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1 Introduction

Treatment effect heterogeneity is often a central consideration in economics. In instrumental
variable (IV) designs, Imbens and Angrist (1994) famously show that regressions on a binary
treatment variable identify average effects for compliers – those induced into treatment – given a
binary instrument that is as-good-as-randomly assigned, monotonically affects treatment receipt,
and has no direct effect on outcomes. Naturally, these local average treatment effects (LATEs) are
also estimable within strata unaffected by the instrument. In a randomized trial with treatment
assigned by lottery, for example, conditional IV regressions can reveal heterogeneity in average
effects across compliers with different pre-randomization characteristics.

Often, however, it is not possible to stratify on key dimensions of heterogeneity. Suppose a
researcher finds a quasi-experimental decline in General Educational Development (GED) testing
standards that causes some individuals to obtain a GED. These compliers may be drawn from
distinct fallbacks: while some would have dropped out of high school if not for the change, others
may have earned a traditional diploma. Under the Imbens and Angrist (1994) assumptions, an
IV wage regression with a single GED treatment estimates a causally-interpretable LATE across
these two groups, but this parameter may be difficult to interpret economically. With typically-
positive returns to schooling, the LATE will mix together positive and negative effects and represent
an ambiguously-signed average. Separating these effects is challenging when one cannot directly
observe and stratify on fallback schooling levels.

In some settings it may be difficult to even causally interpret effects with multiple fallbacks.
Consider the issue of differential attrition in a randomized trial: outcomes are voluntarily provided
via survey, and the instrument makes some individuals less likely to respond. Here neither a
full-population IV regression – which includes survey nonresponders – nor one restricted to the
subgroup of endogenous responders is likely to be causal. Again, while we wish to isolate effects
for a subset of compliers (those with always-measured outcomes), we are unlikely to identify them
directly.

This paper explores ways in which covariate stratifications, while not able to perfectly separate
complier groups, may nevertheless disentangle counterfactual-specific treatment effects. The basic
strategy is intuitive: if there exists a stratification across which the proportion of compliers with
different fallbacks varies but, on average, their causal effects do not, differences in stratum-specific
reduced-form effects may be attributed to differences in complier shares in such a way that identifies
counterfactual-specific LATEs. I show that this deconvolution is automated by an IV regression
with multiple endogenous variables and strata interaction instruments. When complier effect
homogeneity is too restrictive, moreover, I show that IV informs bounds on particular weighted
averages of counterfactual-specific effects and can be generalized to allow for heterogeneity through
a rich set of observables. In this case I propose a flexible two-step estimator for the multiple LATEs.

Interacting an instrument with covariates in models with multiple endogenous variables has

2



a long history in econometrics (Wooldridge, 2002; Reardon and Raudenbush, 2013). This paper
establishes minimal restrictions on treatment effect heterogeneity under which such coefficients are
causal. In similar settings, Behaghel et al. (2013), Blackwell (2017), Lee and Salanié (2016), and
Mountjoy (2017) consider nonparametric identification of multiple treatment channels and multiple
treatment-specific instruments, while Kirkebøen et al. (2016) show how IV identifies counterfactual-
specific LATEs when preferred treatment alternatives are directly measured.1 This paper offers a
different approach for when only a single binary instrument is available and treatment fallbacks
are unobserved. Broadly, I use a principal stratification framework (Frangakis and Rubin, 2002)
to extend the LATE framework to settings with multiple causal channels. Using observables to
nonparametrically extend the IV result also relates to the extrapolation of LATEs across quasi-
experiments and within regression discontinuity designs in Angrist and Fernandez-Val (2013) and
Angrist and Rokkanen (2016).

I develop this econometric theory with the motivating GED example, and illustrate identification
in a GED selection model inspired by Heckman and Urzúa (2010). Monte Carlo simulations show
that the finite-sample bias of the counterfactual-specific LATE estimators becomes negligible with
moderately-sized first-stage F -statistics, though they are widely distributed. This highlights the
relatively narrow identifying variation of cross-strata comparisons and, correspondingly, likely less-
precise estimation.

Lastly, I revisit Finkelstein et al. (2012)’s analysis of the 2008 Oregon Medicaid Experiment to
show how the theory applies to nonrandom sample attrition. Rather than restricting analyses to
individuals with endogenously provided outcomes, I show how a baseline stratification can isolate
effects for individuals that always yield outcomes. This leverages the common surveying practice
of limited intensive followup, where strata defined by random second-round surveying are plausibly
uncorrelated with the distribution of complier treatment effects.2 Despite significant differential
attrition, the Finkelstein et al. (2012) results appear robust.

2 Theory

For each individual in a population we observe a binary instrument Z, an outcome Y, a binary
covariate X, and a variable T equaling 1, a, or b. Here T = 1 indicates a treated individual, while
someone with T = a or T = b is in one of two untreated states.3 Indicators for being in each
fallback are given by A and B; treatment is then D = 1−A−B. For concreteness, we may imagine
Z indicating exposure to a quasi-experimental reduction in GED passing standards, Y denoting
adult earnings, and D = 1 if an individual is GED-certified. Other individuals may either be high
school dropouts (A = 1) or graduates (B = 1).

1See Kline and Walters (2016) and Hull (2018) for recent semiparametric IV analyses of multiple treatment effects.
2DiNardo et al. (2006) and Behaghel et al. (2015) explore alternative parametric and partial identification methods

leveraging randomized intensive followup for intent-to-treat estimation.
3It is straightforward to generalize to n untreated states and n-valued X. I develop the n = 2 case for simplicity.
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Causal effects are defined in terms of potential outcomes. Treatment and fallback states given
Z = z are written Dz, Az, and Bz, while Yzt denotes realizations of Y when Z = z and T = t.
These latent variables are independent across individuals, satisfying a stable unit treatment value
assumption (Rubin, 1974). To this we add:

A1 Independence: ((Yz1, Yza, Yzb, Az, Bz)z∈{0,1}) ⊥⊥ Z|X

A2 Exclusion: ∀t ∈ {1, a, b}, P r(Y0t = Y1t) = 1

A3 Monotonicity: Pr(A1 ≤ A0) = Pr(B1 ≤ B0) = 1.

