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Public school districts increasingly look to 
the estimates generated by  value-added models 
(VAMs) to measure school and teacher quality. 
A typical VAM compares average student test 
scores across teachers or schools while using 
regression models to control for students’ past 
scores and demographic characteristics. The 
resulting estimates serve as inputs into teacher 
retention and promotion policies, school report 
card systems, and decisions about which schools 
to close, restructure, or expand.

The VAM framework relies on a 
 selection-on-observables assumption: teach-
ers and schools must be as good as randomly 
assigned conditional on previous test scores and 
other observed characteristics. The high stakes 
attached to VAM estimates have motivated 
research on the predictive validity of VAMs.1 
A closely related line of inquiry, pioneered by 
Deutsch (2012) and Deming (2014), uses ran-
domized school admission lotteries to test VAM 
validity. These tests are motivated by intuitive 
arguments, but their formal statistical properties 
have yet to be fully developed.

1 See, e.g., Rothstein (2010); Kane and Staiger (2008); 
Chetty, Friedman, and Rockoff (2014); and Rothstein 
(2014). 

This paper lays out the econometric theory 
behind  lottery-based tests of VAM validity. Our 
working paper (Angrist et al. 2015) derives 
the testable implications generated by school 
VAMs, introduces a new test of the restric-
tions implied by these models, and develops an 
empirical Bayes strategy that uses lotteries to 
improve estimates of school quality. Our focus 
here is on the link between the test in Angrist 
et al. (2015) and the classical overidentification 
tests introduced by Anderson and Rubin (1949) 
and Sargan (1958). We use the general theory of 
specification testing presented in Newey (1985) 
and Newey and West (1987) to make this link. 
We also discuss  finite-sample concerns raised by 
the  many-weak instrument nature of empirical 
lottery scenarios. The theory is applied to data 
from the  Charlotte-Mecklenburg School (CMS) 
district first analyzed by Deming (2014).

I.  Value-Added Framework

Our analysis of VAM specification testing 
starts with a  constant-effects causal model:

(1)   Y i   =  D  i  ′   β +  X  i  ′   γ +  ϵ i  ,  

where   Y i    is a test score for student  i  ,   D i    is a 
 J × 1  vector of mutually exclusive indicators 
for attendance at one of  J  schools,   X i    is a vector 
of control variables including past achievement 
and a constant, and   ϵ i    is a random error that sat-
isfies  E [ X i    ϵ i  ]  = 0  by definition of  γ . The  J × 1  
vector  β  captures the causal effects of school 
attendance relative to an omitted school. In other 
words,  β  measures school  value-added.

Conventional  value-added models use ordi-
nary least squares (OLS) regression coeffi-
cients to measure school effectiveness. The OLS 
regression of   Y i    on   D i    and   X i    is

(2)   Y i   =  D  i  ′   α +  X  i  ′   Γ +  v i  . 
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The fact that  α  and  Γ  are population regres-
sion coefficients, insures that  E [ D i    v i  ]  = E [ X i    v i  ]  
= 0 . If the controls in   X i    are sufficient to elim-
inate omitted variables bias, we also have that  
 E [ D i    ϵ i  ]  = 0  and the parameters of equations (1) 
and (2) coincide. This scenario is described by 
the null hypothesis

   H 0   : α = β .

When   H 0    is false, OLS and Causal parameters 
differ for some or all schools and conventional 
VAM estimates are biased.

II. Testing for Bias

School admission lotteries can be used to test 
for bias in OLS estimates of  value-added. Let   Z i    
denote an  L × 1  vector of indicators for offers of 
admissions made in  L  random lotteries, one for 
each  over-subscribed school. In practice offers 
are randomized conditional on observed strati-
fication variables, such as indicators for having 
applied to a particular set of  over-subscribed 
schools. We ignore this complication in the the-
oretical discussion.2

Assuming lottery offers affect test scores 
solely by changing school attendance, we have

(3)  E [ Z i    ϵ i  ]  = 0. 

This vector of L restrictions provides the basis 
for our omnibus VAM validity test. Since  
L < J  , these restrictions are insufficient to 
identify the coefficients on the  J  school indica-
tors in equation (1). Yet they can still be used 
to test   H 0    , which implies   v i   =  ϵ i    , and therefore 
that  E [ Z i    v i  ]  = 0 .

A Lagrange multiplier (LM) test of VAM 
validity checks this implication directly. Let 
   Y ˆ   i   =  D  i  ′    α ˆ   +  X  i  ′    Γ ˆ    denote the fitted values from 
(2), where   α ˆ    and   Γ ˆ    are OLS estimates from a 
random sample of  N  students. Collect observa-
tions on   Y i    and    Y ˆ   i    in the  N × 1  vectors  Y  and   
Y ˆ    , and let  Z  denote the  N × L  matrix of lottery 
offer data. Suppose that   ϵ i    is homoskedastic, so 
that  E [ ϵ  i  

2  |  D i  ,  X i  ,  Z i  ]  =  σ   2  . The LM test statistic  
for VAM validity is then

2 Stratification can be accommodated by projecting struc-
tural and OLS residuals on stratifying variables and working 
with the residuals from this projection. 

