
10 Timescales in Stellar Interiors

Having dealt with the stellar photosphere and the radiation transport so rel-
evant to our observations of this region, we’re now ready to journey deeper
into the inner layers of our stellar onion. Fundamentally, the aim we will de-
velop in the coming chapters is to develop a connection between M, R, L, and
T in stars (see Table 10 for some relevant scales).

More specifically, our goal will be to develop equilibrium models that
describe stellar structure: P(r), ρ(r), and T(r). We will have to model grav-
ity, pressure balance, energy transport, and energy generation to get every-
thing right. We will follow a fairly simple path, assuming spherical symmetric
throughout and ignoring effects due to rotation, magnetic fields, etc.

Before laying out the equations, let’s first think about some key timescales.
By quantifying these timescales and assuming stars are in at least short-term
equilibrium, we will be better-equipped to understand the relevant processes
and to identify just what stellar equilibrium means.

10.1 Photon collisions with matter

This sets the timescale for radiation and matter to reach equilibrium. It de-
pends on the mean free path of photons through the gas,

(180) � =
1

nσ

So by dimensional analysis,

(181) τγ ≈ �

c

If we use numbers roughly appropriate for the average Sun (assuming full

Table 3: Relevant stellar quantitites.
Quantity Value in Sun Range in other stars
M 2 × 1033 g 0.08 � (M/M�) � 100
R 7 × 1010 cm 0.08 � (R/R�) � 1000
L 4 × 1033 erg s−1 10−3 � (L/L�) � 106

Teff 5777 K 3000 K � (Teff/mathrmK) � 50,000 K
ρc 150 g cm−3 10 � (ρc/g cm−3) � 1000
Tc 1.5 × 107 K 106 � (Tc/K) � 108
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Figure 22: The state of hydrostatic equilibrium in an object like a star occurs
when the inward force of gravity is balanced by an outward pressure gradient.
This figure illustrates that balance for a packet of gas inside of a star

ionization, and thus Thomson scattering), we have

� =
1

nσ

(182)

=
mp

ρσT

(183)

=
1.7 × 10−24 g

(1.4 g cm−3)(2/3 × 10−24 cm−2)

(184)

≈ 2 cm
(185)

So the matter-radiation equilibration timescale is roughly τγ ≈ 10−10 s. Pretty
fast!

10.2 Gravity and the free-fall timescale

For stars like the sun not to be either collapsing inward due to gravity or
expanding outward due to their gas pressure, these two forces must be in
balance. This condition is known as hydrostatic equilibrium. This balance is
illustrated in Figure 22

As we will see, gravity sets the timescale for fluid to come into mechanical
equilibrium. When we consider the balance between pressure and gravity on a
small bit of the stellar atmosphere with volume V = Adr (sketched in Fig. 22),
we see that in equilibrium the vertical forces must cancel.

The small volume element has mass dm and so will feel a gravitational
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10.2. Gravity and the free-fall timescale

force equal to

(186) Fg =
GMr dm

r2

where Mr is the mass of the star enclosed within a radius r,

(187) M(r) ≡ 4π

r�=r�

r�=0

ρ(r�)r�2dr�

Assuming the volume element has a thickness dr and area dA, and the
star has a uniform density ρ, then we can replace dm with ρdrdA. This volume
element will also feel a mean pressure which we can define as dP, where the
pressure on the outward facing surface of this element is P and the pressure
on the inward facing surface of this element is P + dP. The net pressure force
is then dPdA, so

FP(r) = Fg(r)
(188)

A (P(r)− P(r + dr)) = −ρVg
(189)

= ρAdrg
(190)

(191)

which yields the classic expression for hydrostatic equilibrium,

(192)
dP
dr

= ρ(r)g(r)

where

(193) g ≡ −GM(r)
r2

and M(r) is defined as above.
When applying Eq. 192 to stellar interiors, it’s common to recast it as

(194)
dP
dr

= −GM(r)ρ(r)
r2

In Eqs. 192 and 194 the left hand side is the pressure gradient across our
volume element, and the right hand side is the gravitational force averaged
over that same volume element. So it’s not that pressure balances gravity in a
star, but rather gravity is balanced by the gradient of increasing pressure from
the center to the surface.

