Chapter 24
The Hayashi Line

\We have seen that convection can occur in quite different regions of a star. In this
section we consider the limiting case of fully convective stars, i.e. stars which
are convective in the whole interior from centre to photosphere, while only the
armosphere remains radiative.

The Hayashi line (HL) is defined as the locus in the Hertzsprung—Russell
diagram of fully convective stars of given parameters (mass M and chemical
composition). Note that for each set of the parameters, such as mass or chemical
composition, there is a separate Hayashi line. These lines are located far to the right
in the Hertzsprung—Russell diagram, typically at Tor ~ 3,000. .. 5,000K, and they
are very steep, in large parts almost vertical.

From the foregoing definition one may not immediately realize the importance of
this line. However, the HL also represents a borderline between an “allowed” region
(on its left) and a “forbidden” region (on its right) in the Hertzsprung-Russell
diagram for all stars with these parameters, provided that they are in hydrostatic
equilibrium and have a fully adjusted convection. The latter means that, at any
time, the convective elements have the properties (for instance the average velocity)
required by the mixing-length theory. Changes in time of the large-scale quantities
of the stars are supposed to be slow enough for the convection to have time to adjust
to the new situation; otherwise one would have to use a theory of time-dependent
convection: Since hydrostatic and convective adjustment are very rapid, stars could
survive on the right-hand side of the HL only for a very short time.

In addition, parts of the early evolutionary tracks of certain stars may come close
to, or even coincide with, the HL. It is certainly significant for the later evolution of
stars, which is clearly reflected by observed features (e.g. the ascending branches of
the Hertzsprung—Russell diagrams of globular clusters). One may even say that the
importance of the HL is only surpassed by that of the main sequence. It is all the
more surprising that its role was not recognized until the early 1960s when the work
of Hayashi (1961) appeared. The late recognition of the HL may partly be because
its properties are derived from involved numerical calculations. In the following we
will use extreme simplifications in order to make some basic characteristics of the
HL plausible.
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24.1 Luminosity of Fully Convective Models

Let us consider the different ways in which the luminosity is coupled to the pressyre.
temperature stratification of radiative and convective stars.

For regions with radiative transport of energy, we can write the “radiative
luminosity” l g = 47r? Fpq according to (7.2) as

lag = kr/adv’ (24.1y

with the usual notation V. = dInT/d1n P and the “radiative coefficien of
conductivity”

, 16wacG T*m

rad = 3 F (24'2)

If a stratification of P and T is given, then the luminosity /.4 is ObViOUSly

determined and can be casily calculated from (24.1).
For convective transport of energy by adiabatically rising elements we can write
accordingly from (7.7) the convective luminosity as '
leon = Kk (V- Vad)g’/2 (243)

con

with the coefficient

7\
kéunﬁ (711“;) r2cpT(gP8)"/2. (24.4)
Here we have made use of the hydrostatic equation and the definition (6.8) of the
pressure scale height. The mixing length £, was defined in Sect.7.1.

In principle, we can again assume the luminosity to be determined using (24.3)
for a given P—T stratification. In practice, however, we would never be able to
calculate /.o, from this equation for the stellar interior, since it would require the
knowledge of the value of V with inaccessible accuracy. The point is that [, is
not proportional to the gradient V itself but rather to a power of the excess over
the adiabatic gradient, V—V,4, which may be as small as 10~ for very effective
convection (see Sect.7.3). Therefore the convective conductivity k., must be very
high, since large luminosities /.o, are carried. This may be looked at in another way:
by solving (24.3) for V and writing

V = Vu(l +¢),

(24.5)

we see that the luminosity influences the 7' gradient only through the tiny correction

p(~ 1077):
] 2/3
con - i
3= _ (24:6)
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ily neglects this correction in the case of effective convection and

V = Vi, 4.7)

at to assuming an infinite conductivity k(.. Then de facto the
We can wypled from the T— P structure.

