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Abstract

Many empirical studies leverage shift-share (or �Bartik�) instruments
by combining a set of aggregate shocks with measures of di�erential shock
exposure. We derive a necessary and su�cient shock-level orthogonality
condition for such instruments to identify causal e�ects. We then show
that this condition holds when shocks are as-good-as-randomly assigned,
growing in number, and su�ciently dispersed in terms of average exposure.
Our quasi-experimental framework suggests several tests of shift-share in-
strument validity, extends to settings with conditional random assignment
or multiple sets of shocks, and highlights a possible inconsistency from es-
timating many shocks � similar to that of two-stage least squares with
many instruments � which may be addressed by split-sample estimation.

∗Contact: borusyak@gmail.com, hull@uchicago.edu, and x.jaravel@lse.ac.uk. We thank Rodrigo Adão, Moya Chin,
Paul Goldsmith-Pinkham, Edward Glaeser, Larry Katz, Michal Kolesár, Jack Liebersohn, Eduardo Morales, Jörn-Ste�en
Pischke, Isaac Sorkin, and Itzchak Tzachi Raz for helpful comments. An earlier version of this draft was circulated in
May 2017 under the title Consistency and Inference in Bartik Research Designs.



1 Introduction

A large and growing number of empirical studies exploit variation in shift-share (or �Bartik�) instru-

ments, which combine a set of aggregate shocks with measures of di�erential shock exposure. Bartik

(1991) and Blanchard and Katz (1992) are widely considered to have pioneered this research design in

studies of local labor market dynamics. Autor, Dorn, and Hanson (2013, henceforth ADH) is a more

recent application. ADH combine industry-speci�c shocks to Chinese import competition, measured

in non-U.S. countries, with the industrial composition of U.S. labor markets. They use this shift-share

instrument to estimate the e�ects of import competition on regional employment growth.1

Despite the popularity of shift-share instrumental variable (IV) regressions, few papers have studied

the formal conditions underlying their validity. A recent exception is Goldsmith-Pinkham et al. (2018),

who argue that identi�cation in shift-share designs hinges on the exogeneity of shock exposure. This

interpretation of ADH � a paper which we will use as a main illustrative example � requires industrial

composition to be as-good-as-randomly assigned to U.S. labor markets. The Goldsmith-Pinkham

et al. (2018) reasoning is based on a numerical equivalence between the shift-share estimator and an

overidenti�ed generalized method of moments (GMM) procedure that uses the exposure pro�le as

a set of instruments, with the aggregate shocks determining the weighting matrix. While providing

a coherent econometric framework for shift-share IV, this shares-as-instruments interpretation has

nevertheless proved controversial.2

This paper develops a novel framework for understanding shift-share research designs, based on

the exogeneity of the aggregate shocks themselves. Our approach also starts with a numerical equiva-

lence: shift-share estimates are identically obtained by a just-identi�ed IV regression, in which shocks

instrument for a particular weighted average of treatment. In contrast to conventional shift-share

IV procedures, the equivalent regression is estimated in the space of shocks (the industry space, for

ADH). Correspondingly, we show that the shift-share IV exclusion restriction is satis�ed if and only

if a simple shock-level orthogonality condition holds. Shocks must be uncorrelated with a relevant

unobservable: an average of untreated potential outcomes of di�erent observations, weighted by their

exposure to a given shock. In the ADH example, this unobservable re�ects the average growth of em-

ployment due to unobserved factors in U.S. regions specializing in each industry. Thus for the ADH

shift-share instrument to be valid, the growth of Chinese import competition, measured outside the

U.S., must not be systematically di�erent for industries concentrated in regions where employment is

falling for other reasons.

1While most shift-share designs study regional variation in outcomes and treatment, observations may also represent
�rms di�erentially exposed to foreign market shocks (Hummels et al., 2014), product groups demanded by di�erent
types of consumers (Jaravel, 2017), or groups of individuals facing di�erent income growth rates (Boustan et al., 2013).
Other in�uential and recent examples of shift-share IVs, spanning many settings and topics, include Blanchard and
Katz (1992), Luttmer (2006), Card (2009), Saiz (2010), Kovak (2013), Nakamura and Steinsson (2014), Ober�eld and
Raval (2014), Greenstone et al. (2014), Diamond (2016), Suárez and Zidar (2016), and Hornbeck and Moretti (2018).

2See, for example, Tim Bartik's comment on a recent online discussion: http://blogs.worldbank.org/

impactevaluations/rethinking-identification-under-bartik-shift-share-instrument.
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Using this characterization, we next propose a set of intuitive shock-level restrictions that satisfy

the shift-share orthogonality condition. The key requirement of our approach is that shocks are as-

good-as-randomly assigned, as if arising from a natural experiment. However, quasi-random shock

assignment is not, by itself, enough. The equivalence result shows that for the law of large numbers to

apply to shift-share quasi-experiments, the number of observed independent shocks must grow with

the sample. Moreover, even though our approach allows each observation to be mostly exposed to only

a small number of shocks, on average shock exposure must be su�ciently dispersed such that no �nite

set of shocks asymptotically drives variation in the shift-share instrument. Under these conditions,

we show that the shift-share instrument is valid, even when shock exposure is endogenous.

Our shocks-as-instruments interpretation bears several new insights for shift-share estimation and

inference in practice. First, we outline di�erent validations of the quasi-experimental framework, such

as shock-level balance tests, pre-trend checks, and tests for auto- and intra-class correlation of shocks.

Second, we show how researchers can weaken the key quasi-experimental assumptions by controlling

for exposure-weighted averages of shock-level observables. For example when shocks are naturally

grouped into larger clusters (such as industry sectors in ADH), controlling for measures of cluster

exposure allows for endogenous cluster shocks and avoids inconsistency from observing only a small

number of clusters. Third, we show that for the orthogonality condition to hold when � as in ADH �

the exposure weights do not sum to one, researchers must either control for the sum or de-mean the

aggregate shocks. Fourth, we derive optimal shift-share IV estimators when multiple sets of shocks

(such as country-speci�c China import shocks in the ADH setting) satisfy the orthogonality condition,

along with the corresponding omnibus speci�cation test of overidentifying restrictions. Finally, we note

a potential for inconsistency when the aggregate shocks are estimated within the IV estimation sample,

as in Bartik (1991). This issue is closely related to the classic bias of two-stage least squares with

many instruments, which Angrist et al. (1999) show can be overcome with split-sample IV estimation.

Correspondingly, we recommend that researchers use split-sample estimates of aggregate shocks when

constructing shift-share instruments.

Regarding inference, we follow Adao et al. (2018) in arguing that researchers should account for

the variance of the quasi-experimental shocks, in addition to usual observation sampling variation.

In particular we show that conventional standard error formulas applied to a modi�ed version of the

shock-level IV regression from our equivalence result coincide with the formulas in Adao et al. (2018),

and can thus be used for valid inference under their assumptions. This result extends to conventional

diagnostics of �rst-stage instrument strength and instrument balance, suggesting researchers may wish

to use shock-level regressions in practice.