The gradient dP/dr describes the pressure profile of the stellar interior in
equilibrium. What if the pressure changes suddenly – how long does it take
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10. Timescales in Stellar Interiors

Figure 23: A simple model of a star having a radius R, mass M, constant den-
sity ρ, a constant temperature T, and a fully ionized interior. This simple model
can be used to derive a typical free-fall time and a typical sound-crossing time
for the sun.

us to re-establish equilibrium? Or equivalently: if nothing were holding up a
star, how long would it take to collapse under its own gravity? Looking at
Figure 29, we can model this as the time it would take for a parcel of gas on
the surface of a star, at radius R, to travel to its center, due to the gravitational
acceleration from a mass M.

Looking at Figure 29, we can model this as the time it would take for a
parcel of gas on the surface of a star, at radius R, to travel to its center, due to
the gravitational acceleration from a mass M. To order of magnitude, we can
combine the following two equations

(195) a = −GM
r2

and

(196) d = −1
2

at2.

Setting both r and d equal to the radius of our object R, and assuming a
constant density ρ = 3M

4πR3 , we find

(197) τf f ∼
1�
Gρ

which is within a factor of two of the exact solution,

(198) τf f =

�
3π

32Gρ
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10.3. The sound-crossing time

Note that the free-fall timescale does not directly depend on the mass of
an object or its radius (or in fact, the distance from the center of that object).
It only depends on the density. Since G ≈ 2/3× 10−7 (cgs units), with �ρ�� ≈
1 g cm−3, the average value is τdyn ∼ 30 min.

In real life, main-sequence stars like the sun are stable and long-lived struc-
tures that are not collapsing. Even if you have a cloud of gas that is collapsing
under its own gravity to form a star, it does not collapse all the way to R = 0
thanks to its internal hydrostatic pressure gradient.

10.3 The sound-crossing time

We have an expression for the time scale upon which gravity will attempt to
force changes on a system (such changes can either be collapse, if a system
is far out of hydrostatic equilibrium and gravity is not significantly opposed
by pressure, or contraction, if a system is more evenly balanced). What is the
corresponding time scale upon which pressure will attempt to cause a system
to expand?

The pressure time scale in a system can be characterized using the sound
speed (as sound is equivalent to pressure waves in a medium). This isothermal
sound speed is given by the relation

(199) cs =

�
P
ρ

Although gas clouds in the interstellar medium may be reasonably ap-
proximated as isothermal, the same is not true for stars. We will ignore that
fact for now, but will return to this point later.

Referring back to Figure 29, we can define the sound-crossing time for an
object as the time it takes for a sound wave to cross the object. Using a simple
equation of motion d = vt and approximating 2R just as R we can then define
a sound-crossing time as

(200) τs ∼ R
�

ρ

P

Using the ideal gas equation, we can substitute ρ
m̄ kT for P and get an ex-

pression for the sound crossing time in terms of more fundamental parameters
for an object:

(201) τs ∼ R
�

m̄
kT

Unlike the free-fall time we derived earlier, the sound-crossing time depends
directly upon the size of the object, and its temperature. At the center of the
Sun, Tc ≈ 1.5 × 107 K and m̄ ∼ mp and so the sound-crossing timescale is
roughly 30 min.
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10. Timescales in Stellar Interiors

Note that by Eq. 198 we see that τs is also approximately equal to the free-
fall timescale τf f . For an object not just to be in hydrostatic equilibrium but to
remain this way, the pressure must be able to respond to changes in gravity,
and vice versa. This response requires that a change in one force is met with
a change in another force on a timescale that is sufficiently fast to restore the
force balance. In practice, this means that for objects in hydrostatic equilib-
rium, the free-fall time is more or less equivalent to the sound-crossing time.
In that way, a perturbation in pressure or density can be met with a corre-
sponding response before the object moves significantly out of equilibrium.

