
11. Stellar Structure

macroscopic scale, it means that the rate at which energy is produced in the
center of the star is exactly equal to the star’s luminosity: the rate at which
that energy exits the surface.

How likely is it that a star satisfies this requirement? While a star may
spend most of its life near Thermal Equilibrium while it is on the main se-
quence, most of the evolutionary stages it goes through do not satisfy Eq. 236:
for example, pre-main sequence evolution (protostars) and post-main sequence
evolution (red giants). How can we describe conservation of energy for an ob-
ject that is not in Thermal equilibrium?

Following standard texts (e.g., Prialnik), we can make use of u, the internal
energy density in a shell in our star. We can change u either by doing work
on the shell, or by having it absorb or emit heat. We have already described
how the heat in the shell can change with Lr and �m. Similarly, the incremen-
tal work done on the shell can be defined as a function of pressure and the
incremental change in volume:

dW = −PdV

(237)

= −P
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The change in internal energy per unit mass (du) is equal to the work done
per unit mass ( dW

dm ), so finally we can rewrite Eq. 239 as:

(240) du = −Pd
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Taking the time derivative of each side,

(241)
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dt

= −P
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�
1
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Compression of the shell will decrease dV, and thus require energy to be
added to the shell, while expansion increases dV and is a way to release energy
in the shell.

Changes in the internal energy of the shell u with time can then be de-
scribed in terms of the both the work done on the shell and the changes in
heat:

(242)
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= �m − ∂Lr

∂m
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�
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The general form of Eq. 242 is the next equation of stellar structure, known
either as the Energy Equation or the Equation of Conservation of Energy.
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11.2. Equations of Stellar Structure

You may also sometimes see this equation written in various other forms,
such as in terms of the temperature T and entropy S of the star. In this form,
you then have

(243)
∂Lr

∂m
= �m − T

dS
dt

Chemical Composition

An additional relationship that is useful for determining stellar evolution is
the change in a star’s composition.This relation will be less of an ‘equation’ for
the purposes of this class, and more a rough depiction of how the composition
of a star can vary with time.

We can define the composition of a star using a quantity called the mass
fraction of a species:

(244) Xi =
ρi
ρ

.

Here, ρi is the partial density of the ith species.
Particles in a star are defined by two properties: their baryon number A

(or the number of total protons and neutrons they contain) and their charge
Z . Using the new notation of baryon number, we can rewrite Equation 292 to
be the corresponding partial number density of the ith species:

(245) ni =
ρi

Ai mH
.

We can then slightly rewrite our expression for the composition as

(246) Xi = ni
Ai
ρ

mH .

Changes in composition must obey (at least) two conservation laws. Con-
servation of charge:

(247) Zi +Zj = Zk +Zl .

and conservation of baryon number:

(248) Ai +Aj = Ak +Al .

If you also consider electrons, there must also be a conservation of lepton
number.

Without attempting to go into a detailed formulation of an equation for
the rate of change of X we can see that it must depend on the starting com-
position and the density, and (though it does not explicitly appear in these
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11. Stellar Structure

equations) the temperature, as this will also govern the rate of the nuclear re-
actions responsible for the composition changes (analagous to our description
of molecular collisions in Equation 281 and shown in Figure 26, in which the
velocity of particles is set by the gas temperature). This leads us to our last
‘equation’ of stellar structure, which for us will just be a placeholder function
f representing that the change in composition is a function of these variables:

(249) Ẋ = f(ρ, T, X).

Technically, this X is a vector representing a series of equations for the
change of each Xi.

The final fundamental relation we need in order to derive the structure of
a star is an expression for the temperature gradient, which will be derived a
bit later on.

11.3 Pressure

We have already introduced a relationship for the gas pressure, for an ideal
gas, in Equation 291. However, now that we have begun talking more about
the microscopic composition of the gas we can actually be more specific in
our description of the pressure. Assuming the interior of a star to be largely
ionized, the gas will be composed of ions (e.g., H+) and electrons. Their main
interactions (‘collisions’) that are responsible for pressure in the star will be
just between like particles, which repel each other due to their electromagnetic
interaction. As a result, we can actually separate the gas pressure into the
contribution from the ion pressure and the electron pressure:

(250) Pgas = Pe + Pion

For a pure hydrogen star, these pressures will be equivalent, however as
the metallicity of a star increases, the electron pressure will be greater than
the ion pressure, as the number of free electrons per nucleon will go up (for
example, for helium, the number of ions is half the number of electrons).

