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We can then substitute �I� for S in Eq. 139, to find

S = I − µ
dI
dτ

(146)

�I� = I − µ
dI
dτ

(147)

1
2

1�

−1

Idµ = I − µ
dI
dτ

(148)

This is an integro-differential equation for gray atmospheres in radiative equi-
librium. Though it looks odd, it is useful because an exact solution exists.
After finding �I� = S, we can use our formal solutoin to the radiative transfer
equation to show that

(149) S =
3F0

4π
[τ + q(τ)]

where F0 is the input flux at the base of the atmosphere and q(τ) is the Hopf
function, shown in Fig. 17. Let’s examine an approximation to this function
that provides a lot of insight into what’s going on.

We’ll start by examining the moments of the radiative transfer equation,
where moment n is defined as

(150) µn+1 ∂I
∂τ

dΩ =
�

µn(I − S)dΩ

We already did n = 0 back in Eq. 143, so let’s consider n = 1. We’ll need each

Figure 17: Hopf function q(τ), which has as its limits q(0) = 1/
√

3 and q(∞) =
0.7101....
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9.3. The Eddington Approximation

of the following terms, given in Eqs. 151–153:

(151)
�

µSdΩ = 2πS
1�

−1

µdµ

which equals zero, since S is isotropic.

(152)
�

µIdΩ ≡ F

(the definition of flux), and finally

(153)
�

µ2 IdΩ =
�

I cos2 θdΩ ≡ cPrad

from Eq. 58.
The first moment then becomes

(154) c
dP
dτ

= F

which we have required to be constant. Thus, we find that

(155) Prad =
F
c
(τ + Q)

where here Q is a constant of integration; when certain assumptions are lifted,
this becomes the Hopf function q(τ) of Fig. 17.

9.3 The Eddington Approximation

Eq. 155 is a potentially powerful result, because it tells us that in our gray,
flux-conserving atmosphere the radiation pressure is just a linear function of
the bolometric flux. This will become even more useful, since we are about to
connect this back to S, and thence to I (a more useful observational diagnostic
than P).

From the expression for the radiation pressure of a blackbody field (Eq. 58)
we have that

P =
4π

3c

�
Bνdν

(156)

=
4π

3c
S

(157)

since we assume LTE, and thus our source function is the Planck function.
However, remember that our atmosphere exhibits a temperature gradient, so
our radiation field isn’t actually a pure blackbody. We therefore make the key
assumption — the Eddington approximation — that the temperature gradi-
ent is weak enough that the abov expression for P is valid (correcting this
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assumption turns Q into q(τ)).

Under these assumptions, we then combine Eq. 157 and 155 to find

S =
3F
4π

(τ + Q)

(158)

=
3F
4π

�
τ +

2
3

�(159)

Thus the stellar atmosphere’s source function is just a linear function of op-
tical depth – just as we had blithely assumed in Eq. 137 when introducing
limb darkening. The value of 2/3 comes from a straightforward but tedious
derivation described in Sec. 2.4.2 of the Choudhuri textbook.

We can also use Eq. 159 to clarify our previous discussion of limb darken-
ing. Since we now know the particular linear dependence of S on τ, we can
dispense with the arbitrary constants in Eq. 138 to show that the emergent
intensity is

(160) I(τ = 0, µ) =
3F
4π

�
µ +

2
3

�

which shows decent agreement with observational data. This type of expres-
sion is called a linear limb-darkening “law”. Because of our assumptions
this doesn’t perfectly fit observed stellar limb-darkening profiles, so there is
a whole family of various relations that people use (some physically justified,
some empirical).

Finally, given the exact functional form of S in Eq. 159, we can now com-
pute the stellar atmosphere’s thermal structure – how its temperature changes
with optical depth, pressure, or altitude. This relation is derived by relating S
to the Stefan-Boltzmann flux F from Eq. 60:

S =
�

Sνdν

(161)

=
�

Bνdν

(162)

=
σSBT4

π

(163)

(as for that factor of π, see Sec. 1.3 of the Rybicki & Lightman). We now have
S(T) as well as S(τ), so combining Eqs. 159, Eq. 163, and the Stefan-Boltzmann
flux (Eq. 60) we obtain a relation that

(164) T4(τ) =
3
4

T4
eff

�
τ +

2
3

�
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This gives us the thermal profile through the star’s atmosphere. As we
move deeper into the star the vertical optical depth τ increases (Eq. 130) and
the temperature rises as well (Eq. 164). Note too that the atmospheric temper-
ature T = Teff when τ = 2/3. Earlier we have claimed that we see down to a
depth of τ ≈ 1, so we have no refined that statement to say that we see into a
stellar atmosphere down to the τ = 2/3 surface.

