
9 Stellar Atmospheres

Having developed the machinery to understand the spectral lines we see in
stellar spectra, we’re now going to continue peeling our onion by examining
its thin, outermost layer – the stellar atmosphere. Our goal is to understand
how specific intensity Iν varies as a function of increasing depth in a stellar
atmosphere, and also how it changes depending on the angle relative to the
radial direction.

9.1 The Plane-parallel Approximation

Fig. 14 gives a general overview of the geometry in what follows. The star
is spherical (or close enough as makes no odds), but when we zoom in on a
small enough patch the geometry becomes essentially plane-parallel. In that
geometry, Sν and Iν depend on both altitude z as well as the angle θ from the
normal direction. We assume that the radiation has no intrinsic dependence
on either t or φ – i.e., the radiation is in steady state and is isotropic.

We need to develop a few new conventions before we can proceed. This
is because in our definition of optical depth, dτν = ανds, the path length ds
travels along the path. This Lagrangian description can be a bit annoying,
so it’s common to formulate our radiative transfer in a path-independent,
Eulerian, prescription.

Let’s call our previously-defined optical depth (Eq. 71) τ�
ν. We’ll then create

a slightly altered definition of optical depth – a vertical,ingoing optical depth
(this is the convention). The new definition is almost identical to the old one:

(130) dτν = −ανdz

But now our optical depth, is vertical and oriented to measure inward, toward
the star’s interior. In particular since dz = ds cos θ, relative to our old optical
depth we now have

(131) dτν = −dτ�
ν cos θ

Our radiative transfer equation, Eq. 78, now becomes

(132) − cos θ
dIν

dτν
= Sν(τν, θ)− Iν(τν, θ)

Figure 14: Schematic view of a stellar atmosphere, and at right a zoomed-in
view showing the nearly plane-parallel nature on small scales.
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It’s conventional to also define µ = cos θ, so our radiative transfer equation
for stellar atmospheres now becomes

(133) µ
dIν

dτν
= Iν(τν, µ)− Sν(τν, µ)

We can solve this in an analogous manner to how we treated Eq. 85, mul-
tiplying all terms by e−τν‘/µ, then rearranging to see that

(134)
d

dτν

�
Iνeτν/µ

�
= −Sν

µ
eτν/µ

And our solution looks remarkably similar to Eq. 86, except that we now
explicitly account for the viewing angle µ:

(135) Iν(τν, µ) =

∞�

τν

Sν(τ�
ν, µ)

µ
e(τ

�
ν−τν)/µdτ�

ν

So we now have at least a formal solution that could explain how Iν varies as
a function of the vertical optical depth τν as well as the normal angle θ. It’s
already apparent that Iν at a given depth is determined by the contributions
from Sν at all deeper levels, but these Sν themselves depend on Iν there. So
we’d like to develop a more intuitive understanding than Eq. 135 provides.

Our goal will be to make a self-consistent model for Sν and Iν (or, as we’ll
see, Iν and T). We’ll again assume local thermodynamic equilibrium (LTE), so
that

(136) Sν = Bν(T) = Bν [T(τν)]

(since T increases with depth into the star).
First, let’s assume a simple form for Sν so we can solve Eq. 135. We already

tried a zeroth-order model for Sν (i.e. a constant; see Eq. 79), so let’s add a
first-order perturbation, assuming that

(137) Sν = aν + bντν

Where aν and bν are independent of τν – for example, two blackbodies of
different temperatures. When we plug this form into the formal solution of
Eq. 135 and turn the crank, we find that the emergent intensity from the top
of the star’s atmosphere (τν = 0) is

(138) Iν(τν = 0, µ) = aν + bνµ

Fig. 15 explains graphically what this solution means: namely, that the an-
gular dependence of a star’s emergent radiation encodes the depth dependence
of its atmosphere’s source function. If the depth dependence is small, so will
the angular dependence be – and the reverse will also hold. So if bν ≈ 0, Iν

will be nearly isotropic with θ.
This describes the phenomenon of limb darkening, wherein the center
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of a stellar disk appears brighter than the edge. This is commonly seen in
photographs of the Sun – it often looks to the eye like merely shadow effects
of a 3D sphere, but in fact this represents temperature stratification.

Another interesting consequence involves the fact that an observer can
only tpically observe down to τν ≈ 1. Because of the depth and angular de-
pendencies we have just identified, this means that the surface where τν = 1
(or any other constant value) occurs higher in the stellar atmosphere at the
limb then at the disk center. Fig. 16 shows this effect. Since (as previously
mentioned) temperature drops with decreasing pressure for most of a star’s
observable atmosphere, this means that we observe a cooler blackbody at the
limb than at the center – and so the center appears brighter. (This is just a
different way of thinking about the same limb-darkening effect mentioned
above.) For the same reason, spectral lines look dark because at these lines αν

is largest and so τν occurs higher in the atmosphere, where temperatures are
lower.

9.2 Gray Atmosphere

Now let’s try to build a more self-consistent atmospheric model. To keep
things tractable, we’ll compensate for adding extra complications by simplify-
ing another aspect: we’ll assume a gray atmosphere in which the absorption
coefficient (and derived quantities are independent of frequency). So we will
use α instead of αν, and τ in place of τν.

In this case, the equation of radiative transfer still has the same form as in

Figure 15: Emergent intensity as a function of θ assuming the linear model for
Sν given by Eq. 137.

Figure 16: Depth dependence on the depth to which an observer can see into
a stellar atmosphere: we see deeper at the center than at the limb.
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Eq. 133 above:

(139) µ
dI
dτ

= I(τ, µ)− S(τ, µ)

With the difference that by ignoring frequency effects, we are now equiva-
lently solving for the bolometric quantities

(140) I =
�

ν

Iν dν

and

(141) S =
�

ν

Sν dν

Up until now, we’ve always assumed LTE with a Planck blackbody source
function whose temperature varies with depth. But we’ve only used ad hoc
models for this source — now, let’s introduce some physically meaningful
constraints. Specifically, let’s require that flux is conserved as it propagates
through the atmosphere. This is equivalent to saying there is no energy gen-
eration in the atmosphere: we just input a bunch of energy at the base and let
it transport through and escape from the top.

This requirement of flux conservation means that dF
dt = 0, where

(142) F =
�

I cos θdΩ =
�

µIdΩ

(by definition; see Eq. 37).

To apply this reasonable physical constraint, let’s integrate Eq. 139 over all
solid angles:

(143)
�

µ
∂I
∂τ

dΩ =
�
(I − S)dΩ

which implies that

(144)
dF
dτ

= 4π�I� − 4πS

which equals zero due to flux conservation. Note that S is isotropic, while
in general I may not be (i.e. more radiation comes out of a star than goes
into it from space). The perhaps-surprising implication is that in our gray
atmosphere,

(145) S = �I�

at all altitudes.
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