
IsoLATEing: Identifying Counterfactual-Specific

Treatment Effects with Cross-Stratum Comparisons∗

Peter Hull†

December 2015

Abstract

Instrumental variables (IV) estimates of causal effects can be difficult to
interpret when the counterfactual to treatment mixes multiple alternatives.
I explore identification of multiple counterfactual-specific local average treat-
ment effects from a single quasi-experiment using interactions of an instrument
with stratifying controls. I derive the general form of such IV estimands and
establish identification under mean-independence of complier treatment effects
with respect to the stratification. Under weaker conditional independence as-
sumptions, identification is achieved with a novel non-parametric weighting
approach. I use this framework to estimate the returns to GED certification
in a sample that includes individuals who would otherwise obtain a traditional
high school diploma as well as those who would otherwise drop out. The the-
oretical results may also offer a strategy to adjust for endogenous attrition in
randomized control trials; I illustrate this through a re-analysis of the Oregon
Health Insurance Experiment.
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1 Introduction

What are the labor market returns to passing a high school equivalency test, such as the U.S.

General Educational Development (GED) exam? As with many economic questions, a likely answer

is “it depends.” In recent years the inherent heterogeneity of causal effects has become a central

consideration in applied research. In a seminal contribution, Imbens and Angrist (1994) show

that an instrumental variables (IV) regression on a single binary treatment variable may estimate

average causal effects for “compliers” – those who are induced into treatment by receipt of the

instrument. IV identification of these local average treatment effects (LATEs) is given by a binary

instrument that is as good as randomly assigned, monotone in its effect on treatment receipt, and

excludable from potential outcome realizations.

When treatment effects vary, it is of natural interest to characterize their heterogeneity. A

straightforward characterization stratifies individuals along a dimension that is unaffected by and

independent of the instrument. When the Imbens and Angrist (1994) assumptions hold within

such strata, stratum-specific LATEs are identified by conditional IV regressions. For example, in a

randomized trial in which offers for a particular program are assigned by lottery, stratification on

pre-randomization controls can reveal differential effects of the program for compliers with different

baseline characteristics.

Often, however, the most important dimensions of heterogeneity are not directly revealed by

a baseline stratification. Suppose some individuals are caused to take the GED by a plausibly

exogenous decrease in passing standards and subsequently earn different wages in adulthood. Such

compliers may be drawn from meaningfully different counterfactual levels of education: for some

the alternative to the GED may be to drop out of high school, while others may see an easier GED

as a lower-cost substitute to a high school diploma. Under the LATE assumptions, an IV regression

with a single GED treatment channel identifies a causally-interpretable weighted average of effects

for these two types of individuals, but this parameter may be difficult to interpret economically.

Namely, if labor markets tend to reward workers for higher levels of educational achievement,

the overall LATE may mix together potentially large positive and negative effects. Except in

very special situations, baseline measures are unlikely to provide enough information to perfectly

separate individuals by their counterfactual educational attainment.

In some settings it may be difficult even to give causal interpretation to effects averaged over



different treatment counterfactuals. In an extreme case, the instrument may move compliers from

a state in which outcomes, measured by a survey or otherwise voluntarily provided, are completely

unobserved to the researcher. This leads to the well-known problem of differential attrition: re-

stricting analyses to individuals with ex post valid outcomes is likely to introduce selection bias

into an otherwise gold-standard randomized design, while IV estimates in the complete sample

do not identify meaningful causal parameters. Here isolating effects for a subset of compliers –

those who would contribute outcomes even when untreated – is of first-order concern, yet as in the

GED example potential attritors are unlikely to be perfectly identified and removed by baseline

characteristics alone.

In this paper I explore ways in which baseline stratifications, while not able to completely

separate different complier groups, may nevertheless be useful for disentangling treatment effects by

their counterfactual state. The basic strategy is intuitive: if there exists a stratification across which

the composition of compliers with different alternatives varies but, on average, causal effects do

not, differences in stratum-specific reduced-form effects may be attributed to differences in complier

shares in such a way that identifies a LATE for treatment relative to each counterfactual. This

intuition motivates an IV regression with multiple endogenous variables identified by interactions of

the instrument with stratum indicators. The requirement that average complier treatment effects

be mean-independent of the stratification may be too strong in practice, however. In general I show

that IV can informs bounds on particular linear combinations of counterfactual-specific effects, and

that the approach may be generalized to settings where average cross-stratum heterogeneity is

captured by a rich set of controls. In this case, I propose a non-parametric weighting estimator to

identify the multiple LATEs.

Interacting an instrument with covariates to identify coefficients on multiple endogenous vari-

ables has a long history in economics; the results here extend the usual constant-effects framework

to a minimal set of assumptions that allow for treatment effect heterogeneity.1 In two closely

related settings, Behaghel, Crepon, and Gurgand (2013) consider non-parametric identification

of multiple causal channels given an independently-assigned instrument for each channel, while

Kirkebøen, Leuven, and Mogstad (2016) show that counterfactual-specific LATEs may be recov-

ered by IV regression when a researcher is able to directly observe and stratify on each individual’s
1Wooldridge (2002) discusses identification of simultaneous equation models by nonlinear transformations of the

instrument and predetermined covariates. Abdulkadiroğlu et al. (2016) and Cohodes (2015) are two recent examples
of this approach in a treatment effects framework.
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most-preferred alternative to treatment. This paper offers an alternative approach for when only

a single quasi-experiment is available and the counterfactual treatment status of each individual is

unknown. All three techniques fit within the general principal stratification framework of Frangakis

and Rubin (2002), which can be thought to extend the three behavioral groups – always-takers,

never-takers, and compliers – of the original LATE theorem to allow for multiple causal channels.2

Finally, in an extension the IV results I propose using covariates and a non-parametric weighting

scheme to account for heterogeneity in average causal effects, an approach similar to that of An-

grist and Fernandez-Val (2013) and Angrist and Rokkanen (2016) for LATE extrapolation across

different quasi-experiments and within regression discontinuity designs, respectively.

I develop the main theoretical results in the context of the motivating GED example and

illustrate IV identification in a selection model similar to the one Heckman and Urzúa (2010)

use to demonstrate structural identification of counterfactual-specific GED returns. I then apply

the theory to two settings. First, I leverage a plausibly exogenous policy change that differentially

affected GED passing standards in five U.S. states to replicate the findings of Heckman et al. (2012)

that (1) an easier GED exam decreases high school completion rates and (2) non-GED students that

are older at the time of the change are more likely to drop out than to finish high school. Leveraging

an assumption that an individual’s age in the year of reform is not systematically related to her

returns-to-schooling profile in adulthood, I use a cohort stratification and instrumented difference-

in-differences to jointly estimate average GED wage gains for those who would otherwise drop out

from high school and those who would otherwise graduate. Although the extent of identifying

variation is relatively modest in this application and the estimation is correspondingly imprecise,

the resulting point estimates are remarkably similar to the parameters of Heckman and Urzúa’s

structural model.

Finally, I turn to the issue of non-random attrition in randomized control trials. Rather than

restricting analyses to the subset of individuals who contribute outcomes ex post, I propose using

a pre-randomization stratification to isolate causal effects for compliers that would always provide

survey outcomes. One promising choice of strata uses the common surveying practice of limited

intensive follow-up. Since in practice second-round intensive surveying is often random, this strat-

ification is likely uncorrelated with the distribution of complier treatment effects. Moreover to
2In another example of this framework, Feller et al. (2014) estimate differential effects of early childhood inter-

ventions across alternative care programs using a parametric assumption on the distribution of potential outcomes.
Kline and Walters (2015) and Hull (2016) conduct related analysis using semi-parametric Roy selection models.
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the extent further follow-up attempts are successful, average response rates will vary by surveying

intensity, generating cross-stratum variation in complier shares. I use this logic to estimate the

effects of Medicaid enrollment from the Oregon Health Insurance Experiment. Despite evidence

of significant differential attrition, the results confirm robustness of the original Finkelstein et al.

