Lecture 3

- So, we’ve reduced the 2-body problem to a one-body problem. Next, we reduce the dimensionality:
 - We have a central force, so \(\vec{F} \propto \vec{r} \)
 Thus we have no torque, since \(\vec{\tau} = \vec{r} \times \vec{F} = 0 \)
 Thus angular momentum is conserved in the 2-body system.
 - That angular momentum is always perpendicular to the orbital plane, since
 \[\vec{L} \cdot \vec{r} = (\vec{r} \times \mu \vec{v}) \cdot \vec{r} \]
 \[= (\vec{r} \times \vec{r}) \cdot \mu \vec{v} = 0 \]
 - Since the orbit is always in a single, constant plane we can just describe it using 2D polar coordinates, \(r \) and \(\phi \)
 Thus we have \(\vec{L} = \vec{r} \times \mu \vec{v} \) (by definition of \(L \))
 \[= \mu r \dot{v} = \mu r^2 \dot{\phi} = \text{constant} \]
 \(\rightarrow \) Equal area law (Kepler’s 2nd) follows – true for any central force (not just \(1/r^2 \))
 - Next, we go from 2D to 1D:
 - \(E = \frac{1}{2} \mu \vec{v} \cdot \vec{v} + V(r) \)
 \[= \frac{1}{2} \mu \dot{r}^2 + \frac{1}{2} \mu r^2 \dot{\phi}^2 + V(r) \]
 - \(L = \mu r^2 \dot{\phi} \) (from above), and so \(\dot{\phi}^2 = \frac{L^2}{\mu^2 r^4} \)
 - and so \(E = \frac{1}{2} \mu \dot{r}^2 + \frac{L^2}{2 \mu r^2} + V(r) \). We call those last two terms \(V_{\text{eff}} \).
 - The formal solution to solve for the orbital motion is:
 \[dt = \frac{dr}{\sqrt{\frac{2}{\mu} [E - V_{\text{eff}}(r)]}} \]
 - For any given potential, one can integrate to get \(t(r) \) and then invert to find \(r(t) \).
 Usually one gets nasty-looking Elliptic integrals for a polynomial potential.
Get more insight from graphical analysis.

- Plot V_{eff}, and then the total system E on the same graph. Given L & E:
 - Must have $V_{\text{eff}} < E$ (otherwise $v^2 < 0$)
 - Motion shows a turning point whenever $V_{\text{eff}} = E$.

- For different energies plotted:
 - E_1: unbound orbit. Hyperbolic – interstellar comets!
 - E_2, E_3: bound, eccentric orbits (outer (apastron) and inner (periastron) points)
 - E_4: circular orbit (single radius).
 - $E < E_4$: not allowed!
Let’s look at this motion in the plane (for the bound case):

We see that the possible paths will fill in the regions between an inner and an outer radius \((r_1 \text{ and } r_2)\). But there’s no guarantee that the orbits actually repeat periodically.

We get periodic orbits, and closed ellipses, for two special cases:

\- \(V(r) \propto \frac{1}{r}\) (Keplerian motion)
\- \(V(r) \propto r^2\) (simple harmonic oscillator)
\- “Bertrand’s Theorem” says that these are the only two closed-orbit forms.

These closed-form cases are also special because they have an “extra” conserved quantity.

\- Consider gravity: \(V(r) = -\frac{G \mu M}{r}\) where \(M = m_1 + m_2\)

\- Define the “Laplace-Runge-Lenz” (LRL) vector,
\[\vec{A} = \vec{p} \times \vec{L} - G M \mu^2 \vec{r} \]
\(\vec{A}\) is conserved! Describes shape & orientation of orbit

\[\frac{d\vec{A}}{dt} = \frac{d\vec{p}}{dt} \times \vec{L} + \vec{p} \times \frac{d\vec{L}}{dt} - G M \mu^2 \frac{d\vec{r}}{dt} \]
(Second term goes to zero; \(\vec{L}\) conserved!)

