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Lecture 2

• Space is Big.
• Last time we talked about mass scales; today we’ll talk about size scales:

◦ Bohr radius →  p2/2m ~ hbar2 / (2 m a2) ~ e2/a → 5.3e-9 cm
◦ Rearth = 6.3e8 cm = (20000 / pi) km
◦ Rsun = 7e10 cm 
◦ 1 AU = 1.5e13 cm ~ 8 light-seconds
◦ 1 parsec = 1 pc = 3e18 cm = 3.26 light years  (note that l.y. are ~never used in astrophysics)

• Parsec is the fundamental unit of distance; it is ~the typical distance between stars (though 
that’s just a coincidence). It is observationally defined:   

◦ Over one year, the Earth’s displacement is 2 AU and an object at distance d changes 
apparent position by 2θ, where 
tan  θ = 1 AU / d,  or
d = 1 AU /  θ,  or
d / 1 pc  = 1 arcsec /  θ

◦ Nearest star: 1.3 pc
To our galactic center: 8 kpc  (kiloparsecs)
To the nearest big galaxy: 620 kpc !!

• Cosmic Distance Ladder:
◦ Distance is a key concept in astrophysics – e.g. the revolution currently underway thanks to 

ESA’s Gaia mission (measuring parallax for billions of objects with sub-milliarcsec 
precision)

◦ “Distance ladder” refers to the bootstrapping of distance measurements, from nearby stars to
the furthest edges of the observable universe. 

◦ Within solar system: light travel time.  Radar, spacecraft communication, etc.
◦ Parallax: the first rung outside the Solar system. Measured by Gaia (2nd data release) for ~1 

billion stars across ~half of the Galaxy. A revolution is underway!
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◦ Standard candles: if Luminosity L is known, then observed flux F gives distance:
F = L / 4 π d2 →  d = (L / 4  π F)1/2

Most important types:  
▪ Cepheid variables - giant pulsating stars, period varies with absolute magnitude
▪ Type Ia Supernovae – exploding stars (probably white dwarf)
▪ Neither of these are truly standard – only “standardizable” (which is almost as good)
▪ Other types (for other galaxies):

• Tully-Fischer: L ~ V2  (rotational velocity of spiral galaxies)
• Faber-Jackson: L ~  σ2  (velocity dispersion of elliptical galaxies)

◦ Hubble’s Law – for very distant Galaxies.
▪ The universe is expanding at a nearly-constant rate (more on that in 8.902). Roughly, it 

expands evenly everywhere, so a distant galaxy’s apparent velocity is v = H0 d. So, 
d = v / H0.

▪ Note that this doesn’t work for nearby galaxies like Andromeda (which is moving 
toward us due to gravity dominating over cosmic expansion).  

• The two-body problem    ← see Ch. 2 of Murray & Dermott
◦ The motion of two bodies about one another due to their mutual gravity.

▪ Planets orbiting stars
▪ Stars orbiting each other
▪ Objects orbiting white dwarf; neutron star; black hole

◦ Certain quantities can be measured very precisely, enabling precise measurements of masses
and sizes of bodies.  E.g., binary pulsars (neutron stars): masses measured to within 
10-3 Msun (~0.1%)

◦ Goal here: Go through the gravitational two-body problem with an eye on features that are 
observationally testable, and on features specific to the 1/r2 nature of gravity. Many 
“details” of the real world push us away from exact 1/r2 – e.g. physical sizes, non-spherical 
shapes, general relativity

◦ Key behavior we will use: 
▪ (1) Bodies move in elliptical trajectors (Kepler’s 1st Law)

r (φ)=
a(1−e2

)

1+ecos φ
▪ 2nd Law: Motion sweeps out equal areas in equal times:  dA/dt = ½ r2 dφ/dt = constant
▪ 3rd Law:  a3/P2 ~ (Mtot)    ← our eventual goal. P=orbital period, Mtot = total system mass
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◦ To fully describe two pointlike bodies in 3D, we need 6 position components and 6 velocity 
components.  (If they are not pointlike we need even more – in this case we use, e.g., Euler 
angles to define bodies’ orientations.)  Regardless, we need to reduce this to make things 
tractable!

◦ FIRST, go from 2 bodies to 1 … we can do this for any central force (not just 1/r2).  This 
means converting potential:  V(r1, r2)  = V(|r2 – r1|)         ← since potential depends only on 
relative position

◦ r⃗=r⃗2− r⃗1    (eq 1)

R⃗=
m1 r⃗1+m2 r⃗2

m1+m2

   (position of center of mass)

¨⃗R=0    IF  no external forces operate on the system.
◦ We can always set Rdot = 0 by choosing an intertial reference frame, and we can choose our

origin so that R = 0 too.
That means that m1 r⃗1+m2 r⃗2=0 – combining with (eq 1) above shows that

r⃗2=
r⃗

1+m2/m1

 and r⃗1=−
m2

m1

r⃗2

◦ … Which gives us the motions and velocities of both bodies in terms of the single variable 
r. So, we’ve reduced the 2-body problem to a one-body problem.
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