we can also swap variables, and
instead of temperature, consider the density and pressure of the blob (as both
of these are connected to the temperature through our equation of state (the
ideal gas equation, Equation 319, which is a good description of the condi-
tions in the interior of stars). This approach is taken by Prialnik, and is the
basis of the historical argument first made by Karl Schwarzschild in evaluat-
ing the convective stability of stars. Here, we assume that we have a blob that
has pressure and density equal to the ambient values in the surrounding gas.
When it is displaced upward, its pressure now exceeds the ambient pressure,
and it expands adiabatically to reach pressure equilibrium with its surround-
ings. In expanding, not only has its pressure decreased, but its density as well.
If the blob is now less dense than its surroundings, it will experiences a force
that will displace it upward. However, if the blob remains more dense than its
surroundings, it will instead experience a downward displacement force. This
argument is in a sense more physical, as we are not appealing to ‘warm air ris-
ing’ but rather the underlying physical mechanism: the Archimedes buoyancy
law. Using these variables, our condition for convective instability is now

(305)
�

dP
dr

�

ad
<

�
dP
dr

�

∗
.

All of this actually has an interesting application not just to stars, but to
earth’s atmosphere as well: the formation of thunderstorms! The formation of
extremely tall (up to 12 miles!) clouds that lead to severe thunderstorms and
tornadoes are driven by a convective instability in earth’s lower atmosphere.
The conditions that lead to this convective instability can be measured, and
factor into forecasts of severe weather outbreaks. The criterion for convective
instability is exactly the same as we just discussed for stars: the adiabatic
temperature gradient, or the rate at which a parcel of gas displaced from
ground level will cool as it rises, must be less than the temperature gradient
(or profile) of the atmosphere:

(306)
�

dT
dr

�

ad
<

�
dT
dr

�

atm

The conditions that lead to thunderstorms have two things going on that
make this more likely. First, weather systems that lead to thunderstorms are
typically driven by the approach of a cold air mass (a cold front) that is push-
ing like a wedge into the upper atmosphere. This steepens the temperature
gradient of the atmosphere: problem #1. The second thing that happens in ad-
vance of these weather systems is the buildup of a moist air mass in advance
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of the cold front, which drives high humidity. As you may have experienced
firsthand (think of how quickly it gets cold at night in the desert, or alterna-
tively, how warm a humid summer night can be, and how hard it is to stay
cool on a humid day) air with a high moisture content is better at retaining
heat, and thus cools more slowly. In essence, it has a shallower adiabatic tem-
perature gradient: problem #2. Together, these two conditions are a recipe for
strong convection. Humid air that is heated near the sunbaked ground will
dramatically rise, unchecked, into the upper atmosphere, depositing energy
and water vapor to make enormous, powerful cumulonimbus (thunderhead)
clouds. The strength of the convection is measured by meteorologists with the
CAPE (Convective Available Potential Energy) index. It measures this temper-
ature differential, and uses it to determine how strong the upward buoyancy
force will be. An extremely large CAPE for a given region could be a reason
to issue a tornado watch.
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