(2012) estimates for a variety of financial, health, and medical care outcomes.

2 Theoretical Framework

For each individual we observe a Bernoulli instrument Z, an outcome Y, a dummy covariate X, and

a variable T which can equal either 1, a, or b. Here T = 1 indicates an individual in treatment,

while someone with T = a or T = b is said to be in one of two possible untreated states, or

“fallbacks.”3 Indicators for being in a fallback state are given by A and B, respectively; treatment

is then indicated by D = 1− A− B. As a stylized example, we may imagine Z indicates a quasi-

experimental reduction in a student’s GED passing standards, Y denotes her adult earnings, and

D = 1 if the individual becomes GED-certified. Uncertified individuals may either be high school

dropouts (A = 1) or have a traditional high school diploma (B = 1).

As in Rubin (1974), causal effects are defined in terms of potential outcomes. Potential treat-

ment and fallback states when Z = z ∈ {0, 1} are written Dz, Az, and Bz, while Yzt denotes

potential realizations of Y when the instrument takes on the value z and the treatment status is

t ∈ {1, a, b}. Potential outcomes and assignments are assumed to be independent across individuals,

satisfying the usual stable unit treatment value assumption.

We start with the following three conditions on these latent variables:

Assumption 1 Independence: ((Yz1, Yza, Yzb, Az, Bz)z=0,1) is independent of Z, conditional on X

Assumption 2 Exclusion: Pr(Y0t = Y1t|X) = 1, for each t ∈ {1, a, b}

Assumption 3 Monotonicity: Pr(A1 ≤ A0|X) = Pr(B1 ≤ B0|X) = 1.

In the GED example, Assumption 1 states that the variation in passing standards captured by Z

is as good as randomly assigned with respect to potential outcomes, within strata defined by X.
3It is straightforward to state the following assumptions and prove identification results in the general case of n

untreated states and n distinct elements in the support of X. I work through the specific case where n = 2 for ease
of notation and exposition.
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Conditional independence is sufficient for identification of the reduced-form causal effects of Z on

Y, A, and B. Interpretation of the earnings effect by way of schooling T requires an exclusion

restriction (Assumption 2), which defines the single-indexed potential outcomes Yt = Yzt for each

t. Finally, we assume the effect of the instrument on treatment status is monotone, in the sense

that no individual is induced to either untreated state by Z. Monotonicity is central to LATE

identification and is naturally assumed in many contexts; in the stylized example it implies that no

student is led to drop out or complete high school when it is easier to obtain a GED, which may

be thought of as a revealed preference restriction.4

When Assumption 3 holds we may categorize individuals as one of four types by their potential

treatment and fallback states:

D1 = 0 D1 = 1

D0 = 0 1. Never-takers

(A1 = 1, A0 = 1 B1 = 0, and B0 = 0, or

A1 = 0, A0 = 0, B1 = 1, and B0 = 1)

2. a-compliers

(A1 = 0, A0 = 1, B1 = 0, and B0 = 0)

3. b-compliers

(A1 = 0, A0 = 0, B1 = 0, and B0 = 1)

D0 = 1 4. Always-takers

(A1 = 0, A0 = 0, B1 = 0, and B0 = 0)

In the GED example, never-takers are those who would either always drop out of high school or

always obtain a traditional diploma, while always-takers are students that obtain a GED even

when it is difficult to pass. Compliers are individuals who switch to a GED when the test becomes

easier, and may either drop out of (a-compliers) or complete high school (b-compliers) when passing

standards increase. Note that a-compliers are those with A1 < A0 while b-compliers have B1 < B0.

Although stated with expanded notation, it is straightforward to verify that Assumptions 1-3

are equivalent to those typically used to analyze causal effects with a single treatment channel.

The payoff to the more elaborate setup is that we can now write the conditional LATE identified
4Students who would have otherwise completed high school may be led to attempt the GED when passing re-

quirements are low but not actually pass and perhaps drop out instead. If passing forecast errors were systematically
related to potential outcomes this may violate Assumption 3, though idiosyncratic monotonicity violations may be
accommodated by extensions along the lines of de Chaisemartin (2015) in the single-treatment case.
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by such analyses as an average of two fallback-specific LATEs for each of the now-differentiated

a-complier and b-complier sub-populations. Specifically, we have the following:

Lemma 1 : Consider the IV regression of Y on D, instrumented by Z and conditional on X. Sup-

pose Pr(D1 > D0|X) 6= 0. Then under Assumptions 1-3 the endogenous regressor coefficient

identifies

E[Y1 − Ya|A1 < A0, X]ω(X) + E[Y1 − Yb|B1 < B0, X](1− ω(X)), (1)

where

ω(X) = Pr(A1 < A0|X)
Pr(A1 < A0|X) + Pr(B1 < B0|X) . (2)

The proof of Lemma 1, derived in the appendix along with all other propositions, uses the

equivalence of Assumptions 1-3 and the assumptions of Imbens and Angrist (1994) in order to write

the conditional IV estimand as a local average treatment effect. With two observable fallbacks to

treatment, this LATE may in turn be written as the weighted average of average causal effects of

the two complier groups, with weights equal to their population shares among all compliers. A

typical IV regression with a single GED treatment channel weights together the LATE for students

with a dropout counterfactual and the LATE for students who would have otherwise completed

high school. Here we are interested in extracting these two causal effects from the overall average.

Note that while the model has been formulated in terms of multiple fallback states, we could

equivalently write Assumption 3 with the inequalities reversed and prove Lemma 1 and subsequent

results with A and B corresponding to distinct treatment states.5 In this context it is worth

noting that while Assumptions 1-3 ensure excludability of Z from Y given D (since Z is assumed

excludable from Y given T , and Assumption 3 rules out the remaining possibility of Z shifting

individuals across fallback states when D = 0), they do not rule out violations of exclusion when

either A or B is considered in isolation. This is because an individual not observed in state a may

still be induced into state b by the instrument if she is a b-complier, and similarly for b. Thus

the theory derived here can also be thought of as addressing cases of known exclusion restriction

violations, where the instrument affects untreated (from the perspective of one state) individuals
5Identification with multiple treatment states is quite similar to the literature on multiple “mediators.” See Reardon

and Raudenbush (2013) for related theory and Kling, Liebman, and Katz (2007) and Pinto (2015) for applications
with the Moving to Opportunity experiment
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by shifting them to another observable treatment state.6

The multiple-treatment version of Assumption 1-3 is closely related to the multiple “encourage-

ment design” of Behaghel, Crepon, and Gurgand (2013), who consider two treatment states as well

as an instrument that takes on three values, Z̃ ∈ {1, a, b}. With Z = 1[Z̃ = 1] and the underlying

realization of the multi-valued instrument attributed to individual heterogeneity, Assumptions 1-3

are implied by their framework.7 Under similar assumptions, Kirkebøen, Leuven, and Mogstad

(2016) discuss identification of fallback-specific LATEs when the econometrician is able to measure

A0 and B0 for all individuals directly. The identification results derived here can be thought of as

an alternative method for the more general situation in which only one valid instrument for treat-

ment is available and where A0 and B0 (e.g. each student’s potential schooling level when they not

GED-certified) are not observed. Instead the current approach requires only a stratification that

predicts some variation in the average unobserved counterfactual across the population. I next turn

to the formal identification results.