A quasi-experimental shock framework may in many applications be better aligned with re-

searchers' motivations and goals, relative to the shares-as-instruments interpretation. For example

Hummels et al. (2014), who combine country-by-product supply shocks with lagged �rm-speci�c ex-
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posure to sources of intermediate inputs, motivate their approach by writing:

�While these shocks are exogenous to Danish �rms, their impact varies markedly across

�rms [...]. That is, if only one Danish �rm buys titanium hinges from Japan, idiosyncratic

shocks to the supply or transport costs of those hinges a�ects just that one �rm.� (p. 1598;

emphasis added)

Similarly, as noted ADH construct an instrument for Chinese import penetration in U.S. regions using

the industry growth of Chinese imports in other developed economies. This research design attempts

to purge Chinese industry import penetration from U.S.-speci�c factors, which one may view as an

attempt to obtain quasi-random variation in the industry space. We emphasize, however, that the

shocks-as-instruments interpretation may be less appropriate for some applications, particularly those

involving only a small number of shocks.3

Econometrically, our approach is related to the Kolesar et al. (2015) study of consistency in IV

designs with many invalid instruments. Identi�cation in that setting follows when violations of in-

dividual instrument exclusion restrictions are uncorrelated with their �rst-stage e�ects. Here, per

Goldsmith-Pinkham et al. (2018), the shock exposure measures can be thought of as a set of invalid

instruments, while our key orthogonality condition requires their exclusion restriction violations to be

uncorrelated with the aggregate shocks, rather than with their �rst-stage e�ects.

Our work also relates to other recent methodological studies of shift-share designs, including Jaeger

et al. (2018) and Broxterman and Larson (2018). The former highlights biases of shift-share IV due

to endogenous local labor market dynamics, while the latter explores the empirical performance of

di�erent shift-share instrument constructions. More broadly, our paper adds to a growing literature

seeking to interpret, test, and extend the high-level assumptions of common applied research designs,

including, among others, Borusyak and Jaravel (2016) for event study designs, de Chaisemartin and

D'Haultfoeuille (2018) for two-way �xed e�ect designs, and Hull (2018) for mover designs.

The rest of this paper is organized as follows. Section 2 introduces the framework and notes

the equivalence between conventional shift-share IV and a particular shock-level IV estimator. Sec-

tion 3 then derives and interprets the key orthogonality condition, and Section 4 proposes quasi-

experimental assumptions under which it is satis�ed. Section 5 discusses inference and tests of the

quasi-experimental framework, while Section 6 outlines extensions and practical implications, includ-

ing the potential for inconsistency with many estimated shocks. Section 7 concludes.

3For example, Card (2001), Kovak (2013), Dix-Carneiro and Kovak (2017), and Acemoglu and Restrepo (2017) each
construct a shift-share instrument with around twenty shocks. The Goldsmith-Pinkham et al. (2018) approach, which
does not require a large shock sample, may thus be more appropriate framework for understanding these designs.
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2 Shocks as Instruments in Shift-Share Designs

Suppose we observe an outcome y`, a treatment x`, and a vector of controls w` (which we assume

includes a constant) in a random sample of size L. For concreteness, we refer to the sampled units as

�locations,� as they are in Bartik (1991), ADH, and many other shift-share applications. We wish to

estimate the causal e�ect of the treatment β, assuming a linear constant-e�ect model

y` = βx` + w′`γ + ε`, (1)

where by de�nition E [ε`] = E [w`ε`] = 0.4 Here ε` denotes the residual from projecting the untreated

potential outcome of location ` � that is, the outcome we would observe there if treatment were set

to zero � on the controls w`. In the ADH setting, for example, y` and x` denote the growth rates

of employment and Chinese import penetration of local labor market `, while w` contains measures

of labor force demographics from a previous period.5 The residual ε` thus contains all factors that

are uncorrelated with lagged demographics but which would drive local employment growth in the

absence of rising Chinese imports.

In writing equation (1) we do not require realized treatment x` to be uncorrelated with the potential

outcomes ε`, in which case the causal parameter β would be consistently estimable by ordinary least

squares (OLS). Instead, we assume that, along with (y`, x`, w
′
`)
′, we observe a set of N aggregate

shocks gn and weights s`n ≥ 0 which predict the exposure of location ` to each shock. Using these,

we construct a shift-share instrument z` as the exposure-weighted average of shocks:

z` =

N∑
n=1

s`ngn. (2)

Here z` can thus be thought of as a predicted local shock for location `. In the ADH design, gn denotes

industry n's average Chinese import penetration growth across eight developed non-U.S. economies,

while s`n is the lagged employment share of industry n in location `, as measured in a base period. The

shift-share instrument z` is thus interpreted as a predicted local �China shock.� Again for concreteness

we refer to the space of shocks as �industries,� as in Bartik (1991) and ADH. To start simply we �rst

assume that the sum of exposure weights across industries is constant, i.e.
∑N
n=1 s`n = 1, and treat

the aggregate shocks gn as known. In Section 6 we relax both of these assumptions.

The shift-share IV estimator β̂ uses z` to instrument for x` in equation (1). Letting v⊥` denote the

4It is straightforward to extend our framework to models with heterogeneous treatment e�ects. As shown in Ap-
pendix A, the shift-share IV estimator in general captures a convex average of location-speci�c linear e�ects β` under
an additional �rst stage monotonicity assumption, as with the local average treatment e�ects of Angrist and Imbens
(1994). This follows similarly to the results on heterogeneous e�ects in ordinary least square shift-share regressions
considered by Adao et al. (2018).

5Because ADH do not observe imports by region, they proxy local import penetration in each industry by the national
average to construct x`. We abstract from this issue and other details of their setup in our discussion.
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residual from the sample projection of a variable v` on the controls w`, we can write

β̂ =
1
L

∑L
`=1 z`y

⊥
`

1
L

∑L
`=1 z`x

⊥
`

, (3)

where the numerator and denominator represent location-level covariances between the instrument

and the residualized outcomes and treatment, respectively.

To build intuition for how identi�cation in shift-share designs may come from the aggregate shocks,

we �rst show that β̂ can also be expressed as an industry-level IV estimator that uses the shocks as an

instrument. Changing the order of summation across locations and industries in both the numerator

and denominator of (3), we have

β̂ =
1
L

∑L
`=1

∑N
n=1 s`ngny

⊥
`

1
L

∑L
`=1

∑N
n=1 s`ngnx

⊥
`

=

∑N
n=1 ŝngnȳ

⊥
n∑N

n=1 ŝngnx̄
⊥
n

, (4)

where the weights ŝn = 1
L

∑L
`=1 s`n measure the average exposure of locations to industry n and where

v̄n =
∑L
`=1 s`nv`/

∑L
`=1 s`n denotes a weighted average of variable v`, with larger weights given to

locations more exposed to industry n.6 Equation (4) thus shows that the shift-share IV estimator is

numerically equivalent to the coe�cient from an ŝn-weighted regression of ȳ
⊥
n , the average residualized

outcome of locations specializing in n, on the same weighted average of residualized treatment, x̄⊥n ,

instrumented by gn.

In the ADH example, it is expected that industries with a high non-U.S. China shock gn would

be concentrated in U.S. regions facing increasing Chinese import penetration, so that the �rst stage

covariance
∑N
n=1 ŝngnx̄

⊥
n is positive. By forming the reduced form numerator of (4) the researcher

learns whether these industries are also concentrated in areas with large declines in employment. As

usual for the ratio of these covariances (and thus β̂) to reveal a causal e�ect, a particular industry-level

exclusion restriction must hold. We next derive this restriction.