In the GED example, A1 states that variation in passing standards Z is as-good-as-randomly
assigned with respect to potential outcomes within strata given by X. This identifies conditional
effects of Z on Y , A, and B. Interpretation of the earnings effect by way of schooling further requires
an exclusion restriction (A2), which defines the single-indexed potential outcomes Yt = Yzt. Finally,
we assume the instrument’s effect on treatment is monotone, in that Z induces nobody to either
fallback. In the GED example, monotonicity implies no student is caused to drop out of or complete
high school when a GED becomes easier to obtain.

Under A3 we may categorize individuals as one of four types: never-takers, a-compliers, b-
compliers, and always-takers. These groups are defined in Figure 1. In the GED example, never-
takers are those who either always drop out of high school or always obtain a traditional diploma,
while always-takers are students that obtain a GED even when it is difficult to pass. Compliers
are individuals induced to a GED when it becomes easier, but either drop out (a-compliers) or
graduate high school (b-compliers) when it is harder. A-compliers are defined by A1 < A0 while
b-compliers have B1 < B0.

Although stated with expanded notation, it is straightforward to verify that A1-A3 coincide with
the Imbens and Angrist (1994) assumptions on (Y,D,Z)|X. The value of the extended setup is that
we can now write the conditional IV estimand as an average of two counterfactual-specific LATEs
for each of the a-complier and b-complier subpopulations. Specifically, we have the following:

Lemma 1 Suppose Pr(D1 > D0|X) 6= 0. Then under A1-A3 a conditional-on-X regression of Y
on D instrumented by Z identifies

E[Y1 − Ya|A1 < A0, X]ω(X) + E[Y1 − Yb|B1 < B0, X](1− ω(X)), (1)

where

ω(X) = Pr(A1 < A0|X)
Pr(A1 < A0|X) + Pr(B1 < B0|X) . (2)

The proof of Lemma 1, derived in the appendix along with all other proofs, uses the aforementioned
equivalence of A1-A3 to show the conditional IV estimand identifies a LATE. With two treatment
fallbacks, this may in turn be written as a weighted average of effects across two complier groups,
with weights proportional to their population shares. An IV regression on the GED treatment thus
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weights together effects for students with a dropout counterfactual with effects for students who
would have otherwise graduated. Here we are interested in extracting these counterfactual-specific
LATEs.

Note that while this paper focuses on multiple fallbacks, we could also write A3 with the
inequalities reversed and proceed with A and B corresponding to distinct treatments. This version
of the theory is closely related to the literature on multiple treatment mediators (Reardon and
Raudenbush, 2013) as well as the framework of Behaghel et al. (2013), who consider two treatment
states and a tri-valued instrument Z̃ ∈ {1, a, b}. With Z = 1[Z̃ = 1] and the remaining heterogeneity
in Z̃ attributed to individuals, A1-A3 are implied by this framework. Under similar assumptions,
Kirkebøen et al. (2016) discuss identification of fallback-specific LATEs when the econometrician
is able to measure A0 and B0 directly. The following can thus be thought of as an alternative
for when only one valid instrument is available and potential fallbacks are not perfectly observed.
Instead, we leverage a stratification generating variation in average potential fallbacks.4

2.1 IV Identification

Intuition for the first identification result comes from equations (1) and (2). Instrument independence
identifies the conditional first-stage effects of Z on 1 − A and 1 − B, while monotonicity implies
these equal Pr(A1 < A0|X) and Pr(B1 < B0|X). Thus the weighting scheme in (2) is identified
under A1-A3. If moreover the two counterfactual-specific LATEs are the same across strata, (1)
and (2) constitute a system of two equations (one for each stratum) and two unknown LATEs, and
identification is achieved as long as ω(0) and ω(1) are not the same.

An IV regression with two endogenous variables and strata-interacted instruments implements
this approach. Consider the second stage of

Y = µ+ α(1−A) + β(1−B) + γX + ε, (3)

with 1−A and 1−B instrumented by Z and Z ×X controlling for X. Let

α(x) = E[Y1 − Ya|A1 < A0, X = x] (4)

β(x) = E[Y1 − Yb|B1 < B0, X = x] (5)

denote the stratum- and counterfactual-specific LATEs and

πa(x) = Pr(A1 < A0|X = x) (6)

πb(x) = Pr(B1 < B0|X = x). (7)

be the corresponding shares of a- and b-compliers. We then have the following:
4Although this approach uses an IV regression with two instruments and two endogenous variables, as in Behaghel

et al. (2013), the strata-interacted instruments here will generally not satisfy their assumptions. The approaches
trivially coincide with eachother and Kirkebøen et al. (2016) when a-compliers and b-compliers are fully stratified.
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Proposition 1 Suppose the matrix of complier shares

Π =

πa(0) πb(0)
πa(1) πb(1)

 (8)

is nonsingular. Then under A1-A3 the coefficients in equation (3) are

α = ωα(0) + (1− ω)α(1) + δa(β(0)− β(1)) (9)

β = (1− ω)β(0) + ωβ(1) + δb(α(0)− α(1)), (10)

where

ω =
(

1− πa(1)
πb(1)/

πa(0)
πb(0)

)−1
(11)

δa =
(
πa(0)
πb(0) −

πa(1)
πb(1)

)−1
(12)

δb =
(
πb(0)
πa(0) −

πb(1)
πa(1)

)−1
. (13)

Proposition 1 extends the Imbens and Angrist (1994) interpretation of single-treatment IV
to regressions with multiple endogenous variables and an interacted instrument. The interaction
must lead to variation in the complier composition, so that the first stage matrix Π is invertible.
Although similarly derived, equations (9)-(13) are not as easily interpreted as in single-treatment
IV, however. The coefficient on 1 − A equals a weighted average of a-complier effects across the
strata plus a “bias” term scaled by the difference in b-complier effects. Since the scaling factor
is identified by the Π, IV may inform bounds on ωα(0) + (1 − ω)α(1), with narrower intervals
given by stratifications where πa(X)/πb(X) is more heterogeneous. Note, however, that since these
ratios are always positive under A3, ω ∈ (−∞, 0) ∪ (1,∞) and the partially-identified average is
nonconvex.