2.1 IV Identification

Intuition for the main theoretical result can be seen in equations (1) and (2). Independence of

the instrument ensures identification of the conditional first stage causal effect of Z on 1 − A

and on 1 − B, and the monotonicity assumption implies these are equal to Pr(A1 < A0|X) and

Pr(B1 < B0|X), respectively. Thus the complier shares underlying the weighting scheme in Lemma

1 are identified. If the two counterfactual-specific LATEs are the same across the strata, equations

(1) and (2) then constitute a system of two equations (one for each stratum) and two unknowns (the

two counterfactual-specific LATEs), and IV identification is achieved as long as the two equations

are not perfectly collinear. An IV regression with two endogenous variables instrumented by Z and

the interaction of Z with X exactly implements this intuition.
6The multiple-treatment analogue of Assumptions 1-3 can also be placed in the ordered treatment model studied

by Angrist and Imbens (1995). Namely, with S = A+ 2B and potentials defined accordingly, the ordered treatment
setting may be modeled by Assumption 1 and 2 and a modified Assumption 3 that only requires Pr(S1 ≥ S0|X) =
Pr(A1+2B1 ≥ A0+2B0|X) = 1 rather than the stronger condition that Pr(A1 ≥ A0|X) = 1 and Pr(B1 ≥ B0|X) = 1.

7The present approach to the multiple-treatment setting uses an IV regression with two instruments and two
endogenous variables, as does Behaghel, Crepon, and Gurgand (2013). However the instruments proposed here will
not satisfy their identifying assumptions in general, so that the approach is indeed distinct. In the special case where
a-compliers and b-compliers are completely separated by the stratification the Behaghel, Crepon, and Gurgand (2013)
assumptions will be satisfied, and Proposition 1 may be proved in a manner similar to their result. This case is quite
far afield from the main motivation of this paper, however, as it would in fact involve a baseline stratification that
perfectly distinguishes the two causal channels of interest, as in Kirkebøen, Leuven, and Mogstad (2016).

7



Formally, consider the just-identified, two-treatment IV system:

Y = µy + α(1−A) + β(1−B) + γyX + εy (3)

1−A = µa + πaZ + ρa(Z ×X) + γaX + εa (4)

1−B = µb + πbZ + ρb(Z ×X) + γbX + εb. (5)

where E[(εy, εa, εb)′|Z,X] = 0. To economize on notation, define

α(x) = E[Y1 − Ya|A1 < A0, X = x] (6)

β(x) = E[Y1 − Yb|B1 < B0, X = x] (7)

and

fa(x) = Pr(A1 < A0|X = x) (8)

fb(x) = Pr(B1 < B0|X = x). (9)

Here α(x) and β(x) are stratum- and counterfactual-specific LATEs, while fa(x) and fb(x) denote

the corresponding shares of a- and b-compliers. We then have the following result:

Proposition 1 : Suppose the matrix of complier shares,

Π =

Pr(A1 < A0|X = 0) Pr(B1 < B0|X = 0)

Pr(A1 < A0|X = 1) Pr(B1 < B0|X = 1)

 , (10)

is nonsingular. Then under Assumptions 1-3 the endogenous regressor coefficients in equation

(3) identify:

α = ωα(0) + (1− ω)α(1) + δa(β(0)− β(1)) (11)

β = (1− ω)β(0) + ωβ(1) + δb(α(0)− α(1)), (12)

where

ω =
(

1− fa(1)
fb(1)/

fa(0)
fb(0)

)−1
(13)

δa =
(
fa(0)
fb(0) −

fa(1)
fb(1)

)−1
(14)

δb =
(
fb(0)
fa(0) −

fb(1)
fa(1)

)−1
. (15)
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Proposition 1 extends the Imbens and Angrist (1994) interpretation of IV with heterogeneous

effects to regressions on multiple endogenous variables. This is achieved by interacting a single

instrument with a stratification that induces variation in the composition of a- and b-compliers (so

that the first-stage matrix Π is invertible and the IV rank requirement is satisfied). Although sim-

ilarly derived, equations (11)-(15) are, however, not as easily interpreted as in the single-treatment

case. For example, the IV coefficient on 1 − A is a weighted average of average causal effects

from a-compliers in the two strata plus a “bias” term reflecting the gap in average causal ef-

fects of b-compliers across strata. Since the coefficient on this term is identified by components

of the first stage matrix Π, with a bounded outcome one could identify bounds on the average

ωα(0)+(1−ω)α(1), with more narrow intervals given by stratifications where the ratio fa(X)/fb(X)

is more heterogeneous. Note, however, that since these ratios are always positive given Assumption

3, the parameter ω will be contained in (−∞, 0) ∪ (1,∞) so that the weighting scheme is never

convex.

As can be seen in equations (11)-(12), a special case in which one may wish to estimate a

regression of the form of equations (3)-(5) is when treatment effects are constant. More generally,

α and β are easily interpreted causal parameters when the chosen stratification is mean-independent

of the average treatment effect for the two groups of compliers. That is, suppose in addition to

Assumptions 1-3 we have:

Assumption 4 LATE homogeneity: E[Y1 − Ya|A1 < A0, X] and E[Y1 − Yb|B1 < B0, X] do not

depend on X

The form of equations (11)-(12) then makes the following result immediate:

Corollary to Proposition 1 : Suppose Π is of full rank. Then under Assumptions 1-4 the

endogenous regressor coefficients in equation (3) identify α = E[Y1 − Ya|A1 < A0] and β =

E[Y1 − Yb|B1 < B0].

With LATE homogeneity, therefore, the multiple endogenous variable IV regression correctly de-

convolutes the weighted average of fallback-specific LATEs given by Lemma 1.8 In the stylized
8It is straightforward to extend Proposition 1 to consider multi-valued X and the over-identified IV regression

instrumented by multiple stratum interactions. When Assumption 4 holds across all values in the support of X the
two LATEs will be identified by any such regression, just as in the constant effects case. A test of overidentifying
restrictions would thus be valid for jointly testing Assumptions 1-4.
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example, α and β identify the average returns to GED certification for individuals induced to the

GED from a dropout and high school completion counterfactual, respectively, provided these do

not vary systematically with the covariate X.9

It is instructive to consider what kinds of data-generating processes may accommodate Assump-

tions 1-4. Consider a model of an individual deciding between the treatment and alternative states

to maximize her state-specific latent utility νti:

Ai = 1[νai ≥ νbi, νai ≥ ν1i] (16)

Bi = 1[νbi ≥ νai, νbi ≥ ν1i] (17)

Di = 1[ν1i ≥ νai, ν1i ≥ νbi]. (18)

To satisfy Assumption 3 it is sufficient to have, for unidimensional ηi,

ν1i = h(Xi, Zi, ηi), (19)

such that h(x, 1, ηi) ≥ h(x, 0, ηi) almost-surely for x = 0, 1. Exclusion and LATE homogeneity then

hold if potential outcomes may be written

Yti = µt + γXi + εti, (20)

such that

E[ε1i − εai|A1i < A0i, Xi] = E[εai − εai|A1i < A0i] (21)

E[ε1i − εbi|B1i < B0i, Xi] = E[εai − εbi|B1i < B0i], (22)

while Assumption 1 holds if the vector of structural disturbances (ηi, νai, νb1, ε1i, εai, εbi)′ is inde-

pendent of Zi, conditional on Xi. Note that in writing equations (20)-(22) we are neither assuming

that the stratum indicator Xi is excludable from the structural outcome equation (20) nor that it

is independent of its error εti (in which case Xi may itself be thought of as an instrument); rather,

LATE homogeneity asserts that Xi enters the outcome equation in an additively-separable way, and

that differences in the residual determinants of Yti are mean-independent of Xi in the compliant
9Proposition 1 also provides a way to indirectly validate Assumption 4 given an exogenous control G thought to

be correlated with individual treatment effects. For example, estimating equations (3)-(5) by setting Y = G × A
yields a second-stage coefficient on 1 − B of δb(E[G|A1 < A0, X = 1] − E[G|A1 < A0, X = 0]) under Assumptions
1-3, since then β(0) = β(1) = 0. One could therefore test whether the control G systematically varies for a-compliers
across the X-stratification (and likewise for b-compliers). It is straightforward to generalize this test along the lines
of the following section.
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sub-populations. Section 3 and appendix section A.4 give a parametric example of such a model.