3 Shock Orthogonality

We seek conditions under which the shift-share IV estimator β̂ is consistent for the causal parameter

β; that is, β̂
p−→ β as L → ∞. As usual, IV consistency requires both instrument relevance (that

z` and x` are asymptotically correlated, controlling for w`) and validity (that z` is asymptotically

uncorrelated with ε`). Since relevance can be inferred from the data, we assume throughout that it

is satis�ed and focus our attention on validity. Applying the logic of (4) to the population covariance

6The weighted covariance interpretation follows from observing that the weighted means of ȳ⊥n and x̄⊥n are zero: e.g.∑N
n=1 ŝnȳ

⊥
n = 1

L

∑L
`=1

(∑N
n=1 s`n

)
y⊥` = 1

L

∑L
`=1 y

⊥
` = 0, since the y⊥` are regression residuals.
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between the shift-share instrument and untreated potential outcomes, we have

Cov [z`, ε`] = E

[
N∑
n=1

s`ngnε`

]

=

N∑
n=1

sngnφn, (5)

where sn ≡ E [s`n] measures the expected exposure to industry n, and where φn ≡ E [s`nε`] /E [s`n]

is an exposure-weighted expectation of untreated potential outcomes.7 Given a law of large numbers,

i.e. 1
L

∑L
`=1 z`ε` − Cov [z`, ε`]

p−→ 0, the shift-share IV estimator is therefore consistent if and only if

N∑
n=1

sngnφn → 0. (6)

Equation (6) is our key orthogonality condition. The left-hand side represents a covariance (mea-

sured in the set of N industries and weighted by sn) between two variables: aggregate shocks gn

and industry-level unobservables φn. Thus in ADH, equation (6) characterizes the large-sample be-

havior of a covariance between industry-speci�c measures of Chinese import penetration (gn) and a

weighted average of unobserved factors a�ecting the employment growth of locations specializing in

each industry (φn).

The industry-level orthogonality condition helps to formalize intuitive identi�cation arguments in

the ADH design. One may, for example, be concerned that orthogonality fails due to reverse causal-

ity: China may gain market shares in certain industries precisely because these industries, and thus

locations specializing in them, are not performing well in the U.S. (as re�ected in φn). Measuring

import penetration outside of the U.S. addresses such a concern, to the extent that the underlying

performance of U.S. and non-U.S. industries are not correlated. In addition, equation (6) helps under-

stand potential concerns about omitted variable bias, because of either unobserved industry shocks or

regional unobservables that are correlated with industrial composition. For example, industries with

a higher growth of competition with China may also be more exposed to certain technological shocks

(e.g., automation), or these industries could happen to have larger employment shares in regions that

are a�ected by other employment shocks (e.g., low-skill immigration). These too would be captured

by φn.

Before proceeding, three general points on the orthogonality condition are worth highlighting.

First, note that the weight each industry receives in the covariance (5) is the expected shock exposure

sn: for example, in the ADH setting sn is the average employment share of industry n in the pop-

7For initial simplicity in this section we derive the validity condition given �xed sequences of the set of (gn, sn, φn). In
the quasi-experimental framing it is more natural to imagine a hierarchical sampling design, in which sets are �rst drawn
from a larger population. All expectations and covariances in this section should then be thought to be conditional on

the industry-level draws, with validity satis�ed by
∑N
n=1 sngnφn

p−→ 0. We formalize this framework in Section 4.
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ulation. In practice researchers using employment shares as the exposure measure sometimes weight

shift-share IV regressions by total location employment (e.g., Card (2009) and ADH themselves). In

this case sn has a more intuitive interpretation: the lagged employment of industry n. Second, note

that local variation in industry exposure plays an important role in the orthogonality condition. If

all locations have the same exposure to a given industry n, i.e. s`n = sn, then φn = E [ε`] = 0 and

this industry will not contribute to (6). Finally, note that if the exposure measures are as-good-as-

randomly assigned, i.e. if E [s`nε`] = 0 for all n, then φn = 0 and equation (6) is satis�ed for any

shocks gn. This is the preferred interpretation of shift-share IV in Goldsmith-Pinkham et al. (2018).

4 Quasi-Experimental Shock Assignment

When might the shift-share orthogonality condition be satis�ed when exposure shares are endogenous?

In this section we develop a framework in which the aggregate shocks are as-good-as-randomly assigned

with respect to the relevant industry-level unobservable. We also give guidance on which individual

controls a researcher might include to weaken the key quasi-experimental assumption in practice.

To formalize the shock quasi-experiment, we �rst take a step back. Section 3 viewed industry

characteristics, including shocks, as �xed given a sample of size L. We now imagine a hierarchical

data-generating process in which, given the set of industry exposure weights s1, . . . , sN , the set of

aggregate shocks gn and industry-level unobservables φn are drawn from some distribution. Our

quasi-experimental framework assumes that shocks are drawn orthogonally to the unobservables, while

placing no restrictions on the joint distribution of φn itself. For example, in ADH we may imagine

industry import shocks arising quasi-randomly from an unanticipated policy or productivity change

in China.

Speci�cally, our baseline case makes two assumptions on the industry-level data-generating process:

A1. Shocks are mean-independent of φn, with the same mean: E [gn | φn] = µ;

A2. Shocks are mutually mean-independent, conditional on φ1, . . . , φN , and the Her�ndahl index of

industry exposure weights converges to zero:
∑N
n=1 s

2
n → 0.

Under these and some weak regularity conditions, the orthogonality condition holds and the shift-share

instrument is valid.8

Our key quasi-experimental assumption A1 states that the aggregate shocks are as-good-as-randomly

assigned, as formalized by mean-independence with respect to the industry-level unobservables φn.

8Formally, we assume that the fourth moments of each φn and gn−µ are bounded by �nite B4
φ and B4

g , respectively.

Then A1 implies E
[∑

n snφngn
]

=
∑
n E [snφn]µ = E [ε`]µ = 0, while by A2 and the Cauchy-Schwartz inequality

Var
[∑

n snφngn
]

= E
[(∑

n snφn (gn − µ)
)2] ≤ ∑n

√
s4nE [φ4n]E

[
(gn − µ)4

]
≤ B2

φB
2
g

∑
n s

2
n → 0. This guarantees

L2-convergence and thus weak convergence:
∑
n snφngn

p−→ 0.
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The second assumption A2 then ensures that a law of large numbers applies to the weighted co-

variance (5), satisfying the orthogonality condition asymptotically when A1 holds. Intuitively, since∑N
n=1 s

2
n ≥ 1/N, the restriction on exposure concentration in A2 implies that the number of observed

industries grows with the sample, while the mutual mean-independence condition implies that addi-

tional observed shocks draw (5) closer to zero under A1.9 Note that the concentration condition is

stated in terms of the Her�ndahl index but this is not the only possibility; since
∑N
n=1 s

2
n ≤ maxn sn,

it is su�cient that the largest industry becomes vanishingly small as the sample grows.

As with other quasi-experimental designs, researchers may wish to assume that A1 and A2 only

hold conditionally on a set of observables. For example, one could weaken the mean-independence

restriction of A1 to allow the mean of shocks to depend linearly on a vector of industry-level observables

qn (which includes a constant),

E [gn | φn, qn] = q′nτ, (7)

and similarly assume the mutual mean-independence condition of A2 holds for the residual g∗n =

gn − q′nτ . In this case it is straightforward to use only the residual shock variation for identi�cation

by adding an exposure-weighted vector of industry controls
∑N
n=1 s`nqn to the control vector w`. As

shown in Appendix B, the resulting estimator is equivalent to a two-step procedure in which the

residuals g∗n are �rst estimated by a weighted regression of gn on qn and then used to construct a new

shift-share instrument ẑ∗` =
∑
n s`nĝ

∗
n. By the Frisch-Waugh-Lovell theorem, one could also directly

control for qn in the equivalent industry-level regression (4) to weaken A1 and A2.

An intuitive application of this result is found in the case where industries are grouped into

bigger clusters c (n) ∈ {1, . . . , C}; for example, detailed industries in ADH can be grouped into

larger industrial sectors. Here researchers may be more willing to assume that the aggregate shocks

are exogenously assigned within clusters, but that the cluster-average shock is endogenous. With

qn including a set of cluster indicators, the shift-share IV would then be valid with the researcher

controlling for the individual exposure to each cluster (e.g. the local employment shares of each sector

in ADH), s`c =
∑N
n=1 s`n1 [c (n) = c].10 Interestingly, the same approach also relaxes A2. If shocks

have a cluster-speci�c component, gn = gc(n) + g∗n, and the number of clusters is small, then the law

of large numbers can apply to g∗n but not to gn, even if the gc are also as-good-as-randomly assigned.