10.4 Radiation transport

If photons streamed freely through a star, they’d zip without interruption
from the core to the stellar surface in R�/c ≈ 2 s. But as we saw above in
Eq. 185, the photons actually scatter every ∼1 cm. With each collision they
“forget” their history, so the motion is a random walk with N steps. So for a
single photon1 to reach the surface from the core requires

(202) �
√

N ∼ R�

which implies that the photon diffusion timescale is

(203) τγ,diff ∼
N�

c
∼ R2

�
�

1
c

or roughly 104 yr.

10.5 Thermal (Kelvin-Helmholtz) timescale

The thermal timescale answers the question, How long will it take to radiate
away an object’s gravitational binding energy? This timescale also governs the
contraction of stars and brown dwarfs (and gas giant planets) by specifying
the time it takes for the object to radiate away a significant amount of its
gravitational potential energy. This is determined by the Kelvin-Helmholtz
timescale. This thermal time scale can generally be given as:

(204) τKH =
E
L

,

where E is the gravitational potential energy released in the contraction to its
final radius and L is the luminosity of the source. Approximating the Sun as
a uniform sphere, we have

(205) τKH ∼ GM2
�

R�
1

L�

1This is rather poetic – of course a given photon doesn’t survive to reach the surface, but is
absorbed and re-radiated as a new photon ∼ (R�/�)2 times. Because of this, it may be better to
think of the timescale of Eq. 203 as the radiative energy transport timescale.
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10.6. Nuclear timescale

which is roughly 3 × 107 yr.
Before nuclear processes were known, the Kelvin-Helmholtz timescale was

invoked to argue that the Sun could be only a few 107 yr old – and therefore
much of geology and evolutionary biology (read: Darwin) must be wrong.
There turned out to be missing physics, but τKH turns out to still be important
when describing the contraction of large gas clouds as they form new, young
stars.

The time that a protostar spends contracting depends upon its mass, as
its radius slowly contracts. A 0.1 M� star can take 100 million years on the
Hayashi track to finish contracting and reach the main sequence. On the other
hand, a 1 M� star can take only a few million years contracting on the Hayashi
track before it develops a radiative core, and then spends up to a few tens of
millions of years on the Henyey track before reaching the main sequence and
nuclear burning equilibrium. The most massive stars, 10 M� and above, take
less than 100,000 years to evolve to the main sequence.

10.6 Nuclear timescale

The time that a star spends on the main sequence – essentially the duration of
the star’s nuclear fuel under a constant burn rate – is termed the the nuclear
timescale. It is a function of stellar mass and luminosity, essentially analogous
to the thermal time scale of Equation 298. Here, the mass available (technically,
the mass difference between the reactants and product of the nuclear reaction)
serves as the energy available, according to E = mc2.

If we fuse 4 protons to form one He4 nucleus (an alpha particle), then the
fractional energy change is

(206)
ΔE
E

=
4mpc2 − mHec2

4mpc2 ≈ 0.007

This is a handy rule of thumb: fusing H to He liberates roughly 0.7% of the
available mass energy. As we will see, in more massive stars heavier elements
can also fuse; further rules of thumb are that fusing He to C and then C to
Fe (through multiple intermediate steps) each liberates another 0.1% of mass
energy. But for a solar-mass star, the main-sequence nuclear timescale is

(207) τnuc ≈
0.007M�c2

L�
≈ 1011 yr

which implies a main-sequence lifetime of roughly 100 billion years. The ac-
tual main-sequence lifetime for a 1M� star is closer to 10 billion years; it turns
out that significant stellar evolution typically occurs by the time ∼10% of a
star’s mass has been processed by fusion.

10.7 A Hierarchy of Timescales

So if we arrange our timescales, we find a strong separation of scales:
τnuc � τKH � τγ,di f f � τdyn � τγ

1011 yr � 3 × 107 yr � 104 yr � 30 min � 10−10 s
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