the luminosity of a fully convective star, we have to appeal to the
lrag = kg V, ¢ the gradient is sufficiently non-adiabatic. This is the radiative
1 layer immediately below where the convection is ineffective,

notati

onV = g T/dnp , nd . sradiabatic. We have seen that then the transport of energy is
the adiagye (in spite of violent convective motions), and we can again use
kr/ad = 167r\acG T4 :gument'ation one ar.rives. at the statement thaif the structl}re of the
0 of p 3 %P determines the luminosity qf a fully convective star. This means,
and T s gijye |, that such stars are very sensitive to all influences and uncertainties

att; be easily calculated ;‘11-0 Iglen the Iuminosjty poundary.
(7.‘1711)8512rt of energy by g diabfti; ;1)1 . the energy prosiuction is prescribed, one would rather say that the
convective Iuminosity as Y rising ejeme to adjust to this value of L (for this point of view, see Sect. 24.5).

logr =
con = CIOH(V — Vad)3/2

iple Description of the Hayashi Line

o ( L, ) 2
con = | —— rZC 7
. V2 \H, pT(oPg)\/2, ive some typical properties of the HL analytically, we shall use an
of the hydrostatic g e model for fully convective stars (Further refinements of the picture,

LTl = uati
he Mixing quation and the definige, would not be worth the large additional complications involved.).

;I:igf:i? assume the IUHXiZ;(:fItlsdbin Sect. 7. jzen that nearly all of the interior part of convective stars has an
is equat(’)n. In Practice, however. € determipification, such that d In T/dInP = Vy. We shall' assume that
Y VIOH. fO{f the stel]ar interj(;rwe' Wol}ld nélation between P and T. holfis. for the whole interlqr up to the
B ad with InaccessibJe accur, > Since jt wol.e. we neglect the superadiabaticity in the range immediately below

V—.Vent V.ltself but rather ¢ acy. The pojpre. We also neglect the depression of Vg in those regions near the
' ad, Which may b © a power of ;¢ H and He are partially ionized (see Figs. 11.2 and 14.1). We thus

"3). The © as smaj
. refore ¢ > Small ag 107 ’s interi =
Osities / he convective cong forie Vg to be constant throughout the star’s interior, say Vad 0.4,

length ¢

m

and con AT Carried, Thig m uctivity kKl value for a fully ionized ideal gas. With these simplifications we
Writing 2y be looked at joduce errors in the P—T stratification. However, they will be nearly
neighbouring models, and we can hope to obtain at least the correct

V= Vaa(1 + o), iehaviour.

1ave for the whole interior the simple P—T relation

P =CT'"", (24.8)

— / 2/3
= [ # _ ' is polytropic with an index n=1/V, — 1=3/2, and we can use
ad /Cc'on results for such stars (see Chap. 19). The constant C is related to the
constant K defined in (19.3). With P = RoT/u, one finds C =
1+n K and C are constant only within one model, but vary from star




to star, which means that we do not have a mass-radius relation. From ( 19,9) g
(19.19) it follows that '
K ~ Qé/BA—z ~ Qi/3R2 ~ MI/SR, 24%

so that
C =C'RM172, 24,10y

where the constant C” is known for given 7 and 73

Relation (24.8) is now assumed to hold as far as the photosphere, where the
optical depth 7 = 2/3, P = Py, T = Toyr,r = R, andm = M. Above this poi
we suppose to have a radiative atmosphere with a simple absorption law of the form

K= IC()PaTb. {24‘1”

Integration of the hydrostatic equation through the atmosphere yields the photo.
spheric pressure [cf. (11.13), where & is replaced by (24.11)] as