There are therefore two distinct reasons to control for cluster exposure in shift-share IV: either to

remove a non-random component of the shocks or to remove a random component that causes shocks

to be too correlated with one another asymptotically.

When shocks are clustered but the set of cluster exposures s`c are not controlled for, consistency

follows from a modi�ed version of A2:

9Note that while A1 and A2 only restrict industry-level variables, we still also require a law of large numbers to hold
in the sample of locations; namely, we need both L→∞ and N →∞ for consistency.

10Recently, Jaravel (2017) and Garin and Silverio (2017) follow this strategy.
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A2
′. Cluster shocks gc are mutually mean-independent conditional on φ1, . . . , φN , and the Her�ndahl

index of expected cluster exposure converges to zero:
∑C
c=1 s

2
c → 0, where sc = E [s`c].

This assumption implies instead a cluster-level law of large numbers, where the number of observed

clusters C increases with the sample and no one cluster drives variation in the shift-share instru-

ment asymptotically.11 As we discuss in the next section, this �random cluster e�ect� approach has

implications for shift-share IV inference.

To conclude this section, we note that the quasi-experimental assumptions generalize to a panel

setting in which outcomes, treatment, and shocks are observed for the same location over multiple

periods. This setup, which we formally develop in Appendix C, delivers two insights. First, when

the analogs of assumptions A1 and A2 hold (implying that shocks are mean-independent across both

locations and time periods), identi�cation can come either from having many industries N or from

observing a �nite number of industries over many periods. Second, researchers can relax the two

key assumptions by including location and time �xed e�ects in the regression: aggregate shocks are

then allowed to be correlated with time-invariant aggregated local unobservables (even if exposure

varies over time) and may have time-varying means. Controls can also be constructed to extract the

idiosyncratic component from serially correlated shocks when their stochastic process belongs to a

known parametric class, such as an autoregressive model.

5 Inference and Testing

When the aggregate shocks are random and growing in number, as in A1 and A2, conventional

standard errors may fail to capture the asymptotic variance of the shift-share IV estimator. This

issue has been recently studied by Adao et al. (2018). Intuitively, the quasi-random assignment of gn

guarantees that the orthogonality condition holds in expectation but not for any given realization of

N shocks; when N � L, the covariance of gn and φn may thus be more important than the location

sampling variation targeted by conventional standard errors.

In simulations Adao et al. (2018) show that failing to account for this covariance can lead to large

distortions in the coverage probabilities of standard shift-share IV con�dence intervals. They then

derive corrected standard error formulas under the assumption that each control w`j either has a

shift-share structure, i.e. w`j =
∑N
n=1 s`nqnj for some qnj , or is uncorrelated with the shift-share

instrument. While restrictive, this framework captures two main reasons for including controls in

shift-share designs: either because shocks gn satisfy A1 only conditionally on the industry-level vector

qn (as in equation (7)) or because the w`j absorb some of the residual variance in outcomes, thereby

11Indeed, denoting N(c) = {n | c(n) = c}, Var

[(∑
c

∑
n∈N(c) snφngn

)2]
=
∑
c s

2
cE
[(∑

n∈Nc

sn
sc
φngn

)2]
=∑

c s
2
c

∑
n,m∈N(c)

sn
sc

sm
sc

E [φnφmgngm] ≤
∑
c s

2
c

∑
n,m∈N(c)

sn
sc

sm
sc

4
√

E [φ4n]E [φ4m]E [g4n]E [g4m] ≤ B2
φB

2
g

∑
c s

2
c → 0,

when A2′ holds and, as before, we assume the fourth moments of each φn and gn − µ are bounded.
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increasing the e�ciency of the estimator. Note that with
∑N
n=1 s`n = 1, the constant in the location-

level control vector w` corresponds to a constant in qn.

Our equivalence result (4) suggests a convenient implementation of the Adao et al. (2018) standard

errors, and thus a straightforward path to correct quasi-experimental inference via standard statistical

software. In Appendix D we �rst show that when w` contains only a constant, the conventional

heteroskedastic-robust standard error formula from the industry-level regression of ȳ⊥n on x̄⊥n and a

constant, instrumenting with gn and weighting by ŝn, matches the corresponding formula of Adao

et al. (2018). More generally, the appendix shows that when controls satisfy the Adao et al. (2018)

condition one can obtain valid standard errors from the industry-level regression by controlling for the

set of qnj . Location-level controls included only for e�ciency do not require special adjustment. These

results also extend to applications of cluster-robust standard errors in the industry-level regression:

shocks are then allowed to have a random cluster component, as in A2′. Notably, the Adao et al.

(2018) standard errors are valid even when the structural errors are themselves clustered by location,

such as with the state-level clustering scheme of ADH.

In practice researchers may wish to exploit these results by estimating shift-share IV coe�cients

with the equivalent industry-level regression. An added bene�t of such an approach is that it also

sidesteps inferential issues with standard IV diagnostics, such as tests of instrument relevance. For

example, the usual �rst stage F -statistic for weak instruments may be misleading when estimated at

the location level, while conventional standard errors applied to the ŝn-weighted �rst stage regression

of x̄⊥n on gn and qn are correct, as is the corresponding F -statistic.

The industry-level approach is also useful for validating the identi�cation assumptions A1 and A2

(or A2′). Suppose a researcher observes a variable r` that is plausibly correlated with untreated poten-

tial outcomes ε` and wishes to indirectly verify the orthogonality condition by testing Cov
[
z`, r

⊥
`

]
= 0.

For example, Appendix C shows that lagged outcomes are a natural candidate for r` in the panel set-

ting, leading to familiar pre-trend tests. A valid industry-level balance test would regress the exposure-

weighted average, r̄⊥n =
∑L
`=1 s`nr

⊥
` /
∑L
`=1 s`n, on shocks and industry-level controls, weighting by ŝn

and using conventional industry-level standard errors. Of course, instrument balance on industry-level

observables thought to be correlated with φn may also be tested this way.

When there are naturally-occurring clusters of industries, researchers may also validate A2 at the

industry level by testing that the intra-class correlation of shocks is zero. When intra-class correlation

is present, they may either control for cluster exposure or invoke A2′, per the previous section. As

noted, clustered industry-level standard errors must be used in the latter case.
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6 Extensions

In this section we consider three extensions to the basic shift-share IV approach. First, we relax the

assumption that the exposure weights sum to one in each location. Second, we consider the case

where multiple sets of shocks satisfy the industry-level orthogonality condition. Finally, we note the

possibility of inconsistency in shift-share designs when the aggregate shocks are estimated in the IV

sample, as well as a possible solution via split-sample estimation. In each case we highlight implications

for practitioners and links to existing shift-share applications.

6.1 Incomplete Shares

In some settings the sum of exposure measures S` =
∑N
n=1 s`n varies across locations. For example,

in ADH the set of s`n correspond to lagged employment shares of manufacturing industries only, so

that S` denotes the lagged share of manufacturing in local labor market `. We show that to invoke

the quasi-experimental framework in such cases, a researcher must either include S` into the set of

location controls w` or �rst de-mean the aggregate shocks.

To develop intuition for this result, suppose that the expected value of shocks, µ, is positive. Then

locations with higher S` will tend to have higher values of the instrument z` =
∑N
n=1 s`ngn, even when

shocks are randomly assigned. If places with high S` (i.e. those with more manufacturing in ADH)

are di�erentially a�ected by other factors, the orthogonality condition may fail. Showing the issue

another way, note that the shift-share instrument can always be written z` =
∑N
n=1 s`ngn + s`0g0,

where s`0 = 1 − S` is location `'s exposure to the missing industry (non-manufacturing in ADH),

g0 = 0 is the shock to that industry, and the total exposure sums to one:
∑N
n=1 s`n + s`0 = 1. When

the other shocks gn are not mean-zero and the missing industry's weight s0 = E[s`0] remains large,

its contribution to the industry-level covariance (5) violates the orthogonality condition. Controlling

for the share of the missing industry, or equivalently for S`, solves this problem, as does recentering

shocks to be mean-zero.