2.2 Relaxing Independence and Homogeneity

That cross-stratum comparisons are informative for a common pair of treatment effects is essential

for their identification by IV. For any given application, which stratification is most likely to

maintain an independent instrument and homogeneous LATEs while still producing first-stage

variation depends on the specific context. Helpfully, as with intent-to-treat effect and conventional

LATE identification (Hirano, Imbens, and Ridder, 2003; Abadie, 2003), this approach may be

extended to settings where Assumptions 1-4 only hold conditional on a rich set of predetermined

covariates. The strategy is again intuitive: one could imagine running conditional versions of

the IV regression (3)-(5) at each point in the support of a discretely-valued control W . When

conditional cross-stratum comparisons identify conditional fallback-specific LATEs, averaging the

resulting coefficients over the marginal complier distribution of W will recover population LATEs.

Such a procedure is conceptually possible yet likely infeasible when W is continuous or takes on

many discrete values.10 I next outline an alternative, more flexible implementation of this basic

idea for a generic vector of controls W .

We start by considering the conditional analogues of the key identifying assumptions:

Assumption 1′ ((Yz1, Yza, Yzb, Az, Bz)z=0,1) is independent of Z, conditional on W and X

Assumption 2′ Pr(Y0t = Y1t|W,X) = 1, for each t ∈ {1, a, b}

Assumption 3′ Pr(A1 ≤ A0|W,X) = Pr(B1 ≤ B0|W,X) = 1

Assumption 4′ E[Y1 − Ya|A1 < A0,W,X] and E[Y1 − Yb|B1 < B0,W,X] do not depend on X

Here Assumption 1′ only requires the instrument Z to be as good as randomly assigned once

potential confounders in W and X are held fixed, while Assumption 4′ allows for arbitrary cross-

stratum heterogeneity in average complier treatment effects that is captured non-parametrically by

W. Assumptions 2′ and 3′ further relax the exclusion and monotonicity restrictions to hold only

conditional on W and X. We then have the following result:

10As Hirano, Imbens, and Ridder (2003) note, a related issue is whether standard asymptotic theory adequately
approximates the sampling distributions of such manually-reweighted estimators. See Robins and Ritov (1997) and
Angrist and Hahn (2004) for a discussion of this problem.
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Proposition 2 : Suppose Pr(Z = 1|W,X) and Pr(X = 1|W ) are bounded away from zero and

one and that the matrix of conditional complier shares

Π(W ) =

Pr(A1 < A0|W,X = 0) Pr(B1 < B0|W,X = 0)

Pr(A1 < A0|W,X = 1) Pr(B1 < B0|W,X = 1)

 (23)

is nonsingular with probability one. Define

λ = E[Z|W,X]− Z
E[Z|W,X](1− E[Z|W,X]) , (24)

and

µa = E[λAX|W ]− E[λA|W ]X
E[X|W ](1− E[X|W ]) (25)

µb = E[λBX|W ]− E[λB|W ]X
E[X|W ](1− E[X|W ]) . (26)

Then, under Assumptions 1′-4′,

E[Y1 − Ya|A1 < A0] = E

[
E[λA|W ]
E[λA]

λµb
E[λµbA|W ]Y

]
(27)

and

E[Y1 − Yb|B1 < B0] = E

[
E[λB|W ]
E[λB]

λµa
E[λµaB|W ]Y

]
. (28)

Furthermore these weighting schemes are non-parametrically identified by the conditional

expectations E[X|W ], E[Z|W,X], E[A|W,X,Z], and E[B|W,X,Z].

The proof of Proposition 2, given in the appendix, shows that conditional-on-W versions of,

for example, the coefficient on 1 − A in equation (3) can be written as the ratio of E[λµbY |W ]

to E[λµbA|W ]. Averaging this ratio over the marginal distribution of W for a-compliers (using

E[λA|W ]/E[λA] weights) thus identifies E[Y1 − Ya|A1 < A0]. For these results the conditional

IV estimand must be well-defined along the support of W , so that both Z|W,X and X|W must

be almost-surely stochastic and the conditional first-stage matrix Π(W ) must be always-surely

invertible. Thus while W should be general enough to make Z ignorable and stratum-specific

LATEs homogeneous, it must still allow for the kind of cross-stratum variation in complier shares

underlying the basic IV approach.

As in the unconditional case, we can write a model consistent with Assumptions 1′-4′ by adding

covariates to the structural equations for an individual’s treatment utility and her potential out-
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comes:

ν1i = h(Wi, Xi, Zi, ηi) (29)

Yti = f(Wi, Xi) + gt(Wi) + εti, (30)

where again we assume differences in εti are mean-independent of Xi, the vector of structural errors

is independent of Z given X and W , and the function h(w, x, z, ηi) is almost-surely monotone in z

givenW and X. In such a model, the conditional LATEs that are weighted together by Proposition

2 may be written

E[Y1 − Ya|A1 < A0,W ] = g1(W )− ga(W ) + E[ε1 − εa|A1 < A0,W ] (31)

E[Y1 − Yb|B1 < B0,W ] = g1(W )− gb(W ) + E[ε1 − εb|B1 < B0,W ]. (32)

Proposition 2 suggests a non-parametric estimation procedure for recovering the unconditional

LATEs when Assumptions 1′-4′ hold. Namely, a researcher may in a first step flexibly approximate

four conditional expectation functions: E[X|W ], E[Z|W,X], E[A|W,X,Z], and E[B|W,X,Z].

The appendix shows how these can then be used to form sample analogues of λ, µa, µb, E[λA|W ],

E[λB|W ], E[λµbA|W ], and E[λµaB|W ], and thus of the weighting schemes in equations (27) and

(28). Unlike with the IV procedure in Proposition 1, inference for this multi-step estimator will in

general be non-standard. Under appropriate regularity conditions, finite-sample approximations to

the asymptotic distribution of the estimator may be based on either a bootstrap procedure or on

analytic expressions derived by the approaches of Andrews (1991) and Newey (1994a, 1994b).

3 Applications

3.1 The Returns to GED Certification

In 1997 the GED Testing Service required all U.S. states to meet new passing score requirements.

Prior to this reform five states – Louisiana, Mississippi, Nebraska, NewMexico, and Texas – awarded

GEDs to students that obtained either a minimum score of 40 (out of a possible 80) on each of

five standardized sub-tests or an average score of 45 across all sub-tests, while starting January

1st, 1997 both criteria were required nationwide. In a difference-in-differences design, Heckman

et al. (2012) show that this increase in test difficulty, plausibly exogenous from the perspective

13



of current students, significantly increased the share of high school graduates in affected states.

The authors further show that the effect was concentrated among students who were older at the

time of the policy change and were thus likely less constrained in their ability to drop out of

high school when facing a harder GED exam. To the extent an individual’s age at the time of

reform was not directly priced in the relative labor market returns she faced in subsequent decades,

a stratification that filters the differential reduced-form effect of the policy across birth cohorts

through differential rates of high school completion may be used to separate the overall causal

effect into counterfactual-specific effects along the lines of Proposition 1.

I first illustrate this approach with a stylized model of degree choice and subsequent earnings.

Heckman and Urzúa (2010) use such a model to demonstrate identification of multiple GED effects

under large support or parametric conditions; I extend their simulated data-generating process

to accommodate a stratification scheme consistent with Assumptions 1-4. Here Y denotes an

individual’s log hourly earnings in adulthood, D indicates GED certification, while A and B indicate

the two GED fallbacks of dropping out and completing high school, respectively. The stratification

X indicates an individual’s age (either 16 or 17) when a quasi-experimental reduction in GED

passing standards, Z, is announced. An appendix section contains a full description of how these

variables are generated from draws of latent correlated factors in the Heckman and Urzúa (2010)

parameterization.