\[\frac{d\vec{p}}{dt} = -G \frac{\mu M}{r^2} \vec{r} \]

\[\frac{d\vec{r}}{dt} = \frac{d\varphi}{dt} \vec{\hat{\varphi}} \]

\[\vec{L} = \mu r^2 \vec{\hat{\varphi}} \vec{\hat{z}} \]

\[\frac{d\vec{A}}{dt} = \left(-G \frac{\mu M}{r^2} \vec{r} \right) \times \left(\mu r^2 \vec{\hat{\varphi}} \vec{\hat{z}} \right) - G M \mu^2 \vec{\hat{\varphi}} \vec{\hat{\varphi}} \]
, which gives

\[\frac{d\vec{A}}{dt} = +G \mu^2 \vec{\hat{\varphi}} \vec{\hat{\varphi}} - G M \mu^2 \vec{\hat{\varphi}} \vec{\hat{\varphi}} = 0 \]
\(\vec{A}\) is a conserved quantity!

But, what does the LRL vector mean?
\- It describes the elliptical equations of motion!
• A points in the orbital plane. Define it to point along the x-axis of our polar system:
\[\vec{r} \cdot \vec{A} = r \cos \varphi = (\vec{r} \cdot (\vec{p} \times \vec{L})) - GM \mu^2 r \]
\[\rightarrow \quad r A \cos \varphi = L^2 - GM \mu_2^2 r \]

We can solve this for \(r \):
\[r(\varphi) = \frac{L^2 / GM \mu^2}{1 + (A/GM \mu^2) \cos \varphi} \]
and this is just the **equation of an ellipse** that we saw in Lecture 2, with
\[e = \frac{A}{GM \mu^2} \quad \text{and} \quad L = \sqrt{GM \mu^2 a(1-e^2)} \]

• We defined \(A \) to point along the x-axis (\(\varphi = 0 \)). This is the same direction where \(r \) is minimized – so \(A \) (the LRL) points toward the closest approach in the orbit (“pericenter”).

One remaining law: Kepler’s 3rd Law

- Consider the area of a curve in polar coordinates.
\[d \text{Area} = \frac{1}{2} r^2 d \varphi \] so
\[\frac{d \text{Area}}{dt} = \frac{1}{2} r^2 \dot{\varphi} = \frac{1}{2} \frac{L}{\mu} = \text{constant} \]

If we integrate over a full period, we get the area of an ellipse:
\[A_{\text{ellipse}} = \int_0^P d \text{Area} = \frac{1}{2} \int_0^P \frac{L}{\mu} dt = \frac{LP}{2\mu} . \]

And from geometry, \(A_{\text{ellipse}} = \pi ab \) (where \(b = a \sqrt{1-e^2} \) is the semiminor axis)

So set these equal:
\[\frac{LP}{2\mu} = \pi a^2 \sqrt{1-e^2} . \] Plugging the previous expression for \(L \) in:
\[\frac{1}{2} \sqrt{GM \mu^2 a(1-e^2)} P = \pi a^2 \sqrt{1-e^2} , \] which simplifies to
\[\sqrt{\frac{GM}{a^3}} = \frac{2\pi}{P} = \Omega_{\text{Kepler}} \]

Rearranging to the more familiar form, we find:
\[P^2 = \left(\frac{4\pi^2}{GM} \right) a^3 . \] Or in Solar units,
\[\left(\frac{P}{1 \text{yr}} \right)^2 = \left(\frac{M}{M_{\text{sun}}} \right)^{-1} \left(\frac{a}{1 \text{AU}} \right)^3 \]
- Other interesting bits and bobs:
 - A useful exercise for the reader is to show that \[E = -\frac{G M \mu}{2a} \]
 (use \(rdot = 0 \) at pericenter, \(r = a (1 - e), \phi=0 \))
 - We have \(r(\phi) \) --- what about \(r(t) \) and \(\phi(t) \)?
 - Unfortunately there’s no general, closed-form solution – this is typically calculated iteratively using a numerical framework.
 - One can find parametric solutions (see Psets)
 - The position vector moves on an ellipse, but you can show that the velocity vector actually moves on a circle:

![Diagram](image)

- Really esoteric: all these conservation laws are tied to particular symmetries:
 - Energy conservation comes from time translation
 - Angular momentum conservation comes from SO(3) rotations
 - The RLR vector \(A \) is conserved because of rotations in 4D (!!). \(r \) & \(p \) map onto the 3D surface of a 4D Euclidean sphere. Cool – but not too useful.