Formally, the orthogonality condition (6) requires
∑N
n=1 sngnφn to converge to zero. Assumption

A2 implies that as the sample grows, this sum converges to its expectation, which under A1 is

E

[
N∑
n=1

sngnφn

]
= µ ·

N∑
n=1

sn
E [s`nε`]

E [s`n]

= µ · E [S`ε`] . (8)

The expectation in (8) is zero only when the structural residual ε` is uncorrelated with the total

exposure S` or when the shock mean µ is zero. The former is mechanically guaranteed when S` = 1

or when S` is included in the list of controls, while the latter holds when shocks are �rst recentered.

Although in principle it is not important how shocks are de-meaned in the latter case, the numer-
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ical equivalence result (4) again suggests a straightforward approach via an industry-level regression.

Namely, including a constant in the ŝn-weighted and gn-instrumented regression of ȳ⊥n on x̄⊥n auto-

matically re-centers shocks to also have a weighted mean of zero, thus solving the incomplete shares

issue. In general we recommend researchers include a constant whenever estimating industry-level

regressions. Without incomplete shares (S` = 1) or when S` varies but is controlled for, it is in-

nocuous: the coe�cient estimate will not change since the weighted means of both ȳ⊥n and x̄⊥n are

then zero. Note that including a constant also ensures standard software packages produce correct

standard errors (see Appendix D).

6.2 Multiple Shocks

In some shift-share designs researchers may have access to multiple aggregate shocks plausibly sat-

isfying A1 and A2. For example, while ADH measure Chinese import penetration by its average

across eight non-U.S. countries, one may think that each set of country-speci�c growth rates gnk for

k = 1, . . . , 8 is itself as-good-as-randomly assigned with respect to U.S. industry-level unobservables

φn, and thus each may be used to consistently estimate β. In other settings additional shocks may

be generated via non-linear transformations of the original gn. As usual, such overidenti�cation of β

raises the possibility of an e�cient GMM estimator which optimally combines the quasi-experimental

variation, as well as a Hansen (1982) omnibus test of the identifying assumptions. Here we show that

in the quasi-experimental framework these estimators and tests di�er from those usually run at the

location level, but are again easily produced with certain industry-level regressions.

Suppose a researcher uses multiple shocks to form K shift-share instruments z`k =
∑N
n=1 s`ngnk.

A typical overidenti�ed IV procedure for estimating β is the two stage least squares (2SLS) regression

of y` on x`, controlling for w` and instrumenting by the set of z`k. The resulting estimate can be

interpreted as a weighted average of the instrument-speci�c estimates and is thus consistent when

the orthogonality condition (6) holds for each of the K sets of shocks. However, it will only be the

e�cient estimate when the vector of structural errors ε = (ε1, . . . , εL)′ is spherical conditional on the

instrument matrix z, i.e. when E [εε′ | z] = σ2
εI (Wooldridge, 2002, p. 96). This condition is unlikely

to hold in the shift-share setting, even when shocks are independently assigned, as locations with

similar exposure pro�les to observed shocks may also be exposed to similar unobserved disturbances

(Adao et al., 2018).12

To characterize the optimal GMM estimator of β, we again note and leverage a numerical equiva-

lence. Namely, the location-level moment function based on the validity of the shift-share instrument

12Note that this 2SLS estimator also di�ers from the optimal IV estimator in the Goldsmith-Pinkham et al. (2018)
setting of exogenous shares, even under homoskedasticity. The 2SLS regression of y` on x` controlling for w` and
instrumenting by s`1, . . . , s`N will in general not involve growth rates at all. For example, when treatment has a shift-
share structure, the �rst stage of 2SLS with shares as instruments produces perfect �t, and so shares-as-instruments
2SLS is the same as OLS. This almost corresponds to the ADH case (see footnote 5), except that they use employment
shares from di�erent years in constructing the instrument and treatment.
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vector z` = (z`1, . . . z`K)′ can be rewritten

m(b) =

L∑
`=1

z`(y
⊥
` − bx⊥` )

=

N∑
n=1

ŝngn(ȳ⊥n − bx̄⊥n ), (9)

where gn is aK×1 vector collecting the set of shocks gnk. This corresponds to a weighted industry-level

moment function, exploiting the asymptotic orthogonality of shocks gn and industry-level unobserv-

ables φn. The optimal GMM estimator using m(b) is then given by

β̂∗ = arg min
b
m(b)′W ∗m(b), (10)

where W ∗ is a consistent estimate of the inverse asymptotic variance of m(β)'s limiting distribution.

As in Section 5, the asymptotic theory of Adao et al. (2018) can be used to characterize W ∗. In

the simple case of no controls and homoskedastic shocks, i.e. Var [gn | φn] = Var [gn], that theory

shows that the optimal moment-weighting matrix is proportional to the inverse variance of shocks. In

this case rearranging (10) shows that the optimal shift-share estimator is equivalent to an unweighted

industry-level 2SLS regression of ŝnȳ
⊥
n on ŝnx̄

⊥
n , using shocks as instruments.13 Naturally, whenK = 1

and the model is just-identi�ed this reduces to the earlier IV estimator (4).

The industry-level regression interpretation of β̂∗ extends when there are controls or when shocks

are heteroskedastic or clustered, as in the modi�ed A2′. Without homoskedasticity, the GMM-IV

estimator of White (1982) takes the place of 2SLS. In all cases, the minimized criteria function in (10)

yields an omnibus chi-squared overidenti�cation test, with K − 1 degrees of freedom.14 As before,

these estimates and test statistics are straightforward to compute with standard statistical software

at the industry level.

6.3 Estimated Shocks

So far we have assumed that the researcher directly observes the set of aggregate shocks. In practice,

however, shocks are typically estimated, often within the IV estimation sample. For example, Bartik

(1991) estimates national industry employment growth rate shocks by the sample average growth of

industry employment across observed locations. He then uses these estimated shocks as instruments

for local employment growth in a regression of wage growth, within the same location sample. Here we

13Letting Pg denote the industry-level matrix projecting onto the vector of shocks and a constant, we have

β̂∗ = arg minb
(∑

n

(
ŝnȳ⊥n − bŝnx̄⊥n

)
g′n
)
W ∗

(∑
n gn

(
ŝnȳ⊥n − bŝnx̄⊥n

))
=
(
x̄⊥′ŝPg ŝx̄⊥

)−1
x̄⊥′ŝPg ŝȳ⊥ when W ∗ esti-

mates the inverse sample variance of shocks, where here x̄⊥ and ȳ⊥ collect observations of x̄⊥n and ȳ⊥n and where ŝ is a
N ×N diagonal matrix of the ŝn. This corresponds to the formula for the above industry-level 2SLS regression.

14As usual, overidenti�cation test rejections may come either from invalid instruments or from di�erent weightings of
heterogeneous treatment e�ects across the instruments. See Appendix A for a derivation of the shift-share IV weights.
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show that with the many shocks required by the quasi-experimental approach, such two-step estima-

tion may lead to inconsistency of the shift-share IV estimator even if the orthogonality condition holds.

Intuitively, this bias arises from the fact that shock estimation error need not vanish asymptotically

and may be systematically correlated with untreated potential outcomes in large samples.

