
11 Stellar Structure

Questions you should be able to answer after these lectures:

• What equations, variables, and physics describe the structure of a star?

• What are the two main types of pressure in a star, and when is each
expected to dominate?

• What is an equation of state, and what is the equation of state that is
valid for the sun?

11.1 Formalism

One of our goals in this class is to be able to describe not just the observ-
able, exterior properties of a star, but to understand all the layers of these
cosmic onions — from the observable properties of their outermost layers to
the physics that occurs in their cores. This next part will then be a switch
from some of what we have done before, where we have focused on the “sur-
face” properties of a star (like size, total mass, and luminosity), and consid-
ered many of these to be fixed and unchanging. Our objective is to be able
to describe the entire internal structure of a star in terms of its fundamental
physical properties, and to model how this structure will change over time as
it evolves.

Before we define the equations that do this, there are two points that may
be useful to understand all of the notation being used here, and the way in
which these equations are expressed.

First, when describing the evolution of a star with a set of equations, we
will use mass as the fundamental variable rather than radius (as we have
mostly been doing up until this point.) It is possible to change variables in this
way because mass, like radius, increases monotonically as you go outward in
a star from its center. We thus will set up our equations so that they follow
individual, moving shells of mass in the star. There are several benefits to this.
For one, it makes the problem of following the evolution of our star a more
well-bounded problem. Over a star’s lifetime, its radius can change by orders
of magnitude from its starting value, and so a radial coordinate must always
be defined with respect to the hugely time-varying outer extent of the star.
In contrast, as our star ages, assuming its mass loss is insignificant, its mass
coordinate will always lie between zero and its starting value M — a value
which can generally be assumed to stay constant for most stars over most of
stellar evolution. Further, by following shells of mass that do not cross over
each other, we implicitly assume conservation of mass at a given time, and
the mass enclosed by any of these moving shells will stay constant as the
star evolves, even as the radius changes. This property also makes it easier to
follow compositional changes in our star.

In general, the choice to follow individual fluid parcels rather than ref-
erence a fixed positional grid is known as adopting Lagrangian coordinates
instead of Eulerian coordinates. For a Lagrangian formulation of a problem:
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• This is a particle-based description, following individual particles in a
fluid over time

• Conservation of mass and Newton’s laws apply directly to each particle
being followed

• However, following each individual particle can be computationally ex-
pensive

• This expense can be somewhat avoided for spherically-symmetric (and
thus essentially ‘1D’) problems

In contrast, for a Eulerian formulation of a problem:

• This is a field-based description, recording changes in properties at each
point on a fixed positional grid in space over time

• The grid of coordinates is not distorted by the fluid motion

• Problems approached in this way are generally less computationally ex-
pensive, and are generally easier for 2D and 3D problems

There are thus tradeoffs for choosing each formulation. For stellar struc-
ture, Lagrangian coordinates are generally preferred, and we will rely heavily
on equations expressed in terms of a stellar mass variable going forward.

Second, it might be useful to just recall the difference between the two
types of derivatives that you may encounter in these equations. The first is a
partial derivative, written as ∂ f . The second is a total derivative, written as
d f . To illustrate the difference, let’s assume that f is a function of a number of
variables: f (x, t). The partial derivative of f with respect to x is just ∂ f

∂x . Here,
we have assumed in taking this derivative that x is held fixed with time and
does not vary. However, most of the quantities that we will deal with in the
equations of stellar structure do vary with time. The use of a partial derivative
with respect to radius or mass indicates that we are considering the change in
this space(like) coordinate for an instantaneous, fixed time value. In contrast,
the total derivative does not hold any variables to be fixed, and considers how
all of the dependent variables changes as a function of the variable considered.
Note that when you see a quantity like ṙ in an equation, this is actually the
partial rather than total derivative with respect to time.

11.2 Equations of Stellar Structure

In this class, we will define four fundamental equations of stellar structure,
and several additional relationships that, taken all together, will define the
structure of a star and how it evolves with time. Depending on the textbook
that you consult, you will find different versions of these equations using
slightly different variables, or in a slightly different format.
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dr

r

m(r)=Mr
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ρ(r)

Figure 24: An illustration of a shell with mass dm and thickness dr. The mass
enclosed inside of the shell is m(r) (or Mr, depending on how you choose to
write it). Assume that this object has a density structure ρ(r)

Mass continuity

The first two equations of stellar structure we have already seen before, as the
conversion between the mass and radius coordinates

(227)
dr
dm

=
1

4πr2ρ

and as the equation of hydrostatic equilibrium (Eq. 192), now recast in terms
of mass:

(228)
dP
dm

= − Gm
4πr4

Eq. 227 and its variant forms are known variously as the Mass Continuity
Equation or the Equation of Conservation of Mass. Either way, this is the
first of our four fundamental equations of stellar structure, and relates our
mass coordinate m to the radius coordinate r, as shown in Fig. 24.