M =T
Py = constant (EE Te;fb) . (24,12

We now fit this to the interior solution by setting P = Py, T = T, in (248)
and then eliminating P, with (24.12). For given values of M and 4 this yields g
relation between R and Te, or between R and L, since I, ~ R2T%. Thus, any
value of R corresponds to a certain point in the Hertzsprung—Russell diagram. The
interior solutions form a one-dimensional manifold, since the constant C containg
the free parameter R for given M [and given u, see (24.10)]. In the Hertzsprung-
Russell diagram this is reflected by a one-dimensional manifold of points defining
the Hayashi line. ‘

The fitting procedure is illustrated in Fig.24.1. Each interior solution of the form
(24.8) with n = 3/2 is represented in this diagram by a straight line:

3 1
IgT = 0.41g P +O.4(§lgR+§1gM—lgC’). (24.13)

For fixed values of M and y, each of these lines is characterized by a value of R.
The atmospheric solutions (24.12) are another set of straight lines in Fig. 24.1:

(a+1)lg Py =1gM —21g R — b1g Tug + constant. (24.14)

The intersection of a line of the first set with a line of the second set, both witl;
the same value of R, fixes the corresponding value of Tug (and of Py). From R and
Tess we have L, i.e. a point in the Hertzsprung—Russell diagram. We then obtain thé
Hayashi line by a continuous variation of R. 3
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The formalism for this procedure, as described, yields immediately an equation
for the Hayashi line in the Hertzsprung—Russell diagram:

lgTer = Alg L 4+ Blg M + constant (24.15)
with the coefficients
0.75a —0.25 0.5a + 1.5
— — = o 24.
b+55+15 b+55a+15 (24.16)

We now need typical values for the exponents a and b in the atmospheric absorption
law (24.11). An important property of fully convective stars can immediately be
concluded from the discussion in Sect. 11.3: such stars must have very low values
of Tesr, i.€. the Hayashi line must be far to the right in the Hertzsprung—Russell
diagram. For atmospheres this means that in most parts 7 < 5 x 10° K, and H™
absorption will provide the dominant contribution to «. If hydrogen is essentially
neutral, the free electrons necessary for the formation of H™ ions are provided by
the heavier elements (see Sect. 17.5). A very rough interpolation givesa ~ 1,b ~ 3.
With these values (24.16) yields the coefficients

A =005 B=02. 24.17)

According to (24.15), the slope of the Hayashi line in the Hertzsprung—Russell
diagram is d1g L/d1g Tor = 1/A. Since A < 1, we conclude that the Hayashi
line must be very steep. The value of B = 31g To/d1g M means that the Hayashi
line shifts slightly to the left in the Hertzsprung—Russell diagram for increasing M.
Thes¢ qualitative predictions, although derived from very crude assumptions, are
fully supported by the numerical results (see Fig. 24.3).
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Let us consider once more the reason for the steepness of the HL. A

Lt
photosphere the pressures Py of the interior solution (24.8), (24:10) ang Py, :L;
the atmospheric solution (24.12) vary for constant M as )
2.5 G
Ta T,*
Py~ 2505, Poa~ ——, (24,
R3/2 R A8)
First of all, we expect a very steep HL for small positive values of a. In fact, for

a = 1/3, Py and Py, have the same dependence on R; then 7. does not vary with
R (and L), and the line is vertical. If this is not quite fulfilled, the fit Py = B,
requires the smaller variations of T with varying R, the more different the fyg
exponents of Tegr in (24.18) are, i.e. the larger b.

The basic approximations made were to neglect the depression of Vaa in jon-
ization zones and to ignore superadiabatic convection. The dotted line in Fig. 24 |
indicates how these effects change the P—T structure relative to a simple polytrope,
One sees that they tend to increase the effective temperature. The precise value of
Tetr obviously depends on the detailed structure of the outermost envelope. The
extension and the depth of the ionization zones and the superadiabatic layers change
systematically with L. This has the consequence that, in better approximations, the
coefficient A4 in (24.15) changes sign at L ~ L©. It is positive for smaller L, and
negative for larger L, so that the HL is convex relative to the main sequence.