To illustrate the issue simply, we return to the case of a single set of shocks gn, which we suppose

the researcher estimates via a weighted average of observed variables g`n.
15 That is, given weights

ω`n, she computes

ĝn =

L∑
`=1

ω`ng`n∑L
m=1 ωmn

. (11)

For example, in Bartik (1991) g`n is the local employment growth rate of industry n in location ` and

ω`n is the local lagged level of industry employment. The researcher then uses ĝn to form a feasible

shift-share instrument ẑ` =
∑N
n=1 s`nĝn = z` + ψ`, where we de�ne

ψ` =

N∑
n=1

s`n(ĝn − gn) (12)

as a weighted average of industry-level estimation error ĝn−gn. When the orthogonality condition for

the infeasible shift-share instrument z` holds, i.e. Cov [z`, ε`] → 0, validity of the feasible instrument

ẑ` requires an additional condition:

Cov [ψ`, ε`]→ 0, (13)

stating that the measurement error ψ` is asymptotically uncorrelated with the structural residual ε`.

When might this condition fail? Note that we can rewrite (12) as the sum of two terms,

ψ` =

N∑
n=1

s`n
ω`n(g`n − gn)∑L

m=1 ωmn
+

N∑
n=1

s`n

∑
k 6=` ωkn(gkn − gn)∑L

m=1 ωmn
, (14)

where the �rst term captures location `'s own contribution to estimation error ĝn− gn and the second

is the contribution of all other locations. For Cov [ψ`, ε`] 6→ 0, it is su�cient for the �rst term to be

systematically correlated with the structural error, though in principle both may be. Intuitively the

�rst term may be asymptotically non-ignorable if, as the number of aggregate shocks grows large, the

number of observations determining the ĝn estimate through the weights ω`n remains small. If these

observations also have a large exposure to gn (as measured by s`n) with deviations g`n − gn that are

systematically correlated with ε`, the feasible shift-share IV estimator will be inconsistent. In the

case of Bartik (1991), where both ω`n and s`n re�ect the size of industry n in location `, condition

(13) may thus fail if regions with faster untreated potential wage growth also see faster employment

growth in their dominant industries. This is exactly the sort of endogeneity motivating the use of

shift-share IV in the �rst place.

15For notational simplicity, we also return to the convention of treating the shocks gn as �xed.
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Inconsistency from many estimated shocks is analogous to the bias of conventional 2SLS estimation

with many instruments. Appendix E makes this link explicit by considering the special case of an

�examiner� or �judge� design, in which each location is exposed to only one shock and the shares (e.g.,

examiner dummies) are used as instruments for treatment. First-stage �tted values in this setting

are examiner group-speci�c averages of treatment, so that 2SLS can be thought of as a shift-share IV

estimator in which shocks are given by group-speci�c expectations of treatment.16 Here |Cov [ψ`, ε`]|

is proportional to N/L, aligning with the original many-instrument 2SLS bias term of Nagar (1959).

This bias persists when the number of industries (or examiner groups) is non-negligible relative to

the sample size. While stark, the examiner example may be a reasonable approximation to many

shift-share designs where locations tend specialize in a few industries, so that the exposure shares

resemble �fuzzy� industry group assignment.17

Fortunately, as with the conventional bias of 2SLS (Angrist and Krueger (1995); Angrist et al.

(1999)), this issue may have a simple solution in the form of sample splitting. Rather than using

all observations to both estimate shocks and the shift-share IV coe�cient, suppose the researcher

randomly partitions the sample for these two distinct purposes. At the extreme, we could imagine

using leave-one-out estimates of the shocks

g̃`n =

∑
k 6=` ωkngkn∑
k 6=` ωkn

(15)

to form a leave-one-out shift-share instrument z̃` =
∑N
n=1 s`ng̃`n. Then, under independent sampling,

Cov [z̃`, ε`] =

N∑
n=1

E [s`nε`E [g̃`n | s`n, ε`]]

=

N∑
n=1

ŝnE [g̃`n]φn, (16)

so that the validity condition for the feasible shift-share IV estimator is the same as the quasi-

experimental orthogonality condition (6), with E [g̃`n] replacing gn. Of course when the leave-one-out

shock estimator is unbiased for gn, as in Bartik (1991), these conditions are the same.

This discussion of many-shock bias provides a formal justi�cation for leave-one-out shock estima-

tion in shift-share designs, a practice that has become common � tracing back at least as far as Autor

and Duggan (2003) � though often with little theoretical underpinning. The split-sample solution also

highlights a virtue of shift-share designs in which the aggregate shocks are measured in a separate

16Recent examples of examiner designs include Chetty et al. (2011), Maestas et al. (2013), Doyle et al. (2015), and
Dobbie et al. (2018). Notably, Kolesar et al. (2015) study the Chetty et al. (2011) design under the assumption that
examiner groups are invalid instruments for treatment, leveraging an orthogonality condition similar to ours. Our results
in this section can thus be thought to generalize this analysis to settings where shocks are not necessarily given by the
instrument �rst stage.

17Note that for the asymptotic variance of the shift-share instrument to be non-degenerate, exposure shares must be
su�ciently concentrated in a small number of industries.
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sample for other substantive reasons, as with the non-U.S. shocks in ADH. It is worth emphasizing

that this issue does not a�ect the consistency of the feasible shift-share IV estimator when, as in

Goldsmith-Pinkham et al. (2018), the number of industries is �xed. For the shocks-as-instruments

interpretation, however, the number of industries must grow large, and split-sample shock estimation

may guard against inconsistency in otherwise valid shift-share designs.

7 Conclusion

Shift-share instruments combine variation in the local exposure to aggregate shocks with variation in

the shocks per se. We provide a general framework for understanding the validity of these instruments,

while focusing on the shock variation. Our framework is motivated by a simple equivalence result:

shift-share IV estimates can be reframed as coe�cients from weighted industry-level regressions, which

use shocks to instrument for an exposure-weighted average of treatment. Shift-share instruments

are therefore valid when shocks are idiosyncratic with respect to an exposure-weighted average of

the unobserved factors determining outcomes. While this orthogonality condition can technically

be satis�ed when either the exposure measures or the shocks are as-good-as-randomly assigned, we

argue that the latter may be more plausible and better aligned with researchers' motivations in many

settings, such as Autor et al. (2013). The quasi-experimental approach assumes shocks are drawn

as-good-as-randomly and independently across industries, perhaps conditional on observables, with

the average exposure to any one industry becoming small as the sample grows.

We then outline various tests and extensions of the quasi-experimental shift-share framework. Sev-

eral of these � such as the checks of instrument relevance and balance or the handling of controls,

exposure weights that do not sum to one, and multiple shock instruments � are easily implemented

with industry-level regressions and standard statistical software. In practice researchers may therefore

wish to conduct shift-share inference and validation at the industry level. In terms of other practical

recommendations, we argue that researchers should adopt the quasi-experimental mindset and take a

stand on which variation in growth rates is plausibly random: for instance, within industry clusters,

across clusters, or both. This choice matters for what industry- and location-level controls to include

and, in the case of clusters, how to compute valid standard errors. Finally, we recommend researchers

use leave-one-out or other types of split sample methods for estimating shocks, as the failure to do so

may cause quasi-experimental shift-share IV estimates to be inconsistent. Each of these recommen-

dations draw on intuitions that applied researchers are likely to have from other quasi-experimental

settings, bringing shift-share IV estimators to familiar econometric territory.
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A Heterogeneous Treatment E�ects

In this section we extend our shift-share IV identi�cation result to allow for location-speci�c treatment

e�ects. Maintaining linearity, suppose the structural outcome model is

y` = α+ β`x` + ε`, (17)

where now β` denotes the treatment e�ect for location `, and where we abstract away from other

controls for simplicity. The shift-share IV estimator can then be written

β̂ =
Ĉov(z`, y

⊥
` )

Ĉov(z`, x⊥` )

=
1
L

∑L
`=1 β`z`x

⊥
`

1
L

∑L
`=1 z`x

⊥
`

+
1
L

∑L
`=1 z`ε

⊥
`

1
L

∑L
`=1 z`x

⊥
`

, (18)

where Ĉov(·, ·) denotes a sample covariance. When our orthogonality condition holds 1
L

∑L
`=1 z`ε

⊥
`

p−→

0. Given instrument relevance (p lim 1
L

∑L
`=1 z`x

⊥
` 6= 0), we thus have

β̂ =

L∑
`=1

β`
z`x
⊥
`∑L

k=1 zkx
⊥
k

+ op(1). (19)

This shows that the shift-share IV coe�cient approximates a weighted average of heterogeneous treat-

ment e�ects β`, with weights z`x
⊥
` /
∑L
k=1 zkx

⊥
k that sum to one. As with the classic result of Angrist

and Imbens (1994), a further monotonicity assumption ensures that the weighted average IV captures

is convex. Suppose treatment is generated from a linear, heterogeneous-e�ects �rst stage model

x` = κ+

N∑
n=1

π`ngn + υ`, (20)

where the π`n denote industry- and location-speci�c e�ects of the aggregate shocks on treatment.