9.4 Frequency-Dependent Quantities

We’ve achieved quite a bit, working only with frequency-integrated quanti-
ties: in particular, the temperature structure in Eq. 164 and the formal solution
Eq. 135. However, although our earlier treatment of excitation and ionization
of atomic lines (Sec. 8.5) qualitatively explains some of the trends in absorp-
tion lines seen in stellar spectra, we have so far only discussed line formation
in the most qualitative terms.

We expect intensity to vary only slowly with frequency when tempera-
tures are low. This because we expect the ratio R(ν) between intensities at two
temperatures to scale as:

R(ν) =
Iν(TB)

Iν(TA)

(165)

≈ Bν(TB)

Bν(TA)

(166)

=
ehν/kTA − 1
ehν/kTB − 1

(167)

This is consistent with the observed frequency dependence of limb darkening,
which is seen to be much weaker at longer (infrared) wavelengths and stronger
at shorter (e.g., blue-optical) wavelengths.

Let’s now consider a more empirical way to make progress, based on the
fact that we can observe the intensity emerging from the top of the atmo-
sphere, Iν(τν = 0, µ), across a wide range of frequencies. Expanding on our
earlier, linear model of Sν (Eq. 137), a fully valid expression for the source
function is always

(168) Sν =
∞

∑
n=0

aν,nτn
ν

Putting this into our formal solution, Eq. 135, and invoking the defintion of
the gamma function gives

(169) Iν(0, µ) =
∞

∑
n=0

aν,n(n!)µn

So long as we are in LTE, then we also have Sν(τν) = Bν[T(τν)]. This lets us
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9. Stellar Atmospheres

map out T(τν), which we can do for multiple frequencies – as shown in Fig. 18.
Each T corresponds to a particular physical depth in the stellar atmosphere, so
we have successfully identified a mapping between optical depth, frequency,
and temperature.

Since for any ν we typically observe only down to a constant τν ≈ 2/3, we
can rank the absorption coefficients ανi for each of the νi sketched in Fig. 18.
For any given τν, T(τν) is greatest for ν1 and least for ν3. Thus we are seeing
deepest into the star at ν1 and αν1 must be relatively small, while on the other
hand we see only to a shallow depth (where T is lower) at ν3 and so αν3 must
be relatively large.

9.5 Opacities

What affects a photon as it propagates out of a stellar atmosphere? So far we
haven’t talked much about the explict frequency dependence of αν, but this is
essential in order to interpret observations.

From the definition of αν in Eq. 69, one sees that

(170) nσν = ρκν

A lot of work in radiative transfer is about calculating the opacity κν given ρ,
T, and composition. In practice most desired opacities are tabulated and one
uses a simple look-up table for ease of calculation. Nonetheless we can still
consider some of the basic cases. These include:

1. Thomson (electron) scattering

2. Bound-bound reactions

3. Bound-free: phototionization & recombination

4. Free-free: Bremsstrahlung

Thomson scattering

The simplest effect is Thomson scattering, also known as electron scattering.
In this interaction a photon hits a charged particle, shakes it up a bit (thus

Figure 18: Notional atmospheric structure, T(τν), with different frequencies
νi.
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9.5. Opacities

taking energy out of the radiation field), and is then re-radiated away. The ba-
sic (frequency-independent) cross-section is derived in many text books (e.g.
Rybicki & Lightman, Sec. 3.4), which shows that in cgs units,

(171) σT =
8π

3

�
e2

mec2

�2

or approximately 2/3 × 10−24 cm2.

Notice that σT ∝ m−2, so the lightest charge-carriers are the most important
– this means electrons. Eq. 171 suggests that in a notional medium composed
solely of electrons, we would have

(172) κν =
neσT

ρe
=

σT
me

In any real astrophysical situation our medium will contain a wide range of
particles, not just electrons. So in actuality we have

(173) κν =
neσT
ρtot

≡ 1
µe

σT
mp

where we have now defined the mean molecular weight of the electron to be

(174) µe =
ρtot

nemp

The quantity µe represents the mean mass of the plasma per electron, in
units of mp (note that this is a bit different from the mean molecular weight for
ions, which is important in stellar interior calculations). But in a fully ionized
H-only environment, ne = N cm−3 while ρ = Nmp cm−3 — so µe = 1.
Meanwhile in a fully ionized, 100% He plasma, ne = 2N cm−3 while ρ =
4N cm−3 — so in this case, µe = 2.

Figure 19: Schematic of σν for bound-bound reactions, showing a line centered
at ν0 and with intrinsic width Δν ∼ h̄/τ.
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9. Stellar Atmospheres

Bound-bound transitions

As the name implies, these involve changes between energy levels that still
leave all particles bound. Most stellar opacity sources are of this type, which
give rise to lines such as those depicted schematically in Fig. 19. In all cases
the intrinsic line width Δν ∼ h̄/τ is given by the Heisenberg uncertainty prin-
ciple and by τ, the typical lifetime of the state.Depending on the system being
studied. But τ can change considerably depending on the system under anal-
ysis.