Another important conclusion is that the whole uncertainty which remained in
the mixing-length theory of ineffective convection must occur as a corfesponding
uncertainty in the precise value of Ty for the HL.

Finally, we note that the chemical composition enters into the position of the HL
in two ways. The interior is affected, since the polytropic constant C depends on
via C’ [see (24.10)], and the outer layers are particularly affected via the opacity k.

24.3 The Neighbourhood of the Hayashi Line
and the Forbidden Region

We now consider stars in hydrostatic equilibrium that are close to, but not exactly
on, their HL. Certainly the stars cannot be fully convective with an adiabatic
interior (otherwise they would be on the HL). Their interior is then no longer a
simple polytrope. They do not even have to be chemically homogeneous, since
they are not fully mixed by the turbulent motions. We must therefore expect that an
analytical treatment will be much more complicated. We will nevertheless try to give
some simple arguments which may help to make the numerical results plausible.
In the following, we treat models with a fixed value of M and the same chemical
composition (at least in their outer layers).
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he steepness of the HL. At An important indication can be obtained from the discussion of the envelope
ution (24.8), (24.10) and Pm\;,ntegratlons in Sect. 11.3. When integrating inwards into models with different Tog

M as (but with the same parameters M and p and, say, the same L), we will reach a

radiative region the earlier, the larger T.f . In other words, in models left of the HL
T ’ we will encounter a radiative region before reaching the centre. In these regions, the
ef; . (24 yradient V < Vag. Let us consider some average V obtained by averaging over the
R whole interior (where we again neglect the complications in the outermost parts of

ihe envelope). On the HL we have V. = Vyq. In a model to the left of the HL the
ative part decreases the average value such that V<V ad- This suggests that we
uld have to allow V < Va4 in models to the right of the HL.

In order to prove this we treat models with a constant gradient V = V in the
interior and vary V slightly around V. We then have again polytropic stars with

ct the depression of Vyq ini slightly different n (around 3/2). The interior solution is written as
> I Vad 10
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12 R, the more different the||

P =C,T'", (24.19)
“where V. = (1 + n)™! and, similarly to (24.10),
Cy = Cou ™" "M R"3, (24.20)

From now on we measure R and M in solar units. Then

enters into the position of the

ytropic constant C depends o We extend relation (24.19) to the photosphere (P = Py, T' = T.), where we again

wularly affected via the opacigeliminate Py by (24.12) and R by the relation R = ¢, LV/2T 22, This gives the locus
in the Hertzsprung—Russell diagram. The factor of proportionality in (24.12) may
be called ¢;. Choosing for simplicity a = 1, b = 3 in the opacity law, we obtain

hi Line gl =orlgL +onlgM +onlgp +aalgCl + aslger +aglger,  (24.22)

where the coefficients depend on n:

that are close to, but not exi _ 2-n o = 2n —1 o = 2(1 +n)

ly convective with an adia o= 13—2n° 2T 3o’ . 13 25"

heir interior is then no long )

chemically homogeneous, § @ = 3T 05 =0, O = 2a;. (24.23)

We must therefore expect thi
1. We will nevertheless try togfThe a; do not vary too much with small deviations of 7 from 3/2. This means, for
the numerical results plausiiexample, since oy determines the slope, lines of neighbouring values of # are nearly
ue of M and the same chemiparallel to the HL. Without loss of generality, we may consider particular models
on and close to the HL. with L = M = = 1. The variation of ig Teg with n
is then only due to the variation of the last three terms in (24.22). One finds that
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Fig. 24.2 (a) In the Hertzsprung—Russell diagram, the Hayashi line (n = 3/2; heavy [ine)
is indicated, together with some neighbouring lines for interior polytropes with 11 > 3 /2 and
< 3/2. (b) The same as Fig. 24.1 but with three different polytropic interior solutions for the same
value of R

01g Te/0n > 0: the stars move to the right in the Hertzsprung—Russell diagram
with decreasing # (i.e. increasing V)

Thus, we have to expect the following situation (see Fig.24.2): left of the HL
we have V < V,4 and some part of the model is radiative. On the HL, the model
is fully convective with vV = Vad. Models to the right of the HL should have
V > V,q4, which means that they should have a superadiabatic stratification in their
very interior (aside from the outermost zone of ineffective convection).