Suppose further that the shift-share orthogonality condition holds not only for the second-stage

industry-level unobservable φn = E [s`nε`] /E [s`n], but that gn is also uncorrelated with unobserved

E [s`nυ`] /E [s`n] and E [s`nβ`υ`] /E [s`n], when weighted by sn. Finally, assume shocks are mutually

mean independent conditional on E [s`nπ`n], similar to A2. Then combining equations (20) and (19)

and simplifying gives

β̂ =

L∑
`=1

β`
ω`∑L
k=1 ωk

+ op(1), (21)
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where

ω` =

N∑
n=1

π`ns`nVar [gn] . (22)

This shows that the shift-share IV coe�cient approximates a convex average of heterogenous treatment

e�ects when the �rst-stage e�ects of shocks on treatment satisfy π`n ≥ 0 almost-surely.

B Controlling for Industry Observables

This section shows that adding an exposure-weighted vector of industry-level controls
∑
n s`nqn as a

location-level control is equivalent to a two-step procedure in which industry-level residuals g∗n are �rst

estimated by a matrix-weighted regression of gn on qn and then used to construct a new shift-share

instrument ẑ∗` =
∑
n s`nĝ

∗
n. For simplicity, we abstract from other location-level controls. By the

Frisch-Waugh-Lovell theorem, the �rst shift-share IV estimator is

β̂ =

∑L
`=1 ẑ

∗
` y`∑L

`=1 ẑ
∗
`x`

, (23)

where ẑ∗` is the sample residual from regressing the instrument on the controls:

z` =

N∑
n=1

s`nq
′
nτ + z∗` . (24)

With
∑N
n=1 s`n = 1, this regression can also be written

N∑
n=1

s`ngn =

N∑
n=1

s`nq
′
nτ +

N∑
n=1

s`nz
∗
` . (25)

Let s be the L ×N matrix collecting observations of s`n and let g be the N × 1 vector stacking the

gn. Then we can write OLS estimates of the parameters of (25) as

τ̂ = ((sq) ′sq)
−1

(sq)
′
sg

= (q′ (s′s) q)
−1
q′ (s′s) g, (26)

which is a matrix-weighted projection of gn on qn, with weight matrix s′s. Thus

ẑ∗` = z` −
N∑
n=1

s`nq
′
nτ̂

=

N∑
n=1

s`n (gn − q′nτ̂) . (27)
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This shows that β̂ is equivalent to a shift-share IV regression coe�cient that uses a modi�ed aggregate

shock gn − q′nτ̂ . This modi�ed shock re�ects the residual from the industry-level projection (26).

C Shift-Share Instruments in Panels

In this section we consider a panel extension of the cross-sectional shift-share IV setting. We derive

the orthogonality condition and quasi-experimental assumptions, paralleling Sections 3 and 4. We also

show how these conditions are relaxed by including location and time �xed e�ects or with assumptions

on the stochastic process for aggregate shocks, and propose a simple pre-trend test.

Suppose we observe T repeated observations t of outcomes, treatment, exposure, and shocks over

time. We continue with a constant e�ects model for outcomes and treatment, but now decompose the

structural error term into a �xed location component and its residual: ε`t = α` + νit and

y`t = βx`t + w′`tγ + α` + ν`t, (28)

where α` denotes the location-speci�c mean of ε`t. We also construct a time-varying shift-share

instrument

z`t =

N∑
n=1

s`tngnt, (29)

where gnt is now the shock to industry n in time t. Note that this can be rewritten

z`t =

N∑
n=1

T∑
p=1

s`tnpgnp, (30)

where here s`tnp = s`tn1[n = p] denotes the exposure of location ` in time t to industry n in time p,

which is zero for n 6= p.

With this expanded share notation, the key orthogonality condition for a the validity of a �xed

e�ects shift-share IV regression of y`t on x`t, controlling for w`t and location �xed e�ects, is

Cov [z`t, ν`t] =

N∑
n=1

T∑
t=1

sntgntφnt → 0, (31)

where snp = E [s`tnp] and φnp = E [s`tnpν`t] /E [s`tnp] . This is a weighted covariance of the aggregate

shocks gnt, now time-varying, and a time-varying measure of relevant unobservables φnt. Due to

the location �xed e�ects, the industry-level unobservables here re�ect a weighted average of only the

time-varying component of structural residuals, ν`t.

The quasi-experimental assumptions A1 and A2 now map easily to the panel setting. The mean-

independence condition is E [gnt | φnt] = µ, so that A1 is satis�ed if the time varying shocks are
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mean-independent of the time-varying component unobservables. Importantly here shocks need not

be as-good-as-randomly assigned with respect to the exposure-weighted averages of time-invariant

heterogeneity, E [s`ntpα`] /E [s`tnp]. As before, A1 can be further weakened with the inclusion of

industry-by-time observables. In the panel setting, a natural choice is a set of time �xed e�ects;

by the equivalence result in Appendix B, including time �xed e�ects in the shift-share IV regression

allows the mean of the aggregate shocks to vary over periods.

In the panel setting, assumption A2 requires the time-varying shocks to be mutually mean-

independent, conditional on the set of φnt., with
∑N
n=1

∑T
t=1 s

2
nt → 0. Note that in a balanced

panel, snp = E [s`tnp1[t = p]] = E [s`tnp] /T . Thus the latter condition would be satis�ed either when

the number of periods T is �xed and maxn,p snp → 0, or when N is �xed but T →∞; in long panels,

shift-share IV may be consistent even with only a small number of industries.

The assumption of mutually mean-independent shocks in the panel setting rules out autoregressive

shock processes: for example gnt can not be conditionally correlated with gn,t−1. One may imagine

replacing assumption A2 to allow for strongly mixing or ergodic quasi-experimental shocks, along the

lines of the modi�ed A2′. We leave formalizing this approach for future work, noting here that given

a particular time series model for gnt one could use the previous result on industry-level controls to

satisfy A2. For example, suppose the researcher assumes a �rst-order autoregressive process:

gnt = ρ0 + ρ1gn,t−1 + g∗nt, (32)

where the residuals g∗nt are idiosyncratic. Then a researcher may choose to control for
∑N
n=1 s`n,tgn,t−1

in the panel IV speci�cation, to only use variation in g∗nt asymptotically.

With assumptions A1 and A2 holding either on the original shocks or on their idiosyncratic residual,

researchers can validate the panel identifying assumptions by testing for pre-trends. This entails

correlating the residualized outcome y⊥`t with leads of the shift-share instrument, for example with

z`,t+1 =
∑N
n=1 s`n,t+1gn,t+1. Under A1 and A2, we should expect

Cov
[
y⊥`t, z`,t+1

]
=

N∑
n=1

gn,t+1Cov [s`n,t+1, y`t]→ 0. (33)

As discussed in section 5, validating this pre-trend condition is a special case of our test for assumption

A1, where a lagged outcome is used as an observable proxy for the current-period error term.