With δa, δb 6= 0, Proposition 1 shows that two-treatment IV models point-identify counterfactual-
specific LATEs if and only if they are mean-independent of the stratification. That is, consider

A4 LATE homogeneity: E[Y1 − Ya|A1 < A0, X] and E[Y1 − Yb|B1 < B0, X] do not depend on X .

The form of equations (9)-(10) then makes the following immediate:

Corollary to Proposition 1 : If Π is invertible and A1-A4 hold, the coefficients in (3) are α =
E[Y1 − Ya|A1 < A0] and β = E[Y1 − Yb|B1 < B0].

Under LATE homogeneity, therefore, the multiple-treatment IV regression recovers fallback-specific
LATEs.5 In the stylized example, α and β are the average returns to GED certification for

5One may extend Proposition 1 to multivalued X and an over-identified IV regression with many stratum
interactions. When A4 holds across all values of X, counterfactual-specific LATEs are identified by any two and
a standard overidentification test is valid for A1-A4.
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individuals who would have otherwise dropped out and completed high school, respectively, provided
these do not vary systematically by X.6

What kinds of economic models generate A1-A4? Consider an individual deciding between the
treatment and fallbacks to maximize state-specific latent utility νt:

D = 1[ν1 ≥ νa, ν1 ≥ νb] (14)

A = 1[νa ≥ νb, νa ≥ ν1] (15)

B = 1[νb ≥ νa, νb ≥ ν1]. (16)

For A3 it is sufficient to have ν1 = h(X,Z, η) with h(x, 1, η) ≥ h(x, 0, η) almost-surely. A2 and A4
hold if potential outcomes can be written

Yt = f(X) + g(t) + εt, (17)

where

E[ε1 − εa|A1 < A0, X] = E[ε1 − εa|A1 < A0] (18)

E[ε1 − εb|B1 < B0, X] = E[ε1 − εb|B1 < B0], (19)

while A1 holds if (η, νa, νb, ε1, εa, εb)′ is independent of Z given X. Note that (17)-(19) neither
requires X to be excludable nor independent from potential outcomes (in which case it may be
thought of as an instrument); rather, we allow X to additively enter the outcome equation, with
mean-independent differences in residual outcome determinants within complier subpopulations.
Loosely, though there may be more a-compliers in the X = 1 stratum, they are not systematically
different from others when A4 holds. In section 3 and the appendix I build a simple parametric
model satisfying LATE homogeneity, in which X uniformly shifts the utility of one of the fallbacks.

2.2 Relaxing Independence and Homogeneity

Multi-treatment IV requires cross-stratum comparisons to inform a common pair of average treatment
effects, which in some applications may be unduly restrictive. As in other settings, however, the
IV approach may be extended to allow A4 to hold only conditional on a set of predetermined
covariates (Hirano et al., 2003; Abadie, 2003). The general approach is again intuitive: one could
imagine running two-treatment IV regressions at each point in the support of a discrete control
W . When cross-stratum differences in complier LATEs are fully captured by W , averaging the
resulting coefficients over the marginal complier distribution will recover population LATEs. This
procedure is conceptually possible yet likely infeasible when W is continuous or high-dimensional.
I next outline an alternative, flexible implementation.

6Proposition 1 also gives a way to indirectly validate A4 given a control C likely correlated with treatment effects.
Setting Y = C ×A in equation (3) yields a coefficient on 1−B of δb(E[C|A1 < A0, X = 1]− E[C|A1 < A0, X = 0])
under A1-A3, since β(0) = β(1) = 0. One could therefore test whether C systematically varies for a-compliers, and
likewise for b-compliers.
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I start with extensions of A1 and A4:

A1′ ((Yz1, Yza, Yzb, Az, Bz)z=0,1) ⊥⊥ Z|W,X

A4′ E[Y1 − Ya|A1 < A0,W,X] and E[Y1 − Yb|B1 < B0,W,X] do not depend on X

Here A1′ only requires the instrument to be as-good-as-randomly assigned once potential confounders
in W and X are fixed, while A4′ allows for arbitrary cross-stratum heterogeneity in complier
treatment effects through W . We then have the following:

Proposition 2 Suppose Pr(Z = 1|W,X) ∈ (0, 1), Pr(X = 1|W ) ∈ (0, 1) and

Π(W ) =

Pr(A1 < A0|W,X = 0) Pr(B1 < B0|W,X = 0)
Pr(A1 < A0|W,X = 1) Pr(B1 < B0|W,X = 1)

 (20)

is nonsingular with probability one. Define

λ = E[Z|W,X]− Z
E[Z|W,X](1− E[Z|W,X]) (21)

µa = E[λAX|W ]− E[λA|W ]X
E[X|W ](1− E[X|W ]) (22)

µb = E[λBX|W ]− E[λB|W ]X
E[X|W ](1− E[X|W ]) . (23)

Then, under A1′, A2, A3, and A4′,

E[Y1 − Ya|A1 < A0] = E

[(
E[λA|W ]
E[λA]

λµb
E[λµbA|W ]

)
Y

]
(24)

E[Y1 − Yb|B1 < B0] = E

[(
E[λB|W ]
E[λB]

λµa
E[λµaB|W ]

)
Y

]
. (25)

These weights are moreover identified by E[X|W ], E[Z|W,X], E[A|W,X,Z], and E[B|W,X,Z].