Note that up until now we have been generally either been assuming a
uniform constant density in all of the objects we have considered, or have been
making approximations based on the average density �ρ�. However, to better
and more realistically describe stars we will want to use density distributions
that are more realistic (e.g., reaching their highest value in the center of the
star, and decreasing outward to zero at the edge of the star). This means we
should start trying to think about ρ as a function rather than a constant (even
when it is not explicitly written as ρ(r) or ρ(m) in the following equations).

Hydrostatic equilibrium

The second equation of stellar structure (Eq. 228, the equation of hydrostatic
equilibrium) concerns the motion of a star, and we derived it in Sec. 10.2. As
we noted earlier, stars can change their radii by orders of magnitude over
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the course of their evolution. As a result, we must consider how the interiors
of stars move due the forces of pressure and gravity. We have already seen
a specific case for this equation: the case in which gravity and pressure are
balanced such that there is no net acceleration, and the star is in hydrostatic
equilibrium (Equation 192).

We want to first consider a more general form of Eq. 228 that allows for the
forces to be out of balance and thus there to be a net acceleration, and second
to change variables from a dependence on radius to a dependence on mass.
We can begin by rewriting our condition of force balance in Equation 192 as

(229) 0 = −Gm(r)
r2 − 1

ρ

∂P
∂r

.

Each term in this equation has units of acceleration. Thus, this equation can
be more generally written as

(230) r̈ = −Gm(r)
r2 − 1

ρ

∂P
∂r

.

Using Equation ?? we can recast this expression in terms of a derivative
with respect to m rather than r. This gives us the final form that we will use:

(231) r̈ = −Gm(r)
r2 − 4πr2 ∂P

∂m
.

This is the most general form of our second equation of stellar structure. When
r̈ is zero we are in equilibrium and so we obtain Eq. 228, the equation of hy-
drostatic equilibrium. This more general form, Eq. 231, is sometimes referred
to as the Equation of Motion or the Equation of Momentum Conservation.

The Thermal Transport Equation

We also need to know how the temperature profile of a star changes with
depth. If we do that, we can directly connect the inferred profile of tempera-
ture vs. optical depth (Eq. 164) to a physical coordinate within the star.

Assume there is a luminosity profile (determined by the energy equation,
to be discussed next), such that the flux at radius r is

(232) F(r) =
L(r)
4π42

In a plane-parallel atmosphere, we learned (Eq. 155) that the flux is related
to the gradient of the radiation pressure. The assumptions we made then don’t
restrict the applicability of that relation only to the outer atmosphere, so we
can apply it anywhere throughout the interior of our star. The only (minor)
adjustment is that we replace dz with dr since we are now explicitly consider-
ing a spherical geometry, so we now have

(233) F = − c
α

dPrad
dr
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Since we know that Prad = 4/3c σSBT4 (Eq. 257), we see that

(234)
dPrad

dr
=

16σSB
3c

T3 dT
dr

.

When combined with Eq. 232, we find the thermal profile equation,

(235)
dT
dr

= − 3ρκL(r)
64πσSBT3r2

The Energy Equation

Eq. 235 shows that we need to know the luminosity profile in order to deter-
mine the thermal profile. In the outer photosphere we earlier required that
flux is conserved (Sec. 9.2), but go far enough in and all stars (until the ends
of their lives) are liberating extra energy via fusion.

Thus the next equation of stellar structure concerns the generation of en-
ergy within a star. As with the equation of motion, we will first begin with a
simple case of equilibrium. In this case, we are concerned with the thermody-
namics of the star: this is the equation for Thermal Equilibrium, or a constant
flow of heat with time for a static star (a situation in which there is no work
being done on any of our mass shells).

Consider the shell dm shown in Fig. 24. Inside of this shell we define a
quantity �m that represents the net local gain gain of energy per time per
unit mass (SI units of J s−1 kg−1) due to local nuclear processes. Note that
sometimes the volumetric power �r will also sometimes be used, but the power
per unit mass �m is generally the more useful form. Regardless, we expect
either � to be very large deep in the stellar core and quickly go to zero in the
outer layers where fusion is negligible – in those other regions, � = 0, L is
constant, and we are back in the flux-conserving atmosphere of Sec. 9.2.

We then consider that the energy per time entering the shell is Lr (note that
like Mr, this is now a local and internal rather than global or external property:
it can be thought of as the luminosity of the star as measured at a radius r
inside the star) and the energy per time that exits the shell is now Lr + dLr
due to this local gain from nuclear burning in the shell. To conserve energy,
we must then have (note that these are total rather than partial derivatives as
there is no variation with time):

(236)
dLr

dm
= �m.

This is the equation for Thermal Equilibrium in a star. While Thermal
Equilibrium and Hydrostatic Equilibrium are separate conditions, it is gener-
ally unlikely that a star will be in Thermal Equilibrium without already being
in Hydrostatic equilibrium, thus guaranteeing that there is no change in the
energy flow in the star with time or with work being done. In general, Ther-
mal Equilibrium and Eq. 236 require that any local energy losses in the shell
(typically from energy propagating outward in the star) are exactly balanced
by the rate of energy production in that shell due to nuclear burning. On a
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