D Industry-Level Regression Standard Errors

In this section we show that conventional standard errors from certain industry-level IV regressions

coincide asymptotically with the formulas in Adao et al. (2018). We prove this for heteroskedasticity-

robust standard errors, but it can be similarly shown for homoskedastic or clustered standard errors.
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Conventional standard errors for the ŝn-weighted regression of ȳ⊥n on x̄⊥n and a constant, instru-

mented by gn, are given by

ŝereg =

√∑N
n=1 ŝ

2
nε̂

2
n (gn − ḡ)

2∣∣∣∑N
n=1 ŝnx̄

⊥
n gn

∣∣∣ , (34)

where ε̂n = ȳ⊥n − β̂x̄⊥n is the estimated industry-level regression residual and ḡ =
∑N
n=1 ŝngn is the

ŝn-weighted average of shocks. Note that

ε̂n =

∑L
`=1 s`n

(
y⊥` − β̂x⊥`

)
ŝn

=

∑L
`=1 s`nε̂`
ŝn

, (35)

where ε̂` is the estimated residual from the location-level shift-share IV regression by the equivalence

(4). Therefore, the numerator of (34) can be rewritten

√√√√ N∑
n=1

ŝ2nε̂
2
n (gn − ḡ)

2
=

√√√√ N∑
n=1

(
L∑
`=1

s`nε̂`

)2

(gn − ḡ)
2
. (36)

The expression in the denominator of (34) estimates the magnitude of the industry-level �rst-stage

covariance, which matches the covariance at the location level:

N∑
n=1

ŝnx̄
⊥
n gn =

N∑
n=1

(
L∑
`=1

s`nx
⊥
`

)
gn

=

L∑
`=1

x⊥` z`. (37)

Thus

ŝereg =

√∑N
n=1 (gn − ḡ)

2
(∑L

`=1 s`nε̂`

)2
∣∣∣∑L

`=1 x
⊥
` z`

∣∣∣ . (38)

We now compare this expression to the corresponding standard errors in Adao et al. (2018). Absent

location-level controls, equation (44) in that paper derives a valid IV standard error estimate as

ŝeAKM =

√∑N
n=1 g̈

2
n

(∑L
`=1 s`nε̂`

)2
∣∣∣∑L

`=1 x
⊥
` z`

∣∣∣ , (39)

where g̈n denote coe�cients from regressing z` − 1
L

∑L
`=1 z` on all shares s`n, without a constant. To

understand these coe�cients, note that

21



1

L

L∑
`=1

z` =
1

L

L∑
`=1

N∑
n=1

s`ngn

=

N∑
n=1

ŝngn

= ḡ, (40)

and, with
∑N
n=1 s`n = 1, we can rewrite

z` −
1

L

L∑
`=1

z` =

L∑
`=1

s`ngn − ḡ

=

L∑
`=1

s`n (gn − ḡ) . (41)

Therefore the auxiliary regression in Adao et al. (2018) has exact �t and produces g̈n = gn − ḡ,

making ŝereg and ŝeAKM identical. We emphasize that for this equivalence to hold a constant must

be included in the industry-level regression; otherwise, standard statistical software packages would use

g2n in the numerator of (38) instead of (gn − ḡ)
2
. Including a constant does not change the shift-share

IV coe�cient estimate, as the weighted means of both ȳ⊥n and x̄⊥n are already zero.

Next, consider the case with controls. In the Adao et al. (2018) framework, the location-level

control vector can be partitioned into two components, w` =
(
w1
` , w

2
`

)
. The �rst subvector has a

shift-share structure, w1
` =

∑
n s`nqn where qn is a vector of observed industry controls, while the

second is uncorrelated with z`, controlling for w1
` . Note that qn includes a constant; when shares

sum to one this element corresponds to the constant in w`, while in the incomplete shares case of

Section 8 it corresponds to the sum of exposure measure S`. Adao et al. (2018) further assume

E [gn | φn, qn] = E [gn | qn] = q′nτ , as in equation (7).

In this case, the residuals g̈n in equation (39) satisfy g̈n = gn − q′nτ̂AKM, where τ̂AKM consistently

estimates τ . Replacing g̈n with de-meaned ǧn = gn − q′nτ̂ for some other consistent estimate τ̂ thus

yields asymptotically equivalent standard errors. These standard errors, along with β̂, can be obtained

from the ŝn-weighted industry-level regression of ȳ
⊥
n on x̄⊥n and a constant, instrumented by de-meaned

ǧn instead of gn.
18 Finally, note that the industry-level regression of ȳ⊥n on x̄⊥n , instrumented by the

original gn and controlling for qn (which, again, includes a constant) is equivalent to using such a ǧn.

This follows from the Frisch-Waugh-Lovell theorem: τ̂ here is given by the ŝn-weighted projection of

gn on qn, which is consistent under the Adao et al. (2018) assumptions. Note that while this IV does

18Note that the weighted covariances of qn with both x̄⊥n and ȳ⊥n are zero when w1
` is included in the �rst-step regression

producing y⊥` and x⊥` , as, for example
∑
n qnsnȳ

⊥
n =

∑
n qn

∑
` s`ny

⊥
` =

∑
` y
⊥
` w

1
` = 0. Therefore,

∑N
n=1 ŝnx̄

⊥
n ǧn =

1
L

∑L
`=1 x

⊥
` z` and

∑N
n=1 ŝnȳ

⊥
n ǧn = 1

L

∑L
`=1 y

⊥
` z`. This in turn implies that the coe�cient from the modi�ed industry-

level regression is β̂ and the residuals are ε̂`, and standard errors from (38) apply with de-meaned ǧn replacing gn − ḡ.
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not directly involve w2
` , controls without a shift-share structure may still a�ect standard errors via

the calculation of ȳ⊥n and x̄⊥n . In particular they may decrease standard errors by reducing variation

in the regression error ε̂n = ȳ⊥n − β̂x̄⊥n without a commensurate reduction in the �rst-stage covariance.

E Many-Shock Bias in the Examiner Case

This section shows how the asymptotic bias of shift-share IV with many estimated shocks reduces to

that of Nagar (1959) in an examiner design. Exposure shares in this setting are binary, s`n ∈ {0, 1},

with shocks given by the group-level expectation of treatment: gn = E [x` | s`n = 1]. The researcher

estimates shocks by the corresponding sample average,

ĝn =

∑L
`=1 s`nx`∑L
`=1 s`n

, (42)

so that in terms of the general equation (11), g`n = x` and ω`n = s`n.

For simplicity here we assume the control vector w` contains only a constant. Projecting treatment

and the structural error onto the shares, we have

x` =

N∑
n=1

gns`n + η` (43)

ε` =

N∑
n=1

φns`n + ν`, (44)

where E [η` | s`1, . . . , s`N ] = E [ν` | s`1, . . . , s`N ] = 0 by construction. Let s` be aN×1 vector collecting

s`n, s be a L×N matrix collecting s′`, g be an N×1 vector collecting gn, x be an L×1 vector collecting

x`, and η be an L× 1 vector collecting η`. Then in matrix form the measurement error term (12) is

ψ` = s′`

(
(s′s)

−1
s′x− g

)
= s′` (s′s)

−1
s′η. (45)

Under independent sampling and conditional homoskedasticity of (η`, ν`), we then have

Cov [ψ`, ε`] = E
[
s′` (s′s)

−1
s′ηε`

]
= E

[
s′` (s′s)

−1
s`Cov [ε`, η` | s]

]
= E

[
s′` (s′s)

−1
s`σην

]
=
N

L
σην , (46)

where σην = Cov [η`, ν`] = Cov [ε`, η`].
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