
7 Radiative Transfer

Radiation through empty space is what makes astronomy possible, but it isn’t
so interesting to study on its own. Radiative transfer, the effect on radiation
of its passage through matter, is where things really get going.

7.1 The Equation of Radiative Transfer

We can use the fact that the specific intensity does not change with distance to
begin deriving the radiative transfer equation. For light traveling in a vacuum
along a path length s, we say that the intensity is a constant. As a result,

(66)
dIν

ds
= 0 ( f or radiation traveling through a vacuum)

This case is illustrated in the first panel of Figure 9. However, space (par-
ticularly objects in space, like the atmospheres of stars) is not a vacuum ev-
erywhere. What about the case when there is some junk between our detector
and the source of radiation? This possibility is shown in the second panel of
Figure 9. One quickly sees that the intensity you detect will be less than it
was at the source. You can define an extinction coefficient αν for the space
junk, with units of extinction (or fractional depletion of intensity) per distance
(path length) traveled, or m−1 in SI units. For our purposes right now, we will
assume that this extinction is uniform and frequency-independent (but in real
life of course, it never is).

We also define

αν = nσν(67)

= ρκν(68)

Where n is the number density of absorbing particles and σν is their frequency-
dependent cross-section, while ρ is the standard mass density and κν is the
frequency-dependent opacity. Now, our equation of radiative transfer has
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Figure 9: The radiative transfer equation, for the progressively more compli-
cated situations of: (left) radiation traveling through a vacuum; (center) radia-
tion traveling through a purely absorbing medium; (right) radiation traveling
through an absorbing and emitting medium.
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7. Radiative Transfer

been modified to be:

(69)
dIν

ds
= −αν Iν (when there is absorbing material between us and our source)

As is often the case when simplifying differential equations, we then find
it convenient to try to get rid of some of these pesky units by defining a
new unitless constant: τν, or optical depth. If αν is the fractional depletion of
intensity per path length, τν is just the fractional depletion. We then can define

(70) dτν = ανds

and re-write our equation of radiative transfer as:

(71)
dIν

dτ
= −Iν

Remembering our basic calculus, we see that this has a solution of the type

Iν(s) = Iν(0) exp


−

s�

0

dτν


(72)

= Iν(0)e−τν ( f or an optically thin source)(73)

So, at an optical depth of unity (the point at which something begins to be
considered optically thick), your initial source intensity I0 has decreased by a
factor of e.

However, radiation traveling through a medium does not always result in
a net decrease. It is also possible for the radiation from our original source to
pass through a medium or substance that is not just absorbing the incident
radiation but is also emitting radiation of its own, adding to the initial radia-
tion field. To account for this, we define another coefficient: jν. This emissivity
coefficient has units of energy per time per volume per frequency per solid
angle. Note that these units (in SI: W m−3 Hz−1 sr−1) are slightly different
than the units of specific intensity. Including this coefficient in our radiative
transfer equation we have:

(74)
dIν

ds
= jν − αν Iν

or, putting it in terms of the dimensionless optical depth τ, we have:

(75)
dIν

dτν
=

jν
αν

− Iν
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7.2. Solutions to the Radiative Transfer Equation

After defining the so-called source function

(76) Sν =
jν
αν

we arrive at the final form of the radiative transfer equation:

(77)
dIν

dτν
= Sν − Iν

7.2 Solutions to the Radiative Transfer Equation

What is the solution of this equation? For now, we will again take the simplest
case, and assume that the medium through which the radiation is passing is
uniform (i.e., Sν is constant). Given an initial specific intensity of Iν(s = 0) =
Iν,0, we obtain

(78) Iν = Iν,0e−τν + Sν

�
1 − e−τν

�
( f or constant source f unction)

What happens to this equation when τ is small? In this case, we haven’t
traveled very far through the medium and so should expect that absorption
or emission haven’t had a strong effect. And indeed, in the limit that tauν = 0
we see that Iν = Iν,0.

What happens to this equation when τ becomes large? In this case, we’ve
traveled through a medium so optically thick that the radiation has “lost all
memory” of its initial conditions. Thus e−τν becomes negligible, and we arrive
at the result

(79) Iν = Sν ( f or an optically thick source)

So the only radiation that makes it out is from the emission of the medium
itself. What is this source function anyway? For a source in thermodynamic
equilibrium, any opaque (i.e., optically thick) medium is a “black body” and
so it turns out that Sν = Bν(T), the Planck blackbody function. For an optically-
thick source (say, a star like our sun) we can use Eq. 79 to then say that Iν = Bν.

The equivalence that Iν = Sν = Bν gives us the ability to define key prop-
erties of stars – like their flux and luminosity – as a function of their tempera-
ture. As described the preceding chapter, using Eq. 37 and 38 we can integrate
the blackbody function to determine the flux of a star (or other blackbody) as
a function of temperature, the Stefan-Boltzmann law:

(80) F = σT4

Another classic result, the peak frequency (or wavelength) at which a star
(or other blackbody) radiates, based on its temperature, can be found by differ-
entiating the blackbody equation with respect to frequency (or wavelength).
The result must be found numerically, and the peak wavelength can be ex-

23



7. Radiative Transfer

pressed in Wien’s Law as

(81) λpeak =
2.898 × 10−3 m K

T

We can improve on Eq. 78 and build a formal, general solution to the
radiative transfer equation as follows. Starting with Eq. 77, we have

dIν

dτν
= Sν − Iν(82)

dIν

dτν
eτν = Sνeτν − Iνeτν(83)

d
dτν

(Iνeτν) = Sνeτν(84)

We can integrate this last line to obtain the formal solution:

(85) Iν(τν) = Iν(0)e−τν +

τν�

0

Sν(τ
�
ν)e

(τ�ν−τν)dτ�
ν

As in our simpler approximations above, we see that the initial intensity Iν(0)
decays as the pathlength increases; at the same time we pick up an increasing
contribution from the source function Sν, integrated along the path. In practice
Sν can be fairly messy (i.e., when it isn’t the Planck function), and it can even
depend on Iν. Nonetheless Eq. 85 lends itself well to numerical solution.