The proof of Proposition 2 shows that conditional-on-W IV coefficients on 1−A can be written
as the ratio of E[λµbY |W ] to E[λµbA|W ]. Averaging these over the marginal distribution of W
for a-compliers (with E[λA|W ]/E[λA] weights) thus identifies E[Y1 − Ya|A1 < A0]. Similar logic
proves (25). This requires the conditional IV estimand to be well-defined throughout the support
of W : Z|W,X and X|W must be nondegenerate and the conditional first-stage matrix must be
invertible. Thus, whileW must be rich enough to make Z ignorable and the stratum-specific LATEs
homogeneous, it must still allow for cross-stratum variation in complier shares. Proposition 2 then
suggests a two-step estimation procedure. In a first step, we flexibly estimate four conditional
expectations: E[X|W ], E[Z|W,X], E[A|W,X,Z], and E[B|W,X,Z]. The appendix shows how
these can then be used to form estimates of the weights in equations (24) and (25).7

7Inference for this two-step estimator may under appropriate regularity conditions be based either on a bootstrap
procedure or on analytic expressions following Andrews (1991) and Newey (1994a, 1994b).
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Finally, note that adding covariates to the treatment utility and potential outcome equations
of the earlier selection model extends it along the lines of A1′, A2, A3, and A4′:

ν1 = h(W,X,Z, η) (26)

Yt = f(W,X) + g(W, t) + εt, (27)

where differences in εt are mean-independent of X given W among compliers, the structural error
vector is independent of Z given (X,W ), and h(W,x, z, η) is almost-surely monotone in z given W .
Complier treatment effects may now nonparametrically vary across X through the g(W, t).

3 Empirical evaluation

3.1 GED Monte Carlo

I illustrate identification and estimation of counterfactual-specific LATEs with a model of GED
selection and adult earnings. Heckman and Urzúa (2010) use such a model to demonstrate
identification of GED effects under structural assumptions; I modify their specification to include a
stratification consistent with A1-A4. Here again Y denotes an individual’s log hourly earnings,
D indicates GED certification, and A and B indicate the two fallbacks of dropping out and
completing high school, respectively. As in Heckman et al. (2012), the instrument Z denotes
a quasi-experimental reduction in GED passing standards which induces some to take the GED.
These authors find that compliers who were older at the time of such a 1997 reform were more likely
to be drawn from a dropout counterfactual, perhaps due to differential constraints from minimum
schooling regulations. I correspondingly generate a stratification X representing age at the time of
reform. While age may directly affect earnings, I assume X does not affect the marginal returns
to schooling while uniformly shifting dropout utility, satisfying LATE homogeneity. An appendix
section fully specifies the model.

Population first-stage and reduced-form effects from the modeled quasi-experiment are reported
in Table 1. Panel A shows that a decrease in GED passing standards increases the share of GED-
certified students by 5.5 percentage points and decreases hourly earnings by 1.2 percent. Under
monotonicity, the former represents the total share of compliers in the population and the ratio of
reduced-form to first-stage effects is the overall LATE (−0.217).

Stratum-specific quasi-experimental moments are reported in Panel B. Compliers in the dropout-
constrained (X = 0) subsample are more likely to obtain a high school diploma when Z = 0, while
older compliers are more likely to drop out. The model parameterizes wages such that students
tend to see gains when shifted to the GED from the dropout fallback and losses when it replaces a
traditional diploma. Consequently, the reduced form effect of an easier GED exam is higher when
X = 1 (0.009) than when X = 0 (-0.019). The population two-treatment IV coefficients, α = 0.277
and β = −0.396, are obtained by multiplying the inverse of the first stage matrix by the reduced
form vector. By Proposition 1 these equal counterfactual-specific LATEs.

9



I next explore the finite-sample performance of IV estimates. Figure 2 summarizes 5,000 Monte
Carlo simulations from the model, over a range of parameters governing the strength of the IV first
stage. The black curve in panel A shows that the conventional LATE estimator becomes median
unbiased at relatively low levels of the multivariate first stage F -statistic (recall as these models are
just-identified, the estimators have no finite-sample moments). The counterfactual-specific LATE
estimates, in contrast, retain modest bias until F ≈ 5, with virtually all bias vanishing by F = 10.
Interestingly, bias in this model is nonmonotone for the dropout-counterfactual LATE estimator,
initially increasing in the range of 0.2-0.4. This increase is offset by a decline in the bias of the
other LATE estimator.

Panel B of Figure 2 similarly plots the interquartile range of Monte Carlo estimates. These
highlight the fact that while the two-treatment IV estimates are likely approximately unbiased
they are also likely to be highly variable, with an interquartile range around 5-10 times wider than
the corresponding single-treatment LATE estimate when F = 5. As counterfactual-specific LATEs
are identified by narrower variation in cross-strata first stage differences, they are prone to less
precision.