Assuming that both the ions and electrons constitute an ideal gas, we can
rewrite the ideal gas equation for each species:

(251) Pe = nekT

and

(252) Pion = nionkT

However, this is not the full story: there is still another source of pressure
in addition to the gas pressure that we have not been considering: the pressure
from radiation.
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11.3. Pressure

Considering this pressure then at last gives us the total pressure in a star:

(253) P = Pion + Pe + Prad

We can determine the radiation pressure using an expression for pressure
that involves the momentum of particles:

(254) P =
1
3

∞�

0

v p n(p) dp

Here v is the velocity of the particles responsible for the pressure, p is
their typical momentum, and n(p) is the number density of particles in the
momentum range (p, p + dp). We first substitute in values appropriate for
photons (v = c, p = hν

c ). What is n(p)? Well, we know that the Blackbody
(Planck) function (Equation 49) has units of energy per volume per interval
of frequency per steradian. So, we can turn this into number of particles per
volume per interval of momentum by (1) dividing by the typical energy of a
particle (for a photon, this is hν), then (3) multiplying by the solid angle 4π,
and finally (4) using p = E

c to convert from energy density to momentum
density.
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Putting this all together,

(256) Prad =
1
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Here, the quantity in brackets is the same integral that is performed in
order to yield the Stefan-Boltzmann law (Equation 79). The result is then

(257) Prad =
1
3

�
4
c

�
σT4

The quantity 4σ
c is generally defined as a new constant, a.

We can also define the specific energy (the energy per unit mass) for radi-
ation, using the relation

(258) urad = 3
Prad

ρ
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11. Stellar Structure

When solving problems using the Virial theorem, we have encountered a
similar expression for the internal energy of an ideal gas:

(259) KEgas =
3
2

NkT

From the ideal gas law for the gas pressure (Equation 291), we can see that
the specific internal energy KE

m̄ then can be rewritten in a similar form:

(260) ugas =
Pgas

ρ

11.4 The Equation of State

In a star, an equation of state relates the pressure, density, and tempera-
ture of the gas. These quantities are generally dependent on the composition
of the gas as well. An equation of state then has the general dependence
P = P(ρ, T, X). The simplest example of this is the ideal gas equation. Inside
some stars radiation pressure will actually dominate over the gas pressure, so
perhaps our simplest plausible (yet still general) equation of state would be

P = Pgas + Prad

(261)

= nkT +
4F
3c

(262)

=
ρkT
µmp

+
4σSB

3c
T4

(263)

where µ is now the mean molecular weight per particle – e.g., µ = 1/2 for
fully ionized H.

But a more general and generally applicable equation of state is often that
of an adiabatic equation of state. As you might have encountered before in a
physics class, an adiabatic process is one that occurs in a system without any
exchange of hear with its environment. In such a thermally-isolated system,
the change in internal energy is due only to the work done on or by a system.
Unlike an isothermal process, an adiabatic process will by definition change
the temperature of the system. As an aside, we have encountered both adia-
batic and isothermal processes before, in our description of the early stages
of star formation. The initial collapse of a star (on a free-fall time scale) is a
roughly isothermal process: the optically thin cloud is able to essentially radi-
ate all of the collapse energy into space unchecked, and the temperature does
not substantially increase. However, once the initial collapse is halted when
the star becomes optically thick, the star can only now radiate a small fraction
of its collapse energy into space at a time. It then proceeds to contract nearly
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11.5. Summary

adiabatically.
Adiabatic processes follow an equation of state that is derived from the

first law of thermodynamics: for a closed system, the internal energy is equal
to the amount of heat supplied, minus the amount of work done.

As no heat is supplied, the change in the specific internal energy (energy
per unit mass) u comes from the work done by the system. We basically al-
ready derived this in Equation 240:

(264) du = −Pd
�

1
ρ

�

As we have seen both for an ideal gas and from our expression for the
radiation pressure, the specific internal energy is proportional to P

ρ :

(265) u = φ
P
ρ

Where φ is an arbitrary constant of proportionality. If we take a function
of that form and put it into Equation 264 we recover an expression for P in
terms of ρ for an adiabatic process:

(266) P ∝ ρ
φ+1

φ

We can rewrite this in terms of an adiabatic constant Ka and an adiabatic
exponent γa:

(267) P = Kaργa

For an ideal gas, γa = 5
3 .

This adiabatic relation can also be written in terms of volume:

(268) PVγa = Ka

This can be compared to the corresponding relationship for an ideal gas,
in which PV = constant.

11.5 Summary

In summary, we have a set of coupled stellar structure equations (Eq. 227,
Eq. 231, Eq. 235, Eq. 242, and Eq. 267):

(269)
dr
dm

=
1

4πr2ρ
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11. Stellar Structure

(270) r̈ = −Gm(r)
r2 − 4πr2 ∂P

∂m
.

(271)
dT
dr

= − 3ρκL(r)
64πσSBT3r2

(272)
du
dt

= �m − ∂Lr

∂m
− P

d
dt

�
1
ρ

�

(273) P = Kaργa

If we can solve these together in a self-consistent way, we have good
hope of revealing the unplumbed depths of many stars. To do this we will
also need appropriate boundary conditions. Most of these are relatively self-
explanatory:

M(0) = 0
(274)

M(R) = Mtot

(275)

L(0) = 0
(276)

L(R) = 4πR2σSBT4
effρ(R) = 0

(277)

P(R) ≈ 0
(278)

T(R) ≈ Teff

(279)

(280)

But to solve the equations of stellar structure even with all these constraints
in hand is still a beast of a task. In practice one integrates numerically, given
some basic models (or tabulations) of opacity and energy generation.
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