Population first-stage and reduced-form coefficients from an IV regression of Y onD are reported

in Panel A of Table 1. An exogenous decrease in GED passing standards increases the share of

GED-certified students by 5.5 percentage points and decreases hourly earnings by an average of 1.2

percent, figures quite consistent with Heckman and Urzúa’s original model. By monotonicity the

former represents the total share of a- and b-compliers in the population; from Lemma 1 the ratio of

reduced-form to first-stage effects, −0.209, is the overall average complier GED effect. Both effects

may be decomposed into strata-specific first-stage and reduced-form moments, displayed in Panel

B. Compliers in the dropout-constrained (X = 0) subsample are more likely to obtain a high school

diploma when untreated, while older compliers (with X = 1) are more likely to drop out in response

to stricter GED passing standards. The model parameterizes adult wages such that students tend

to see gains when shifted to the GED from a dropout counterfactual and losses when the GED

replaces a high school diploma. Consequently, the reduced form effect of an easier GED exam is
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higher when X = 1 than when X = 0. Population coefficients in the two-treatment IV regression,

α = 0.277 and β = −0.396, are obtained by inverting the first stage matrix in columns 2 and 3 and

multiplying by the reduced form vector in column 4. Since the model satisfies LATE homogeneity

(an individual’s cohort X is allowed to affect the level of her wages but not the returns-to-schooling

frontier), by Proposition 1 these represent counterfactual-specific local average treatment effects of

GED certification on adult earnings.

I next compare the performance of IV estimators in the simulated model with real-world es-

timates of the returns to GED certification using quasi-experimental variation in GED passing

standards from the 1997 reform. I construct a sample of 22,923 individuals born in the U.S. in

1978-1979 and in 1981-1982 who report positive earnings and hours worked in the 2013 American

Community Survey and that completed at least two years of high school.11 These individuals were

of age 16 and 17 in either the year 1995 (one year prior to the mandated GED score change) or

1998 (one year after the change) and were likely to face differential GED costs while in high school.

As in Heckman et al. (2012) I exclude the actual year of the policy change, which occurred in

the middle of the school year.12 Trends in the rate of GED attainment and in log hourly earnings

across birth cohorts and by birth states are plotted in Figure 1A. The proportion of GED-certified

individuals born in the five affected states declines sharply for the later birth cohorts, from 19.5

to 14.5 percentage points, while rates from other states show only a modest decrease. Impor-

tantly, similar comparisons between earlier birth cohorts not affected by the policy show almost

no difference in certification trends, supporting the claim of Heckman et al. (2012) that such

difference-in-differences comparisons may be causal. As in the calibrated model, an increase in

passing standards led to a decline in GED completion by around 5 percentage points, with only

a negligible overall increase in subsequent labor market earnings; these estimates are plotted in

Figure 1B.

Under assumptions analogous to those of Imbens and Angrist (1994), the ratio of difference-
11Self-employed individuals and college-educated individuals are also excluded for ease of interpretation. Hourly

wages are constructed by dividing annual wage and salary income by the product of the usual number of weeks
worked within a year and the number of hours worked per week. The latter is imputed from categories reported in
the 2013 ACS using the average number of hours reported within the same categories in the 2007 ACS, the last year
in which underlying hours were reported. All reported results are robust to these sample construction choices.

12In their application, Heckman et al. (2012) drop states that were otherwise affected by the policy change but that
had already required candidates to meet both a minimum and mean score requirement, while showing robustness to
the choice of control group. To increase power I use all states other than the five affected by the “and/or” scoring
change as controls, though the results are similar without the already-required states.
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in-differences effects of the policy change on earnings to effects on GED completion identifies the

average return to the GED for policy compliers (Hudson, Hull, and Liebersohn, 2015). Assump-

tions 1-3 may similarly be extended to accommodate this instrumented difference-in-differences

framework, in which case the LATE explicitly corresponds to a weighted average of compliers with

different non-GED schooling counterfactuals. Difference-in-differences estimates of the effect of the

policy on high school dropout and completion rates are 2.3 and 2.7 percentage points, respectively.

By monotonicity this suggests that among the 5 percent complier population, 46% would have

dropped out under the stricter GED testing regime, while 54% would have completed high school

instead. Consistent with Heckman et al. (2012) the dropout counterfactual appears concentrated

in the older (X = 1) stratum, with 17 year-olds seeing a 4.3 percentage point increase in the

probability of dropping out, compared with only 0.1 percentage points among 16 year-olds.

IV estimates of α and β using the 1997 reform are reported in column 1 of Table 2.13 The

overall effect of GED certification on log hourly wages for all compliers is estimated at −0.12, but

as in the calibrated model an IV regression with two endogenous variables suggests a compelling

underlying story. Compliers who are induced to the GED from a dropout counterfactual appear to

see an average increase in hourly wages of 15 percent, while those who are drawn from a high school

diploma are estimated to take a massive average 35 percent cut in their hourly earnings. While

this application and its estimates are intended as illustrative (indeed, inference based on birth-

state clusters with a treatment group of only five states yields standard errors that fail to reject a

large range of possible estimates), it is quite striking how closely they resemble the corresponding

moments of the model parameterized to match the Heckman and Urzúa (2010) priors, reproduced

in column 2. Monte carlo replications of similarly-powered IV regressions reported in column 3 also

closely track the real-world LATE estimates.

3.2 Differential Attrition in an RCT

Distinguishing between multiple treatment alternatives can be of first-order importance in a ran-

domized control trial with imperfect follow-up. Suppose program offers Z are randomly assigned

to an initial population who may then choose whether or not to comply with the treatment and
13Due to the small and likely weak sources of identifying variation in this example, I report bias-adjusted (Fuller)

2SLS estimates of these parameters, though unadjusted estimates are essentially the same. All regressions control
for state of birth and residency.
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whether or not to report subsequent outcomes, Y. Individuals can then be said to select between

three possible states: being treated and reporting outcomes (D), not being treated and reporting

outcomes (A), and not reporting outcomes (B). Since outcomes are only measured in states D

and A (suppose the researcher arbitrarily sets Y = 0 for anyone with B = 1), the estimable local

average treatment effect in the entire sample,

E[Y1 − Y0|D1 > D0] = E[Y1 − Ya|A1 < A0]ω + E[Y1|B1 < B0](1− ω) (33)

for ω = Pr(A1 < A0)
Pr(A1 < A0) + Pr(B1 < B0) , (34)

is not a weighted average of causal treatment effects on the latent, potentially unreported outcome

whenever there are any compliers with B as a fallback (that is, when Pr(B1 < B0) 6= 0). Facing such

endogenous attrition, researchers often choose to conduct their analyses on a restricted sub-sample

of individuals that report outcomes in the hope of identifying causal effects. Such a procedure,

however, is also unlikely to be easily interpreted when Pr(B1 < B0) 6= 0, as conditioning on ex post

outcomes (BZ = 0) will then introduce imbalance in the distribution of the instrument Z.14

As the form of equations (33) and (34) suggests, the differential attrition problem can be mapped

to the multiple-counterfactual setting of Assumptions 1-3. For a given baseline stratification X,

independence of Z from potential outcomes (Assumption 1) is ensured by virtue of the randomized

design, and in many settings a program offer is likely to have no direct effect on latent outcomes

and to not deter program participation. Assumptions 2 and 3 would then be satisfied provided

that (1) Z has no direct effect on attrition behavior given treatment status and (2) the effect of

assignment on attrition through treatment is monotone. These primitive assumptions that place

the differential attrition problem within the general setting considered here are the same as those

used to estimate non-parametric bounds on causal parameters by the methods of Lee (2009) and

Behaghel et al. (2009).15

To solve the differential attrition problem with Proposition 1, we require an appropriate pre-

randomization stratification that induces variation in response behavior while maintaining LATE

homogeneity. One plausible candidate exploits the practice of randomized intensive follow-up, a
14Common approaches to the differential attrition problem include parametric sample selection modeling (Gronau,

1974; Heckman, 1976) and partial non-parametric identification of causal effects (Lee, 2009; Behaghel et al., 2009;
Engberg et al., 2014). Methods involving Bayesian inference (Little and Rubin, 1987) and covariate re-weighting
(Frölich and Huber, 2014) have also been proposed under different assumptions than those considered here.