3.2 Differential Attrition

Identifying counterfactual-specific treatment effects is essential in a randomized trial with imperfect
followup. Suppose program offers Z are randomly assigned to individuals, who may choose both
whether or not to comply with the treatment and whether or not to participate in a subsequent
survey of an outcomes Y . Individuals can then be said to select between three possible states: being
treated and reporting outcomes (D), being untreated and reporting outcomes (A), and not reporting
outcomes (B). Since outcomes are only measured in states D and A (suppose the researcher sets
Y = 0 for anyone with B = 1), the estimable single-treatment LATE,

E[Y1 − Y0|D1 > D0] = E[Y1 − Ya|A1 < A0]ω + E[Y1|B1 < B0](1− ω) (28)

for ω = Pr(A1 < A0)
Pr(A1 < A0) + Pr(B1 < B0) , (29)

is not a weighted average of causal effects whenever there are any compliers drawn from B, or
Pr(B1 < B0) 6= 0. Facing endogenous attrition, researchers often conduct analyses on a restricted
subset of individuals with valid outcomes. Such a procedure, however, may also be difficult to
interpret as conditioning on ex post outcomes will tend to introduce imbalance in distribution of
the instrument when Pr(B1 < B0) 6= 0.8

As the form of equations (28) and (29) suggests, the differential attrition problem can be mapped
to the multiple-counterfactual setting. For a given exogenous stratification X, independence of Z
from potential outcomes (A1) is ensured by virtue of the randomized design, and in many settings

8Common solutions to differential attrition include parametric sample selection modeling (Gronau, 1974; Heckman,
1976) and nonparametric partial identification (Lee, 2009; Behaghel et al., 2009; Engberg et al., 2014). Weighting
estimators have also been proposed under conditional ignorability assumptions (Frölich and Huber, 2014).
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a program offer is likely to have no direct effect on latent outcomes and to not deter program
participation. A2 and A3 would then be satisfied provided that Z has no direct effect on attrition
behavior given treatment status and the indirect effect through treatment is monotone. These
assumptions are the same as those typically used to estimate nonparametric bounds on causal
parameters under differential attrition (Lee, 2009; Behaghel et al., 2009).

To solve the problem with this paper’s methods requires a stratification inducing variation in
response behavior while maintaining LATE homogeneity. One candidate X exploits the practice
of randomized intensive followup, a common surveying technique recommended with high attrition
rates (Duflo et al., 2008). Suppose upon initially measuring outcomes a researcher selects a random
fraction p of nonresponders for additional surveying attempts. Denote this set and a random
fraction p of initial responders by X = 1, with X = 0 for all others.9 Since X is correlated
with an individual’s probability of facing additional surveying, this X = 1 strata likely contains a
larger proportion of compliers with observable untreated outcomes (A1 < A0). Moreover since X is
randomly assigned, LATEs for both types of compliers will be the same across strata to the extent
the additional followup attempt draws second-round responses from individuals representative of
the pool of initial nonresponders.

The key LATE homogeneity condition is however not guaranteed by randomized followup per
se, and researchers hoping to use Propositions 1 or 2 to address differential attrition should carefully
design their randomized intensive surveying scheme. As an example, suppose researchers randomly
assign offers for a job-training program and initially conduct phone interviews on employment
outcomes throughout the day. If treated individuals are more likely to be working, the offer will
have an effect through treatment on the probability an individual will be home to answer the survey:
these compliers will have B1 < B0. However, suppose the timing of interviews is as-good-as-random
with respect to working hours (perhaps due to alphabetical or other quasi-random queuing), and
that a random second interview round occurs in similar fashion on a later day. Then individuals
with X = 1 will face a higher probability of being home when surveyed on either day one or day
two, but those successfully interviewed on the second day will not vary systematically from those
interviewed in the initial round. A4 would then hold, and Proposition 1 may be used.

I illustrate this approach by estimating the effects of Medicaid on self-reported outcomes in
the first year following a lottery of roughly 90,000 low-income adults. Finkelstein et al. (2012)
discuss the setting for the Oregon Health Insurance Experiment, which drew lottery winners
in eight drawings from March through September 2008. Lottery winners became eligible for
enrollment in a comprehensive Medicaid program, in which around 30% enrolled. Along with
administrative outcomes, Finkelstein et al. (2012) conducted a mail survey in the summer of
2009. Survey outcomes suggest Medicaid increased complier healthcare utilization, decreased out-
of-pocket expenditure and debt, and improved overall health. The relatively low rate of survey

9It will by Rao-Blackwell logic be more efficient to include all initial responders in both strata and weight them
by either p or 1− p. I follow this approach in the application.
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response (50%) and moderate 2 percentage point imbalance in the probability of response by
eligibility status, however, suggest caution in interpreting these subsample IV estimates.10

I first use the experimental data to replicate the Finkelstein et al. (2012) analysis sample
and restricted IV estimates. 30% of initial nonrespondents were selected for additional followup
attempts by mail and phone; the average yield on intensive surveying was around 22%. I then let the
stratum indicator X = 1 for those designated for intensive followup and for a proportionate random
sample of initial respondents, and construct A, B, and D from survey response and treatment
indicators as outlined above.11

IV estimates of the effect of Medicaid on a variety of health, financial, and medical care outcomes
are reported in Table 3. Column 1 replicates the “restricted” IV specifications of Finkelstein et al.
(2012) with a single treatment variable estimated over the subsample of individuals with measured
outcomes.12 Column 2 instead reports estimates of the coefficient on 1−A in IV regressions of the
form of equation (3) over the full experimental sample. Under A1-A4, these reflect Medicaid effects
for compliers who would always provide survey outcomes. Interestingly, the two-treatment IV
specification yields point estimates quite close to those from the restricted single-treatment model
across virtually every outcome. Although, as expected, the former are somewhat less precisely-
estimated, the estimate differences (reported in column 3) are tightly distributed around zero.
This suggests that, despite apparent endogenous attrition, the results of Finkelstein et al. (2012)
serve as reliable measures of the true causal effects.

4 Summary

This paper extends the theoretical framework of Imbens and Angrist (1994) to settings where
more than one causal channel is needed to answer an economic or causal question with a single
quasi-experiment. The ease by which Proposition 1 may be applied, using an estimator with
familiar statistical properties, is apparent in the above applications. More involved, though still
tractable estimators relax the key independence assumptions with controls. This framework thus
complements more data-intensive or parametric approaches to multiple-treatment LATE estimation.
Moverover, although the key assumption of LATE homogeneity may prove strong in some settings,
researchers may sometimes be able to increase its plausibility by careful experimental design.
This could prove especially useful in randomized trials with imperfect followup, where differential
attrition concerns loom large.