The mixing-length theory has shown that a negligibly small excess of V over Vi
suffices in order to transport any reasonable luminosity in the deep interior of stars.
Then, what happens with a star that by some arbitrary means (e.g. initial conditions)
has been brought to a place to the right of the HL, such that some region in its
deep interior has remarkably large values of V — V,q > 07 The results are large
convective velocities veony ~ (V — Vag)'/? and corresponding convective fluxes
[cf. (24.3)]. These cool the interior and heat the upper layers rapidly until the
gradient is lowered to V &2 V4 and the star has moved to the HL. This will happen
within the short timescale for the adjustment of convection.

Another possibility for a star being situated to the right of its HL. is, of course, that
it is not in hydrostatic equilibrium (which is assumed for the interior solution). But
a deviation from this equilibrium will be removed in the timescale for hydrostatic
adjustment, which is even shorter.

Therefore the HL is in fact a borderline between an “allowed” region (leff)
and a “forbidden” region (right) for stars of given M and composition that are if
hydrostatic equilibrium and have a fully adjusted convection.
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24 4 Numerical Results

Fig. 24.3 Top: The position
of Hayashi lines for. stars of
u = 0.8Mo but different
composition. The helium ’
content i8 always 9‘.‘245, while
7 varies from .19 to 0.02.
Bottoni: Pre-main-sequence
evolution along the Hayasm
ine to the zero-age main
sequence for stars between
0.l and 1.1 Mo apq a
solar-like compos1.t10n (Data
courtesy S: Cassisi)
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24.4  Numerical Results

There are many results available giving the position of Hayashi lines for stars of
widely ranging mass and chemical composition and for different assumptions in the
convection theory. The latter concerns in particular the ratio of mixing length to
pressure scale height used for calculating the superadiabatic envelope.

Figure 24.3 shows typical results of calculations for stellar masses of up to
1.1 Mg. One sees that indeed the HLs plotted here are very steep, the exact slope
depending mainly on L. The dependence on M (lower panel) is roughly given by
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Fig. 24.4 The Hayashi line
for M = 5M¢ with two
different assumptions for the
ratio of mixing length to
pressure scale height (After
Henyey et al. 1965)

.f 4 _—L—‘—I—-——..
3.6

< 19 Tor

0lg Tess/d1g M =~ 0.1, ie. we find the expected weak increase of Tegr with M [of
(24.22)]. The dependence on chemical composition (top panel) is, however, very
different from that given by (24.23), which yields a3 = 0.5. It predicts only a slight
decrease in Tuy, when increasing the metallicity from 10™* to 0.02, as in the left
panel of the figure. In that case Ig 4 changes from —0.229 to —0.226, and Ig Ty
should increase by a2 0.002. The numerical result instead is d1g Tere/0 1g o ~ ~26,
i.e. with increasing molecular weight Ty is strongly reduced!

As mentioned earlier the chemical composition enters in several ways. A very
important factor certainly is the opacity in the atmosphere. For 7o <'5, 000K the
dominant absorption is due to H™, and « then is proportional to the electron pressure,
which in turn is proportional to the abundance of the easily tonized metals. It turns
out that a decrease of their abundance (usually comprised in Z) by a factor 10 shiffs
the HL. by Alg 7o &~ +40.05 to the left in the Hertzsprung—Russell diagram. This
explains the large effect of changing the composition seen in Fig. 24.3. However,
Fig. 24.4 shows that roughly the same shift can be obtained by the comparatively
small increase of /,/Hp from 1 to 1.5. The uncertainty of the convection theory,
therefore, severely limits our knowledge of the HL.