15Note that monotonicity of response behavior with respect to the instrument is central to the latent index frame-
work most commonly used to study and assess general selection bias (Angrist, 1997).
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common surveying technique that is often recommended when attrition rates are large (e.g. Duflo,

Glennerster, and Kremer, 2008). Suppose, upon initially measuring outcomes, a researcher selects

among the attritors a random fraction p for additional follow-up attempts. Denote this set and

another random fraction p of initial responders by X = 1 and let X = 0 for all other individuals.16

Since X is highly correlated with an individual’s probability of facing more intensive follow-up,

the X = 1 strata is likely to contain a relatively larger proportion of untreated compliers with an

observed outcome. Moreover, sinceX is randomly assigned in the population, LATEs for both types

of compliers will be the same across strata to the extent the additional follow-up attempt draws

second-round responses from individuals representative of the pool of initial non-responders.17

Assumption 4 is, however, not guaranteed by randomized intensive follow-up per se, and re-

searchers hoping to use Propositions 1 or 2 to resolve differential attrition concerns should carefully

design the intensive surveying scheme generating such stratifications. As a simplistic but instruc-

tive example, suppose a researcher randomly assigns offers for a job-training program and initially

conducts phone interviews on employment outcomes throughout the day. As treated individuals

may be more likely to be employed, the offer may have an effect (through treatment) on the prob-

ability an individual will be home to answer the survey: these people will have B1 < B0. However,

suppose the exact timing of follow-up interviews is as good as random with respect to working

hours (perhaps due to alphabetical or other quasi-random queuing of survey attempts), and that

the random second round of interviews occurs in similar fashion on a subsequent day. In this case

individuals in the intensive stratum of X will face a higher probability of being home when surveyed

(on either day one or day two), but those successfully interviewed on the second day will not vary

systematically from those interviewed in the initial round. Assumption 4 would then hold, and

Proposition 1 may be used to solve the differential attrition problem.

I follow this approach to estimate the effects of Medicaid on survey outcomes in the first year

following a lottery of roughly 90,000 low-income adults in Oregon. Finkelstein et al. (2012) discuss

the setting for the Oregon Health Insurance Experiment, which selected roughly 35,000 individuals

over eight lottery drawings from March through September 2008. Selected individuals became
16It will, by Rao-Blackwell logic, in fact be more efficient to let X = p for all initial responders, rather than

employing a randomized estimator. I follow this approach in the following empirical application.
17In an unpublished manuscript, DiNardo, McCrary, and Sanbonmatsu (2006) discuss parametric and semi-

parametric methods of using randomized intensive follow-up to overcome differential attrition in estimating intent-
to-treat effects. The current approach is distinct from their approach, both in the interest in local average treatment
effects and the specific way the intensive follow-up scheme is used for identification.
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eligible for enrollment in OHP Standard, a comprehensive Medicaid program, and roughly 30%

of lottery winners successfully enrolled. In addition to administrative hospital discharge data,

Finkelstein et al. (2012) collected outcomes by a mail survey, distributed one year later in the

summer of 2009, and found evidence that Medicaid increased health care utilization, decreased

out-of-pocket expenditure and debt, and improved overall health among survey responders. The

relatively low rate of response (at 50%) and moderate imbalance (at around 2 percentage points)

in the probability of response by eligibility status, however, suggest caution in interpreting these

restricted IV estimates.18

I use the Finkelstein et al. (2012) public-use database to replicate the authors’ main survey

analysis sample. For simplicity I restrict attention to the largest experimental stratum, consisting

of 9,770 members of single-person households in the seventh survey wave. Attrition appears to

be a more serious issue in this sub-sample, with an overall response rate of only 42% and with

eligible individuals roughly 4 percentage points less likely to respond to any survey question.19 As

in the main sample, 30% of initial non-respondents were selected for additional follow-up attempts

by mail and phone. The average yield on such intensive surveying was around 22%, suggesting

a strong contrast across the stratification scheme described above. I let the stratum indicator

X = 1 for those designated for intensive follow-up and for a proportionate random sample of initial

respondents. The endogenous variables A, B, and D are constructed from survey response and

treatment indicators as outlined above.

IV estimates of the effect of Medicaid enrollment on a variety of health, financial, and medical

care outcomes are reported in Table 3. As in Finkelstein et al. (2012), columns 1 reports “restricted”

IV estimates from specifications with a single treatment variable D, estimated over the subsample

of individuals with successfully recorded outcomes.20 Column 2 instead reports estimates of the

coefficient on 1 − A in IV regressions of the form of equations (3)-(5) from the full experimental
18Finkelstein et al. (2012) address attrition concerns by showing balance in eligibility status across baseline covari-

ates in the survey respondent sub-sample. The authors also construct Lee (2009) bounds for intent-to-treat effects,
finding generally robust results for health care use and financial strain outcomes while not able to reject the null of
no effect on self-reported health.

19Although equations (33)-(34) describe a model in which Z makes attrition less likely, Proposition 1 may also be
used to recover causal effects when the instrument increases (through treatment) the probability of non-response. In
either case using 1 − A = 1 − (1 − C)R and 1 − B = R as the two endogenous variables in the two-instrument IV
regression (where C indicates treatment receipt and R denotes survey response) will identify the average causal effect
of treatment among compliers who always respond by the coefficient on 1−A.

20I follow Finkelstein et al. (2012) in weighting all restricted IV estimates by the inverse probability of being
included in the intensive follow-up group. In practice this has little effect on the restricted IV point estimates.
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sample. By Proposition 1, these represent local average treatment effects for compliers who would

always provide survey outcomes. Interestingly, the two-treatment IV specification yields point esti-

mates quite close to those obtained by the restricted single-treatment model across virtually every

outcome. Although the former is generally less precisely-estimated, the two are highly correlated

so that estimated differences (reported in column 3 of Table 3) are tightly distributed around zero.

This suggests that, despite apparent endogenous attrition, the estimates reported in Finkelstein et

al. (2012) serve as reliable measures of true causal effects of Medicaid enrollment.

4 Conclusions

Although originally formulated within the context of additive, constant-effects models, the method

of instrumental variables is occasionally robust to deviations from such parametric frameworks.

Indeed, IV estimation of treatment effects has often clarified the minimal assumptions needed for

causal interpretation in a fully heterogeneous world. This paper adds to this tradition by ex-

tending the theoretical framework of Imbens and Angrist (1994) to settings where more than one

causal channel is needed to answer an economic or causal question but only one quasi-experiment

is available. The ease by which Proposition 1 may be applied, using an estimator with statistical

properties familiar to most applied researchers, is readily apparent in the above empirical appli-

cations. More involved, though still tractable estimation may be used to relax the key identifying

assumptions given sufficiently rich controls. As the discussion in Section 3.2 illustrates, in some

cases one may be able to increase the plausibility of the key LATE homogeneity assumption by a

carefully-constructed surveying design. This suggests new tools for overcoming the fundamental

issue of differential attrition in randomized program evaluation.
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Figure 1A: Trends in GED attainment and log hourly earnings by the 1997 "and/or" GED scoring change

Figure 1B: Difference-in-differences estimates of the effect of the 1997 "and/or" scoring change

Notes: Figure 1A plots average GED certification rates and 2013 log hourly earnings, by birth year, for a sample of employed individuals born in states 
that were and were not required to eliminate the "and/or" scoring option on the GED in 1997. Figure 1B plots growth in these variables relative to the 
cohort that was age 16 or 17 in 1995. 95% confidence intervals are based on robust standard errors that cluster by birth state.
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Reduced form
D 

(all compliers)
1-A 

(dropout 
counterfactual)

1-B
(high school 

diploma 
counterfactual)

Y
(log hourly 
earnings)

(1) (2) (3) (4)

Full sample 0.055 -0.012

Dropout-constrained 0.005 0.050 -0.019
  stratum (X=0)
Unconstrained 0.073 0.029 0.009
  stratum (X=1)

A. Single-treatment IV

First stage (complier shares)
Table 1: Simulated first-stage and reduced-form effects of a GED scoring change

Notes: This table reports moments from the simulated model of GED effects inspired by Heckman 
and Urzúa (2010) and described in the text. Column 4 reports reduced-form effects of the 
instrument, a decrease in GED passing standards by 0.75 standard deviations, on log hourly earnings 
in the full sample (Panel A) and in two subsamples differentiated by the average difficulty of 
dropping out of high school (Panel B). Column 1 reports first-stage effects of the instrument on an 
indicator for completing the GED in the full sample, while columns 2 and 3 report first-stage effects 
on 1-A and 1-B in each subsample, where A indicates a student dropping out of high school and B 
indicates high school completion. The single-treatment IV coefficient is -0.209, the ratio of reduced-
form to first-stage effects in Panel A. The two-treatment (isoLATE) IV coefficients are 0.277 and -
0.396, the inverse of the first-stage matrix in Panel B post-multiplied by the reduced-form vector. 