7.3 Kirchhoff’s Laws

We need to discuss one additional detail before getting starts on stars and
nebulae: Kirchhoff’s Law for Thermal Emission. This states that a thermally
emitting object in equilibrium with its surrounding radiation field has Sν =
Bν(T).

Note that the above statement does not require that our object’s thermal ra-
diation is necessarily blackbody radiation. Whether or not that is true depends
on the interactions betweens photons and matter – which means it depends
on the optical depth τν.

Consider two lumps of matter, both at T. Object one is optically thick, i.e.
τν >> 1. In this case, Eq. 85 does indeed require that the emitted radiation
has the form Iν(τν) = Sν = Bν(T) — i.e., blackbody radiation emerges from
and optically thick object. This is mostly the case for a stellar spectrum, but
not quite (as we’ll see below).

First, let’s consider the other scenario in which our second object is opti-
cally thin, i.e. 0 < τν << 1. If our initial specific intensity Iν(0) = 0, then we
have

Iν(τν) = 0 + Sν (1 − (1 − τν))(86)

= τνBν(T)(87)
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7.3. Kirchhoff’s Laws

Thus for an optically thin object, the emergent radiation will be blackbody
radiation, scaled down by our low (but nonzero) τν.

It’s important to remember that τν is frequency-dependent (hence the ν
subscript!) due to its dependence on the extinction coefficient αν. So most as-
tronomical objects represent a combination of the two cases discussed imme-
diately above. At frequencies where atoms, molecules, etc. absorb light most
strongly, αν will be higher than at other frequencies.

So in a simplistic model, assume we have a hot hydrogen gas cloud where
αν is zero everywhere except at the locations of H lines. The location of these
lines is given by the Rydberg formula,

(88)
1

λvac,1,2
= R

�
1
n2

1
− 1

n2
2

�

(where n1 = 1, 2, 3, 4, 5, etc. for the Lyman, Balmer, Paschen, and Brackett
series, respectively).

In a thin gas cloud of temperature T, thickness s, and which is “backlit”
by a background of empty space (so Iν,0 ≈ 0), from Eq. 87 all we will see
is τνBν(T) = ανsBν(T) — so an emission-line spectrum which is zero away
from the lines and has strong emission at the locations of each line.

What about in a stellar atmosphere? A single stellar T (an isothermal at-
mosphere) will yield just a blackbody spectrum, regardless of the form of
αν. The simplest atmosphere yielding an interesting spectrum is sketched in
Fig. 10: an optically thick interior at temperature TH and a cooler, optically
thin outer layer at TC < TH .

Figure 10: The simplest two-layer stellar atmospere: an optically thick interior
at temperature TH and a cooler, optically thin outer layer at TC < TH .

The hot region is optically thick, so we have Iν = Sν = Bν(TH) emitted
from the lower layer – again, regardless of the form of αν. The effect of the
upper, cooler layer which has small but nonzero τν is to slightly diminish the
contribution of the lower layer while adding a contribution from the cooler
layer:

Iν = Iν(0)e−τν + Sν

�
1 − e−τν

�
(89)

= Bν(TH)e−τν + Bν(TC)
�
1 − e−τν

�
(90)

≈ Bν(TH)(1 − τν) + Bν(TC)τν(91)

≈ Bν(TH)− τν (Bν(TH)− Bν(TC))(92)

≈ Bν(TH)− ανs (Bν(TH)− Bν(TC))(93)
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So a stellar spectrum contains consists of two parts, roughly speaking.
The first is Bν(TH), the contribution from the blackbody at the base of the
atmosphere (the spectral continuum). Subtracted from this is a contribution
wherever αν is strong – i.e., at the locations of strongly-absorbing lines. As
we will see later, we can typically observe in a stellar atmosphere only down
to τν ∼ 1. So at the line locations where (absorption is nonzero), we observe
approximately Bν(TC). Thus in this toy model, the lines probe higher in the
atmosphere (we can’t observe as deeply into the star, because absorption is
stronger at these frequencies – so we effectively observe the cooler, fainter
upper layers). Meanwhile there is effectively no absorption in the atmosphere,
so we see down to the hotter layer where emission is brighter. Fig. 11 shows a
typical example.

Figure 11: Toy stellar spectrum (solid line) for the toy stellar model graphed
in Fig. 10.

Note that our assumption has been that temperature in the star decreases
with increasing altitude. More commonly, stellar models will parameterize an
atmosphere in terms of its pressure-temperature profile, with pressure P de-
creasing monotonically with increasing altitude. An interesting phenomenon
occurs when T increases with decreasing P (increasing altitude): in this case
we have a thermal inversion, all the arguments above are turned on their
heads, and the lines previously seen in absorption now appear in emission
over the same continuum. Thermal inversions are usually a second-order cor-
rection to atmospheric models, but they are ubiquitous in the atmospheres of
the Sun, Solar System planets, and exoplanets.
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