10Finkelstein et al. (2012) address attrition by showing instrument balance in the respondent subsample and
construct Lee (2009) bounds for intent-to-treat effects. They find generally robust results for healthcare use and
financial strain while not able to reject no effect on self-reported health.

11Although equations (28)-(29) describe a Z that makes attrition less likely, in Finkelstein et al. (2012) offers
increase the probability of nonresponse. In either case using 1 − A = 1 − (1 − C)R and 1 − B = R as the two
endogenous variables in equation (3) (where C indicates treatment receipt and R denotes survey response) identifies
the average causal effect of treatment among compliers who always respond as the coefficient on 1−A.

12I follow Finkelstein et al. (2012) in weighting all restricted IV estimates by the inverse probability of being
included in the intensive followup group. This turns out to be of little empirical consequence.
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Figure 2: Monte carlo simulations of GED LATE estimates

B. Interquartile range

Notes: This figure summarizes the median bias (panel A) and interquartile range
(panel B) of instrumental variable estimates of the effects of GED certification on
different complier populations, based on 5,000 simulations of the model described in
the text. Curves are smoothed by a tenth-order polynomial.

A. Median bias
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Reduced forms
GED 

certified
Not a HS 
dropout

Not a HS 
graduate

Log wages

(1) (2) (3) (4) (5)

All individuals 0.055 -0.012

All compliers -0.217

More dropout-constrained stratum 0.005 0.050 -0.019
Less constrained stratum 0.073 0.029 0.009

Dropout-counterfactual compliers 0.277
Diploma-counterfactual compliers -0.396

LATEs

Notes: This table reports population effects from the simulated model of GED certification and labor
market returns described in the text. Columns 1-3 report first-stage effects of the instrument on GED
certification (D ), whether an individual is not a high school dropout (1-A ), and whether an individual
is not a high school graduate (1-B ). Column 4 reports reduced-form effects of Z on log wages (Y ). In 
panel A effects are for full sample, while in panel B the effects are reported for two strata
differentiated by the average difficulty of dropping out of high school (X ). The single-treatment IV
coefficient is the ratio of reduced-form to first-stage effects in Panel A. The two-treatment IV
coefficients vector is the inverse of the first-stage matrix in Panel B post-multiplied by the reduced-
form vector. Under the assumptions in the text, these represent the local average treatment effect of
GED certification for all compliers (panel A), and for compliers who would otherwise drop out of
high school or otherwise earn a traditional diploma (panel B).

Table 1: Simulated treatment effects from a GED scoring change

A. Single-treatment IV

First stages

B. Two-treatment IV

15



Restricted IV isoLATE IV Difference
(1) (2) (3)

Using prescription drugs currently 0.088 0.083 0.005
(0.029) (0.031) (0.009)
0.212 0.197 0.015

(0.025) (0.039) (0.022)
0.022 0.015 0.007

(0.023) (0.034) (0.017)
0.008 -0.007 0.014

(0.014) (0.022) (0.013)

Blood cholesterol checked (ever) 0.114 0.138 -0.023
(0.026) (0.041) (0.027)
0.090 0.077 0.013

(0.026) (0.038) (0.021)
0.187 0.134 0.053

(0.040) (0.081) (0.064)
0.183 0.170 0.013

(0.034) (0.052) (0.029)

Any out of pocket expenses, last 6 months -0.200 -0.173 -0.026
(0.026) (0.042) (0.027)

Owe money for medical expenses currently -0.180 -0.187 0.007
(0.026) (0.038) (0.019)
-0.154 -0.122 -0.033
(0.025) (0.044) (0.031)
-0.036 -0.037 0.001
(0.014) (0.017) (0.006)

Self-reported heath good/very good/excellent 0.133 0.098 0.035
(0.026) (0.050) (0.038)

Self-reported health not poor 0.099 0.094 0.005
(0.018) (0.025) (0.012)

Health about the same or better, last 6 months 0.113 0.089 0.024
(0.023) (0.038) (0.026)

# of days physical health good, past 30 days 1.317 1.306 0.011
(0.563) (0.735) (0.350)

# past 30 days poor health did not impair activity 1.585 1.773 -0.188
(0.606) (0.832) (0.389)

# of days mental health good, past 30 days 2.082 1.857 0.225
(0.640) (0.929) (0.521)

Have usual place of clinic-based care 0.339 0.367 -0.028
(0.027) (0.043) (0.027)
0.280 0.282 -0.001

(0.026) (0.037) (0.019)
Got all needed medical care, last 6 months 0.239 0.187 0.052

(0.022) (0.055) (0.047)
Got all needed drugs, last 6 months 0.195 0.151 0.044

(0.019) (0.047) (0.040)
-0.004 -0.004 0.000
(0.015) (0.022) (0.011)

Pap test, last 12 months (women)

Have personal doctor

Table 2: Estimated first-year effects from the Oregon Health Insurance Experiment 

E. Access to care

Notes: This table reports IV estimates of the effects of Medicaid on 12-month survey outcomes using
randomized Medicaid offers from the Oregon Health Insurance Experiment as instruments. Column 1 uses a
single treatment variable, restricts estimation to those individuals with valid survey responses for each
outcome, and weights by the inverse probability of intensive follow-up, as in Finkelstein et al. (2012).
Column 2 is estimated with two endogenous variables, as described in the text, using the full sample of
78,374 individuals. Column 3 reports differences in these estimates. All regression control for experimental
strata. Robust standard errors, clustered by household, are reported in parentheses.