B. Two-treatment IV



ACS data
isoLATE 
estimates

Population 
LATEs

isoLATE monte 
carlo

(1) (2) (3)

All compliers -0.121 -0.209 -0.207
(0.268) (0.109)

Dropout counterfactual 0.150 0.277 0.257
  compliers (0.506) (0.418)
High school diploma -0.347 -0.396 -0.392
  counterfactual compliers (0.208) (0.203)

Table 2: Estimated and simulated returns to GED certification

Notes: Column 1 of this table reports estimates of local average treatment effects in a sample 
of 22,923 employed individuals who were either 16 or 17 in either 1995 or 1998. The 
outcome is 2013 log hourly earnings. A cohort indicator and state of birth and residency 
indicators are included as controls, with the interaction of cohort and an indicator for being 
born in a state subject to a "and/or" score change in 1997 as the excluded instrument. The 
isoLATE stratification is by those born in the earlier vs. later year of their cohort. Column 2 
reports corresponding moments of the model parameterized according to Heckman and Urzua 
(2010) and described in the text, while column 3 reports average IV estimates of these 
moments from 500 monte carlo replications of the two-treatment IV specification 
(N=100,000). Robust standard errors, clustered by birth state, are reported in parentheses in 
column 1; estimate standard deviations are reported in parentheses in column 3. 

A. Single-treatment IV

B. Two-treatment IV

Data calibrated to the Heckman 
and Urzúa (2010) model



Restricted IV isoLATE IV
(1) (2) (3)

Have usual place of clinic-based care 0.335 0.397 -0.062
(0.073) (0.140) (0.096)
0.264 0.184 0.080
(0.069) (0.147) (0.113)

Got all needed medical care, last six 0.266 0.215 0.051
(0.061) (0.120) (0.088)

Got all needed drugs, last six months 0.242 0.199 0.043
(0.054) (0.096) (0.069)
-0.037 -0.080 0.043
(0.040) (0.086) (0.064)

Using prescription drugs currently -0.040 -0.107 0.067
(0.078) (0.185) (0.145)
0.199 0.159 0.040
(0.066) (0.120) (0.075)
0.038 0.043 -0.005
(0.063) (0.104) (0.054)
0.046 0.085 -0.039
(0.041) (0.088) (0.065)

Any out of pocket medical expensis, -0.204 -0.223 0.019
(0.069) (0.119) (0.068)

Owe money for medical expenses -0.257 -0.253 -0.005
(0.068) (0.117) (0.067)
-0.196 -0.155 -0.041
(0.066) (0.118) (0.075)
-0.015 -0.005 -0.010
(0.039) (0.056) (0.027)

Heath good/very good/excellent 0.225 0.192 0.033
(0.071) (0.129) (0.079)

Health not poor 0.113 0.148 -0.035
(0.046) (0.092) (0.063)

Health same or better, last six months 0.225 0.225 0.000
(0.063) (0.107) (0.059)

Have personal doctor

Table 3: Estimated Medicaid effects from the Oregon Health Insurance Experiment 

DifferenceEstimation

A. Healthcare access

Notes: This table reports 2SLS estimates of the effects of Medicaid using randomized Medicaid 
offers from the Oregon Health Insurance Experiment as instruments. Columns 1 and 4 use a single 
treatment variable, restrict estimation to those individuals with valid survey responses for each 
outcome, and weight by the inverse probability of intensive follow-up, as in Finkelstein et 
al.(2012). Columns 1 and 4 are estimated with two endogenous variables as described in the text 
using the full sample of 9,770 single-person households in the 7th survey wave. Robust standard 
errors are reported in parentheses.

Didn't use ER for nonemergency, last 
   six months

ER visits, last six months

Inpatient hospital admissions, last 
   six months

B. Healthcare utilization

C. Financial strain

Outpatient visits, last six months

D. Health outcomes

Borrowed/skipped bills to pay medical 
   bills, last six months
Refused treatment because of medical 
   debt, last six months
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Appendix

A.1 Proof of Lemma 1

Consider the reduced-form regression of Y on Z, conditional on X. By the excludability of Z given
treatment and fallback status (Assumption 2), we can write

Y = Y1 + (Ya − Y1)A+ (Yb − Y1)B,

so that the regression coefficient on Z identifies:

E[Y |Z = 1, X]− E[Y |Z = 0, X] =E[Y1 + (Ya − Y1)A+ (Yb − Y1)B|Z = 1, X]

− E[Y1 + (Ya − Y1)A+ (Yb − Y1)B|Z = 0, X]

=E[Y1|Z = 1, X]− E[Y1|Z = 0, X]

+ E[(Ya − Y1)A1|Z = 1, X]− E[(Ya − Y1)A0|Z = 0, X]

+ E[(Yb − Y1)B1|Z = 1, X]− E[(Yb − Y1)B0|Z = 0, X]

=E[(Ya − Y1)(A1 −A0)|X] + E[(Yb − Y1)(B1 −B0)|X]

=E[Y1 − Ya|A1 < A0, X]Pr(A1 < A0|X)

+ E[Y1 − Yb|B1 < B0, X]Pr(B1 < B0|X),

where the third equality follows by independence of Z given X (Assumption 1) and the fourth by
monotonicity (Assumption 3). Furthermore, the conditional first-stage regression of D on Z is

E[D|Z = 1, X]− E[D|Z = 0, X] = E[D1 −D0|X]

= E[(1−A1 −B1)− (1−A0 −B0)|X]

= E[A0 −A1|X] + E[B0 −B1|X]

= Pr(A1 < A0|X) + Pr(B1 < B0|X).

This again follows by Assumptions 1 and 3. The conditional IV coefficient on D is the ratio of
reduced-form to first-stage expressions, completing the proof �
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A.2 Proof of Proposition 1

The proof to Lemma 1 shows that under Assumptions 1-3 the conditional reduced form identifies

E[Y |Z = 1, X]− E[Y |Z = 0, X] = α(X)fa(X) + β(X)fb(X).

Furthermore, the conditional first-stage regressions for 1−A and 1−B are

E[1−A|Z = 1, X]− E[1−A|Z = 0, X] = −E[A1 −A0|X]

= Pr(A1 < A0|X)

= fa(X)

and

E[1−B|Z = 1, X]− E[1−B|Z = 0, X] = fb(X).

