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Having dealt with the two-body problem, we’ll leave the three-body problem
to science fiction authors and begin an in-depth study of stars. Our foray into
Kepler’s laws was appropriate, because about 50% of all stars are in binary
(or higher-multiplicity) systems. With our fundamental dynamcal model, plus
data, we get a lot of stellar information from binary stars.

Stars in binaries are best characterized by mass M, radius R, and luminos-
ity L. Note that an effective temperature Te f f is often used in place of L. An
alternative set of parameters from the perspective of stellar evolution would
be M; heavy-element enhancement “metallicity” [Fe/H], reported logarithmi-
cally; and age.

4.1 Empirical Facts about binaries

The distribution of stellar systems between singles, binaries, and higher-order
multiples is roughly 55%, 35%, and 10% (Raghavan et al. 2010) – so the average
number of stars per system is something like 1.6.

Orbital periods range from < 1day to ∼ 1010 days (∼ 3 × 106 yr). Any
longer, and Galactic tides will disrupt the stable orbit (the Sun takes ∼ 200 Myr
to orbit the Milky Way). The periods have a log-normal distribution – for Sun-
like stars, this peaks at log10(P/d) = 4.8 with a width of 2.3 dex (Duquennoy
& Mayor 1992).

There’s also a wide range of eccentricities, from nearly circular to highly
elliptical. For short periods, we see e ≈ 0. This is due to tidal circularization.
Stars and planets aren’t point-masses and aren’t perfect spheres; tides repre-
sent the differential gradient of gravity across a physical object, and they bleed
off orbital energy while conserving angular momentum. It turns out that this
means e decreases as a consequence.

4.2 Parameterization of Binary Orbits

Two bodies orbiting in 3D requires 12 parameters, three for each body’s posi-
tion and velocity. Three of these map to the 3D position of the center of mass
– we get these if we measure the binary’s position on the sky and the distance
to it. Three more map to the 3D velocity of the center of mass – we get these
if we can track the motion of the binary through the Galaxy.

So we can translate any binary’s motion into its center-of-mass rest frame,
and we’re left with six numbers describing orbits (see Fig. 2):

• P – the orbital period

• a – semimajor axis

• e – orbital eccentricity

• I – orbital inclination relative to the plane of the sky

• Ω – the longitude of the ascending node

• ω – the argument of pericenter
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The first give the relevant timescale; the next two give us the shape of the
ellipse; the last three describe the ellipse’s orientation (like Euler angles in
classical mechanics).

Figure 1: Geometry of an orbit.

4.3 Binary Observations

The best way to measure L comes from basic telescopic observations of the
apparent bolometric flux F (i.e., integrated over all wavelengths). Then we
have

(1) F =
L

4πd2

where ideally d is known from parallax.
But the most precise way to measure M and R almost always involve stel-

lar binaries (though asteroseismology can do very well, too). But if we can
observe enough parameters to reveal the Keplerian orbit, we can get masses
(and separation); if the stars also undergo eclipses, we also get sizes.

In general, how does this work? We have two stars with masses m1 > m2
orbiting their common center of mass on elliptical orbits. Kepler’s third law
says that

(2)
GM
a3 =

�
2π

P

�2

so if we can measure P and a we can get M. For any type of binary, we usually
want P � 104 days if we’re going to track the orbit in one astronomer’s career.

If the binary is nearby and we can see the elliptical motion of at least one
component, then we have an “astrometric binary.” If we know the distance
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d, we can then directly determine a as well (or both a1 and a2 if we see both
components). The first known astrometric binary was the bright, northern star
Sirius – from its motion on the sky, astronomers first identified its tiny, faint,
but massive white dwarf companion, Sirius b.

More often, the data come from spectroscopic observations that measure
the stars’ Doppler shifts. If we can only measure the periodic velocity shifts
of one star (e.g. the other is too faint), then the “spectroscopic binary” is an
“SB1”. If we can measure the Doppler shifts of both stars, then we have an
“SB2”: we get the individual semimajor axes a1 and a2 of both components,
and we can get the individual masses from m1a1 = m2a2.

If we have an SB1, we measure the radial velocity of the visible star. As-
suming a circular orbit,

(3) vr1 =
2πa1 sin I

P
cos

�
2πt
P

�

where P and vr1 are the observed quantities. What good is a1 sin I? We know
that a1 = (m2/M)a, so from Kepler’s Third Law we see that

(4)
�

2π

P

�2
=

Gm3
2

a3
1M2

Combining Eqs. 3 and 4, and throwing in an extra factor of sin3 I to each
side, we find

1
G

�
2π

P

�2
a3

a sin3 I =
1
G

v3
r1

(2π/P)
(5)

=
m3

2 sin3 I
M2(6)

where this last term is the spectroscopic “mass function” – a single number
built from observables that constrains the masses involved.

(7) fm =
m3

2 sin3 I
(m1 + m2)2

In the limit that m1 << m2 (e.g. a low-mass star or planet orbiting a more
massive star), then we have

(8) fm ≈ m2 sin3 I ≤ m2

Another way of writing this out in terms of the observed radial velocity semi-
amplitude K (see Lovis & Fischer 2010) is:

(9) K =
28.4 m s−1

(1 − e2)1/2
m2 sin I

MJup

�
m1 + m2

M�

�−2/3 � P
1 yr

�−1/3

Fig. 2 shows the situation if the stars are eclipsing. In this example one star
is substantially larger than the other; as the sizes become roughly equal (or as
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Figure 2: Geometry of an eclipse (top), and the observed light curve (bottom).

the impact parameter b reaches the edge of the eclipsed star), the transit looks
less flat-bottomed and more and more V-shaped.

If the orbits are roughly circular then the duration of the eclipse (T14) re-
lates directly to the system geometry:

(10) T14 ≈ 2R1
�

1 − (b/R1)2

v2

while the fractional change in flux when one star blocks the other just scales
as the fractional area, (R2/R1)

2.
There are a lot of details to be modeled here: the proper shape of the light

curve, a way to fit for the orbit’s eccentricity and orientation, also including
the flux contribution during eclipse from the secondary star. Many of these de-
tails are simplified when considering extrasolar planets that transit their host
stars: most of these have roughly circular orbits, and the planets contribute
negligible flux relative to the host star.

Eclipses and spectroscopy together are very powerful: visible eclipses typ-
ically mean I ≈ 90o, so the sin I degeneracy in the mass function drops out
and gives us an absolute mass. Less common is astrometry and spectroscopy
– the former also determines I; this is likely to become much more common
in the final Gaia data release (DR4, est. 2022).
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