Didn't use ER for nonemergency, last 6 months

ER visits, last 6 months

Inpatient hospital admissions, last 6 months

A. Healthcare utilization (extensive margin)

C. Financial strain

Outpatient visits, last 6 months

D. Health outcomes

Trouble paying medical bills, last 6 months

Refused treatment due to debt, last 6 months

B. Compliance with preventative care

Blood tested for high blood sugar/diabetes (ever)

Mammogram, last 12 months (women ≥ 40)
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Online Appendix

Proof of Lemma 1

Consider the reduced-form regression of Y on Z, conditional on X. By the excludability of Z given
treatment and fallback status (A2), we can write

Y = Y1 + (Ya − Y1)A+ (Yb − Y1)B,

so that the regression coefficient on Z identifies:

E[Y |Z = 1, X]− E[Y |Z = 0, X] =E[Y1 + (Ya − Y1)A+ (Yb − Y1)B|Z = 1, X]

− E[Y1 + (Ya − Y1)A+ (Yb − Y1)B|Z = 0, X]

=E[Y1|Z = 1, X]− E[Y1|Z = 0, X]

+ E[(Ya − Y1)A1|Z = 1, X]− E[(Ya − Y1)A0|Z = 0, X]

+ E[(Yb − Y1)B1|Z = 1, X]− E[(Yb − Y1)B0|Z = 0, X]

=E[(Ya − Y1)(A1 −A0)|X] + E[(Yb − Y1)(B1 −B0)|X]

=E[Y1 − Ya|A1 < A0, X]Pr(A1 < A0|X)

+ E[Y1 − Yb|B1 < B0, X]Pr(B1 < B0|X),

where the third equality follows by independence of Z given X (A1) and the fourth by monotonicity
(A3). Furthermore, the conditional first-stage regression of D on Z is

E[D|Z = 1, X]− E[D|Z = 0, X] = E[D1 −D0|X]

= E[(1−A1 −B1)− (1−A0 −B0)|X]

= E[A0 −A1|X] + E[B0 −B1|X]

= Pr(A1 < A0|X) + Pr(B1 < B0|X).

This again follows by A1 and A3. The conditional IV coefficient on D is the ratio of reduced-form
to first-stage expressions, completing the proof �
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Proof of Proposition 1

The proof to Lemma 1 shows that under A1-A3 the conditional reduced form identifies

E[Y |Z = 1, X]− E[Y |Z = 0, X] = α(X)πa(X) + β(X)πb(X).

Furthermore, the conditional first-stage regressions for 1−A and 1−B are

E[1−A|Z = 1, X]− E[1−A|Z = 0, X] = −E[A1 −A0|X]

= Pr(A1 < A0|X)

= πa(X)

and

E[1−B|Z = 1, X]− E[1−B|Z = 0, X] = πb(X).

As with Lemma 1, these follow from A1 and A3.
Consider the multiple-endogenous variable IV regression of equation (3). Let Y denote a vector

of observations of Y , X a matrix of observations of 1−A and 1−B, and Z a matrix of observations
of Z and ZX. The endogenous regressor coefficients then satisfy:α

β

 = p lim
(
(Z̃′X̃)−1Z̃′Y

)
= p lim

(
((Z̃′Z̃)−1Z̃′X̃)−1(Z̃′Z̃)−1Z̃′Y

)
,

where Z̃ and X̃ are matricies of residuals from regressing Z and X on X and a constant. By above,

p lim
(
(Z̃′Z̃)−1Z̃′X̃

)
=

πa(0) πb(0)
πa(1) πb(1)

 = Π

p lim
(
(Z̃′Z̃)−1Z̃′Y

)
=

α(0)πa(0) + β(0)πb(0)
α(1)πa(1) + β(1)πb(1)

 .
When Π is invertible, the continuous mapping theorem and Slutsky’s theorem imply:

α
β

 =

πa(0) πb(0)
πa(1) πb(1)

−1 α(0)πa(0) + β(0)πb(0)
α(1)πa(1) + β(1)πb(1)

 .
Proposition 1 follows from simplifying this expression. �
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Proof of Proposition 2

Define for each V ∈ {A,B, Y }

δVW,X = E[V |Z = 0,W,X]− E[V |Z = 1,W,X] = E[(1− Z)V |W,X]
1− E[Z|W,X] − E[ZV |W,X]

E[Z|W,X]

= E

[
E[Z|W,X]− Z

E[Z|W,X](1− E[Z|W,X])V |W,X
]

= E[λV |W,X],

and note that by A1′ and A2 we have

δAW,X = E[A0 −A1|W,X]

δBW,X = E[B0 −B1|W,X]

δYW,X = E[(Ya − Y1)(A0 −A1) + (Yb − Y1)(B0 −B1)|W,X].

Next define the random vector αW
βW

 =

δAW,0 δBW,0

δAW,1 δBW,1

−1 δYW,0
δYW,1

 .
Here αW and βW are conditional analogues of the multiple endogenous variable IV specification
used in Proposition 1. Focusing on the first, we may write

αW =
δYW,0δ

B
W,1 − δYW,1δBW,0

δAW,0δ
B
W,1 − δAW,1δBW,0

.