As with Lemma 1, these follow from Assumptions 1 and 3.
Consider the multiple-endogenous variable IV regression of equations (3)-(5). Let Y denote a

vector of observations of Y , X a matrix of observations of 1 − A and 1 − B, and Z a matrix of
observations of Z and ZX. The endogenous regressor coefficients then satisfy:α

β

 = p lim
(
(Z̃′X̃)−1Z̃′Y

)
= p lim

(
((Z̃′Z̃)−1Z̃′X̃)−1(Z̃′Z̃)−1Z̃′Y

)
,

where Z̃ and X̃ are matricies of residuals from regressing Z and X on X and a constant. By above,

p lim
(
(Z̃′Z̃)−1Z̃′X̃

)
=

fa(0) fb(0)
fa(1) fb(1)

 = Π

p lim
(
(Z̃′Z̃)−1Z̃′Y

)
=

α(0)fa(0) + β(0)fb(0)
α(1)fa(1) + β(1)fb(1)

 .
When Π is invertible, the continuous mapping theorem and Slutsky’s theorem imply:

α
β

 =

fa(0) fb(0)
fa(1) fb(1)

−1 α(0)fa(0) + β(0)fb(0)
α(1)fa(1) + β(1)fb(1)

 .
Proposition 1 follows from simplifying this expression. �
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A.3 Proof of Proposition 2

Define for each V ∈ {A,B, Y }

δVW,X = E[V |Z = 0,W,X]− E[V |Z = 1,W,X] = E[(1− Z)V |W,X]
1− E[Z|W,X] − E[ZV |W,X]

E[Z|W,X]

= E

[
E[Z|W,X]− Z

E[Z|W,X](1− E[Z|W,X])V |W,X
]

= E[λV |W,X],

and note that by Assumptions 1′ and 2′ we have

δAW,X = E[A0 −A1|W,X]

δBW,X = E[B0 −B1|W,X]

δYW,X = E[(Ya − Y1)(A0 −A1) + (Yb − Y1)(B0 −B1)|W,X].

Next define the random vector αW
βW

 =

δAW,0 δBW,0

δAW,1 δBW,1

−1 δYW,0
δYW,1

 .
Here αW and βW are conditional analogues of the multiple endogenous variable IV specification
used in Proposition 1. Focusing on the first, we may write

αW =
δYW,0δ

B
W,1 − δYW,1δBW,0

δAW,0δ
B
W,1 − δAW,1δBW,0

.

Furthermore,

δYW,0δ
B
W,1 − δYW,1δBW,0 =E[(Ya − Y1)(A0 −A1)|W,X = 0]E[B0 −B1|W,X = 1]

+ E[(Yb − Y1)(B0 −B1)|W,X = 0]E[B0 −B1|W,X = 1]

− E[(Ya − Y1)(A0 −A1)|W,X = 1]E[B0 −B1|W,X = 0]

− E[(Yb − Y1)(B0 −B1)|W,X = 1]E[B0 −B1|W,X = 0]

=E[Y1 − Ya|A1 < A0,W,X = 0]Pr(A1 < A0|W,X = 0)Pr(B1 < B0|W,X = 1)

+ E[Y1 − Yb|B1 < B0,W,X = 0]Pr(B1 < B0|W,X = 0)Pr(B1 < B0|W,X = 1)

− E[Y1 − Ya|A1 < A0,W,X = 1]Pr(A1 < A0|W,X = 1)Pr(B1 < B0|W,X = 0)

− E[Y1 − Yb|B1 < B0,W,X = 1]Pr(B1 < B0|W,X = 1)Pr(B1 < B0|W,X = 0)

=E[Y1 − Ya|A1 < A0,W ](δAW,0δBW,1 − δAW,1δBW,0),
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where the second equality follows by Assumptions 3′ and the third by Assumption 4′. Thus

E[Y1 − Ya|A1 < A0,W ] = αW ,

so that, by the Law of Iterated Expectations,

E[Y1 − Ya|A1 < A0] = E

[
E[(Y1 − Ya)(A1 −A0)|W ]

Pr(A1 < A0)

]
= E

[
Pr(A1 < A0|W )
Pr(A1 < A0) αW

]
.

Finally, note that we can write

δVW,0δ
B
W,1 − δVW,1δBW,0 = E[λV |W,X = 0]E[λB|W,X = 1]− E[λV |W,X = 1]E[λB|W,X = 0]

= E[λV (1−X)|W ]E[λBX|W ]
(1− E[X|W ])E[X|W ] − E[λV X|W ]E[λB(1−X)|W ]

E[X|W ](1− E[X|W ])

= E

[
λ
E[λBX|W ]− E[λB|W ]X
E[X|W ](1− E[X|W ]) V |W

]
= E [λµbV |W ] ,

and

Pr(A1 < A0|W ) = E[E[A0 −A1|W,X]|W ]

= E[E[λ ·A|W,X]|W ]

= E[λA|W ].

Thus, once again applying the Law of Iterated Expectations,

E[Y1 − Ya|A1 < A0] = E

[
E[λA|W ]
E[λA]

λµbY

E [λµbA|W ]

]

The same steps show the result for E[Y1 − Yb|B1 < B0].
Note that the function λ(w, x, z) generating λ = λ(W,X,Z) is identified by the conditional

expectation function E[Z|W,X] and that

E[λA|W = w] =
∑
x=0,1

∑
z=0,1

λ(w, x, z)E[A|W = w,X = x, Z = z]

× Pr(Z = z|W = w,X = x)Pr(X = x|W = w)
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and similarly for E[λB|W ]. Moreover,

E[λBX|W = w] =
∑
z=0,1

λ(w, 1, z)E[B|W = w,X = 1, Z = z]Pr(Z = z|W = w,X = 1)E[X|W = w].

Thus both the weights E[λA|W = w]/E[λA] and the function µb(w, x) generating µb = µb(W,X)
are identified by the conditional expectation functions E[X|W ], E[Z|W,X], E[A|W,X,Z], and
E[B|W,X,Z]. Finally, note that

E[λµbA|W = w] =
∑
x=0,1

∑
z=0,1

λ(w, x, z)µa(w, z)E[A|W = w,X = x, Z = z]

× Pr(Z = z|X = x,W = w)Pr(X = x|W = w)

We can thus form sample analogues of the weighting schemes identifying E[Y1 − Ya|A1 < A0] from
non-parametric estimates of these conditional expectation functions. The same result follows for
E[Y1 − Yb|B1 < B0]. �
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A.4 GED Selection Model

Section 3.1 simulates data on educational attainment and labor market returns using a model
inspired by Heckman and Urzúa (2010). Potential log hourly earnings are given by

Yti = µt + γXi + εit, (35)

where Xi = 1 is a cohort indicator and t ∈ {1, a, b} indexes the individual’s educational status:
GED-certified, high school dropout, or traditional high school graduate. Individuals observe the
schooling environment and chooses the alternative t that maximizes νti, where

ν1i = Φ(π1Z̃1i − η1i) (36)

νai = Φ(πaZ̃ai − ηai)1[Xi ≥ ξi] (37)

νbi = Φ(πbZ̃bi − ηbi), (38)

and where Φ(·) denotes the normal CDF. That is, individuals choose the schooling level that
gives them the highest latent utility, subject to the constraint that some may not be allowed to
drop out of high school by virtue of being too young (1[Xi ≤ ξi]). To simulate the model, I let
(Z̃1i, Z̃ai, Z̃bi) ∼ N(µZ ,ΣZ) and (ε1i, εai, εbi, η1i, ηai, ηbi) ∼ N(0,Σεν) where

ΣZ =


1 0 0
0 1 0
0 0 1

 , Σεν =



0.64 0.16 0.16 0.024 −0.32 0.016
0.16 1 0.2 0.02 −0.3 0.01
0.16 0.2 1 0.02 −0.4 0.04
0.024 0.02 0.02 1 0.6 0.1
−0.32 −0.3 −0.4 0.6 1 0.2
0.016 0.01 0.04 0.1 0.2 1


, (39)

and where (µ1, µa, µb) = (0.3, 0.1, 0.7) and (π1, πa, πb) = (0.2, 0.3, 0.1). With Xi = ξi = 0, this
model is the same as the one in Heckman and Urzúa (2010). To generate cross-strata first stage
variation I let ξ ∼ N(0.5, 0.025) and draw X uniformly with probability 0.5. Setting γ = 0.2 allows
an individual’s cohort to affect the level of her adulthood wages, but not her relative returns to
schooling. As in Heckman and Urzúa (2010), I apply Proposition 1 with an instrument Zi that
represents an exogenous increase in Z̃1i by 0.75 standard deviations.
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