The typical S-shape of the numerical Hayashi tracks in Fig. 24.3 are the resulf
of the sign change of coefficient 4 in (24.15), which was mentioned at the end of
Sect.24.2. At the lowest end of the Hayashi tracks the models develop a radiative
core and begin to bend back to the main sequence, where they end once nuclear
burning has started at the centre, supplying the energy radiated from the surface.
This is the situation discussed in Sect. 24.3.

Thus, the HLs are far away from the main sequence in the upper part of the
diagram, and approach it in the lower part. This fact will turn out to influence the
evolutionary tracks of stars of different M . Recall that the main-sequence stars Wef
found to be fully convective for M < 0.25M¢ (see Sect. 22.3). This obviously
means that the corresponding Hayashi lines cross the main sequence there.

S»Z2=
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2.5 Limitations for Fully Convective Models

n order to describe the HL, we have considered models for which the convection
as postulated to reach from centre to surface. This provided a polytropic interior
v‘t/ructure with typical decoupling from the luminosity. We have not yet asked
fyhether the physical situation will in fact allow the onset of convection throughout

the star. This depends on the distribution of the energy sources.
According to the Schwarzschild criterion (6.13), a chemically homogeneous

Jayer will be convective if

Vet 2 Vaa, (24.24)

where the radiative gradient [see (5.28)] is

Kl P

Viad ~ T (24.25)
If the energy sources were completely arbitrary, we could choose their distribution
so that (24.24) is violated at some point and the model could not be fully convective.
A trivial example would be a central core without any sources, with the result that
there [ = 0, i.e Viag = 0. Then the core must be radiative. On the other hand,
we have the best chance of finding convection throughout a star of given L if the
sources are highly concentrated towards the centre (in the extreme: a point source),
which gives almost [ = L everywhere.

We consider a contracting polytrope (see Sect.20.3) without nuclear energy
sources, which is of interest for early stellar evolution. According to (20.41) the
energy generation rate is then only proportional to T, which means a rather weak
central concentration. For the sake of simplicity we even go a step further and
assume constant energy sources with

% = ~ALZ = constant. (24.26)

We again use the opacity law (24.11) and the polytropic relation (24.8) withn = 1.5
(corresponding to V = V,q = 0.4). Equation (24.25) then gives

L
Vrad ~ _M_Cl-i-a Tb—4+2.5(1+a). (24'27)

For a typical Kramers opacity with a = 1,5 = —4.5 this becomes Vg ~ T35,
Indeed, for all reasonable interior opacities, V¢ has a minimum at the centre and
increases outwards. Therefore the centre is the first point in a fully convective star
Where V.4 drops below V4 (and a radiative region starts to develop) if L decreases
below a minimum value / ——

The constant C depends on M and R as given by (24.10),and T ~ T, ~ M/R
after (20.24). Introducing this into (24.27) we obtain
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Vrad - LMb—5+2(l+a)R_b+4_4(l+a). |24.28'|

Letus againseta = 1, b = —4.5, which gives

Viaa ~ LM 3R, (24.29)

For models on the HL, the effective temperatures vary only a very little and
simply take R ~ L/2. Then,

Viad ~ L'P M3, '34.30}

For any given value of M the luminosity reaches Ly, if the central value of Vi
has dropped to 0.4. According to (24.30), Ly depends on M as

Lupin ~ M**. (24,31}

This minimum luminosity (down to which models of the specified type on the
HL remain fully convective) decreases strongly with M. The decrease is.in fag
steeper than that given by the M — L relation of the main sequence. This provides
the possibility that the HL for very small M can cross the main sequence withouy
reaching L. , ‘

Note, however, that strictly speaking a “minimum luminosity” always refers tog
fixed distribution of the energy sources.