Furthermore,

δYW,0δ
B
W,1 − δYW,1δBW,0 =E[(Ya − Y1)(A0 −A1)|W,X = 0]E[B0 −B1|W,X = 1]

+ E[(Yb − Y1)(B0 −B1)|W,X = 0]E[B0 −B1|W,X = 1]

− E[(Ya − Y1)(A0 −A1)|W,X = 1]E[B0 −B1|W,X = 0]

− E[(Yb − Y1)(B0 −B1)|W,X = 1]E[B0 −B1|W,X = 0]

=E[Y1 − Ya|A1 < A0,W,X = 0]Pr(A1 < A0|W,X = 0)Pr(B1 < B0|W,X = 1)

+ E[Y1 − Yb|B1 < B0,W,X = 0]Pr(B1 < B0|W,X = 0)Pr(B1 < B0|W,X = 1)

− E[Y1 − Ya|A1 < A0,W,X = 1]Pr(A1 < A0|W,X = 1)Pr(B1 < B0|W,X = 0)

− E[Y1 − Yb|B1 < B0,W,X = 1]Pr(B1 < B0|W,X = 1)Pr(B1 < B0|W,X = 0)

=E[Y1 − Ya|A1 < A0,W ](δAW,0δBW,1 − δAW,1δBW,0),
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where the second equality follows by A3 and the third by A4′. Thus

E[Y1 − Ya|A1 < A0,W ] = αW ,

so that, by the Law of Iterated Expectations,

E[Y1 − Ya|A1 < A0] = E

[
E[(Y1 − Ya)(A1 −A0)|W ]

Pr(A1 < A0)

]
= E

[
Pr(A1 < A0|W )
Pr(A1 < A0) αW

]
.

Finally, note that we can write

δVW,0δ
B
W,1 − δVW,1δBW,0 = E[λV |W,X = 0]E[λB|W,X = 1]− E[λV |W,X = 1]E[λB|W,X = 0]

= E[λV (1−X)|W ]E[λBX|W ]
(1− E[X|W ])E[X|W ] − E[λV X|W ]E[λB(1−X)|W ]

E[X|W ](1− E[X|W ])

= E

[
λ
E[λBX|W ]− E[λB|W ]X
E[X|W ](1− E[X|W ]) V |W

]
= E [λµbV |W ] ,

and

Pr(A1 < A0|W ) = E[E[A0 −A1|W,X]|W ]

= E[E[λ ·A|W,X]|W ]

= E[λA|W ].

Thus, once again applying the Law of Iterated Expectations,

E[Y1 − Ya|A1 < A0] = E

[
E[λA|W ]
E[λA]

λµbY

E [λµbA|W ]

]

The same steps show the result for E[Y1 − Yb|B1 < B0]. �

Note that the function λ(w, x, z) generating λ = λ(W,X,Z) is identified by the conditional
expectation function E[Z|W,X] and that

E[λA|W = w] =
∑
x=0,1

∑
z=0,1

λ(w, x, z)E[A|W = w,X = x, Z = z]

× Pr(Z = z|W = w,X = x)Pr(X = x|W = w)

and similarly for E[λB|W ]. Moreover,

E[λBX|W = w] =
∑
z=0,1

λ(w, 1, z)E[B|W = w,X = 1, Z = z]Pr(Z = z|W = w,X = 1)E[X|W = w].
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Thus both the weights E[λA|W = w]/E[λA] and the function µb(w, x) generating µb = µb(W,X)
are identified by the conditional expectation functions E[X|W ], E[Z|W,X], E[A|W,X,Z], and
E[B|W,X,Z]. Finally, note that

E[λµbA|W = w] =
∑
x=0,1

∑
z=0,1

λ(w, x, z)µa(w, z)E[A|W = w,X = x, Z = z]

× Pr(Z = z|X = x,W = w)Pr(X = x|W = w)

We can thus form sample analogues of the weighting schemes identifying E[Y1 − Ya|A1 < A0]
from nonparametric estimates of these conditional expectation functions. Similar results follow for
E[Y1 − Yb|B1 < B0].
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GED Selection Model

Section 3.1 simulates data on educational attainment and labor market returns using a model
inspired by that of Heckman and Urzúa (2010). Potential log hourly earnings are given by

Yti = µt + γXi + εit, (30)

where Xi = 1 is a cohort indicator and t ∈ {1, a, b} indexes the individual’s educational status:
GED-certified, high school dropout, or traditional high school graduate. Individuals observe the
schooling environment and chooses t that maximizes νti, where

ν1i = Φ(π1Z̃1i − η1i) (31)

νai = Φ(πaZ̃ai − ηai)1[Xi ≥ ξi] (32)

νbi = Φ(πbZ̃bi − ηbi), (33)

and where Φ(·) denotes the normal CDF. That is, individuals choose the schooling level that
gives them the highest latent utility, subject to the constraint that some may not be allowed to
drop out of high school by virtue of being too young (1[Xi < ξi]). To simulate the model, I let
(Z̃1i, Z̃ai, Z̃bi) ∼ N(µZ ,ΣZ) and (ε1i, εai, εbi, η1i, ηai, ηbi) ∼ N(0,Σεν) where

ΣZ =


1 0 0
0 1 0
0 0 1

 , Σεν =



0.64 0.16 0.16 0.024 −0.32 0.016
0.16 1 0.2 0.02 −0.3 0.01
0.16 0.2 1 0.02 −0.4 0.04
0.024 0.02 0.02 1 0.6 0.1
−0.32 −0.3 −0.4 0.6 1 0.2
0.016 0.01 0.04 0.1 0.2 1


, (34)

and where (µ1, µa, µb) = (0.3, 0.1, 0.7) and (π1, πa, πb) = (0.2, 0.3, 0.1). With Xi = ξi = 0, this
model is identical to that of Heckman and Urzúa (2010).

To generate cross-strata variation I let ξ ∼ N(0.5, 0.025) and X ∼ Bernoulli(0.5). Setting
γ = 0.2 with allows an individual’s cohort to affect the level of her adulthood wages, but not her
relative returns to schooling, satisfying A4. As in Heckman and Urzúa (2010), I apply Proposition
1 with an instrument Zi that represents an exogenous increase in Z̃1i by 0.75 standard deviations.
Population moments of this model are reported in Table 1. For the Monte Carlo simulations in
Figure 2, I draw 5,000 sets of 200,000 independent observations from the model while varying the
first-stage parameter π1 from 0.01 to 0.5. This leads to variation in Cragg and Donald (1993)
first-stage F -statistics; the benchmark with π1 = 0.3 corresponds to F ≈ 12.2.
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