The general expression for the line’s cross-section will be that

(175) σν =
πe2

mec
f Φ(ν − ν0)

where f is the transition’s dimensionaless oscillator strength (determined by
the atomic physics) and Φ(ν − ν0) is the line profile shape as sketched in
Fig. 19. Note that Eq. 175 will also sometimes be written not in terms of f but
rather as

(176) σν =
BLUhν

4π
Φ(ν − ν0)

where BLU is the “Einstein B” coefficient for the transition from the lower to
the upper state.

Regardless, the lifetime of the state may be intrinsic (and long-lived) if the
particles involved are isolated and non-interacting, and undergo only spon-
taneous emission. This gives rise to the narrowest lines, which are said to be
naturally broadened.

When conditions are denser and the particle interaction timescale � τ,
then collisions perturb the energy levels and so slightly higher- or lower-
energy photons can couple to the particles involved. This leads to pressure
broadening (or collisional broadening), which leads (as the name implies) to
broader lines in higher-pressure environments.

Finally, particle velocities will impart a range of Doppler shifts to the ob-
served line profile, causing various types of extrinsic broadening. In general
these can all be lumped under the heading of Doppler broadening, in which
the line width is set by the material’s velocity,

(177)
Δν

ν0
=

vr

c

This is an important effect for the accretion (or other) disks around black
holes and around young stars, and also for the nearly-solid-body rotation of
individual stars.

There’s a lot more to say about bound-bound transitions than we have
time for here. But whatever the specific situation, our approach will always be
the following: use the Saha and Boltzmann equations to establish the popula-
tions in the available energy levels; then use atomic physics to determine the
oscillator strength f and line profile Φ(ν − ν0).
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9.5. Opacities

Figure 20: Bremsstrahlung (braking radiation) — an electron decelerates near
an ion and emits a photon.

Bremsstrahlung

If you speak German, you might recognize that this translates as “braking
radiation” — and Bremsstrahlung (or “free-free”) is radiation caused by the
deceleration of charged particles (typically electrons), as shown schematically
in Fig. 20. Under time reversal, this phenomenon also represents absorption of
a photon and acceleration of the electron. Typically this is modeled as occuring
as the e− is near (but not bound to) a charged but much more massive ion,
which is assumed to be stationary during the interaction. Rybicki & Lightman
devote a whole chapter to Bremsstrahlung, but we’ll just settle for two useful
rules of thumb:

(178) α
f f
ν ≈ 0.018T−3/2Z2neniν

−2 ¯g f f

and

(179) �
f f
ν ≈ (6.8 × 10−38)Z2neniT−1/2e−hν/kT ¯g f f

where Z is the ionic charge and ¯g f f is the Gaunt factor, typically of order
unity.

Bound-free

In this case, electrons transition between a bound (possibly excited) state and
the free (i.e., ionized) state. If the initial state is bound, then an incoming
photon comes in and (possibly) ejects an electron. Thus the e− begins within a
series of discretized, quantum, atomic energy levels and ends unbound, with
a continuum of energy levels available to it. A full derivation shows that for
a given bound transition we find σν ∝ ν−3. But as ν decreases toward the
ionization threshold νi (e.g., 13.6 ev/h for H in the ground state), then σν will
sharply drop when the photon is no longer able to ionize. But assuming there
is some excited hydrogen (e.g., ν2=13.6/4h for H in the n = 2 state), then there
will be a second one-sided peak located at ν2, and so on as shown in Fig. 21.
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9. Stellar Atmospheres

Figure 21: Extinction coefficient αν for bound-free transitions of the H atom
(from Gray’s Stellar Photospheres, Fig. 8.2). The characteristic scaling with ν−3 ∝
λ3 is clearly apparent.

H-minus opacity

For years after astronomers first turned their spectrographs toward the Sun,
it was unclear which processes explained the observed Solar opacity. It was
apparent that the opacity was fairly large, despite the fact that H and He are
almost entirely neutral in the Solar photosphere and bound-bound transitions
also weren’t able to explain the data.

The solution turned out to be the negative hydrogen ion, H−, which is sta-
ble because the normal H atom is highly polarized and can hold another e−.
The electron is bound only weakly, with a dissociation energy of just 0.75 eV
(no stable, excited states exist). Thus all photons with λ � 1.7µm can poten-
tially break this ion and, being absorbed, contribute to an overall continuum
opacity that is strongest from 0.4–1.4µm. The magnitude of the total H− opac-
ity depends sensitively on the ion’s abundance: it drops off steeply in stars
much hotter than the Sun (when most H− is ionized) and in the very coolest
stars (when no free e− are available to form the ion). In addition to being a
key opacity source in many stars, H− has only recently been recognized as
a key opacity source in the atmospheres of the hottest extrasolar planets (see
e.g. Lothringer et al., 2018).
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