(4)   T ˆ    =    
(Y −  Y ˆ  )′  P Z  (Y −  Y ˆ  )  ________________ 

  σ ˆ     2 
   ,

where   P Z   = Z (Z′ Z)   −1 Z ′ is the lottery projection 
matrix and    σ ˆ     2  =  (Y −  Y ˆ   ) ′  (Y −  Y ˆ  ) /N  estimates   
σ   2  . Under   H 0    and appropriate regularity condi-
tions,   T ˆ    has an asymptotic   χ  L  2

    distribution.3

Note that we can rewrite the LM statistic as

(5)   T ˆ   =  ( ρ ˆ   −  π ̂   ) ′     Σ ˆ     
−1

 ( ρ ˆ   −  π ˆ  ) , 

where   ρ ˆ   =  (Z′ Z)   −1 Z′ Y  and   π ˆ   =  (Z′ Z)   −1 Z′  Y ˆ    are 
coefficients from regressions of   Y i    and    Y ˆ   i    on   Z i    , 
and   Σ ˆ   =   σ ˆ     2  (Z′ Z)   −1   is a restricted estimate of 
the asymptotic variance of  ( ρ ˆ   −  π ˆ  )  that imposes   
H 0   . Equation (5) shows that the LM test can 
be interpreted as a Wald test of the hypothesis 
that effects of lottery offers on test scores equal 
effects of offers on  OLS-predicted  value-added. 
Equality of (4) and (5) is a consequence of 
Proposition 4 in Newey and West (1987), which 
shows that Wald and LM tests of linear restric-
tions in linear generalized method of moments 
(GMM) models generate identical test statistics 
when the same residual variance estimate is 
used.

We can also write the LM statistic as

(6)   T ˆ    =    ((Y −  φ ˆ   Y ˆ   ) + ( φ ˆ   − 1) Y ˆ   )′  P Z  ((Y −  φ ˆ   Y ˆ   ) + ( φ ˆ   − 1) Y ˆ   )
    __________________________  

  σ ˆ     2 
   

  =    ( φ ˆ   − 1)   2 
 ________ 

  σ ̂     2  ( Y ˆ    ′ P Z    Y ˆ  )   
−1

 
   +   (Y −  φ ˆ   Y ˆ   )′ P Z  (Y −  φ ˆ   Y ˆ   )  _____________ 

  σ ̂     2 
  ,  

where   φ ˆ   =  ( Y ˆ    ′ P Z    Y ˆ  )   
−1

  Y ˆ   ′ P Z   Y  is the  two-stage 
least squares (2SLS) coefficient estimate from a 
procedure that uses   Z i    to instrument    Y ˆ   i    in an equa-
tion for   Y i   . Previous efforts to validate VAMs 
have focused on testing whether forecast coef-
ficients of this type equal 1 (Chetty, Friedman, 
and Rockoff 2014; Deming 2014).4 Equation 
(6) shows that   T ˆ    is the sum of two test statis-
tics. The first is a Wald statistic testing whether 
the 2SLS forecast coefficient equals 1. (The 
denominator in this term is the variance of   φ ˆ   .) 

3 As in Hausman (1983),   T ˆ   = N R   2   , where   R   2   is the 
 R -squared from a regression of   Y i   −   Y ˆ   i    on   Z i   . 

4 These applications involve more elaborate  multi-step 
computations of the forecast coefficient that use transfor-
mations of lottery instruments and conventional VAM fitted 
values. The motivation for these procedures nevertheless 
appears to be the set of restrictions described by (3). 
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The second term is the Sargan (1958) statistic 
for an LM test of 2SLS overidentifying restric-
tions. The decomposition in (6) reveals that 
  T ˆ    combines a test of forecast bias, which checks 
the predictive accuracy of a particular weighted 
average of  lottery-specific forecasts, with an 
overidentification test, which checks whether 
VAM estimates are equally predictive within 
every lottery.5 Under   H 0    , the forecast coefficient 
test statistic has a limiting   χ  1  

2   distribution and the 
Sargan statistic has a limiting   χ  L−1  

2    distribution.6

Tests based on the 2SLS forecast coefficient 
may be misleading when lotteries shift stu-
dents across schools with similar  value-added 
predictions. When a large collection of lottery 
dummies generate only small shifts in OLS 
 value-added, the resulting  many-weak instru-
ment scenario produces a 2SLS estimate that is 
biased toward the corresponding OLS estimate. 
In this case, the OLS regression of   Y i    on    Y ˆ   i    nec-
essarily yields a coefficient of one. This sug-
gests that a test based on the forecast coefficient 
alone may be biased against rejecting invalid 
VAMs when lottery offers have little effect on 
value-added. By contrast,   T ˆ    has the form of an 
Anderson and Rubin (1949) statistic, which has 
better  finite-sample performance with many 
weak instruments (Stock and Wright 2000).

Finally, note that with  L < J  (fewer lotter-
ies than schools) there are necessarily alter-
natives to   H 0    against which  lottery-based tests 
of VAM validity have no power. This is a con-
sequence of Proposition 1 in Newey (1985), 
which shows the inconsistency of  GMM-based 
tests against general misspecification. In partic-
ular, for  alternatives with  E [ Z i    Y i  ]  = E [ Z i     Y ˆ   i  ]  (in 
other words, when  E [ Z i    D  i  ′  (β − α) ]  = 0 ), the 
 non-centrality parameter that determines the 
distribution of the test statistic under the alter-
native will be zero even while estimated VAM is 
biased.7 This scenario arises, for example, when 
lotteries fail to change patterns of school enroll-
ment, or when they only move students across 

5 See Angrist and Pischke (2009) for the weighting for-
mula implicit in overidentified 2SLS models. 

6 In practice, the Sargan and Wald statistics typically use the 
unrestricted variance estimate    σ ˆ    U  2   =  (Y −  φ ˆ   Y ˆ  )′(Y −  φ ˆ   Y ˆ  ) /N  
in place of    σ ̂     2  . 

7 Note that  E [ Z i    Y i  ]   =  E [ Z i  ( D  i  ′  β +  X  i  ′   γ +  ϵ i  ) ]  =  E [ Z i    D  i  ′  β]  
since random offers are orthogonal to   X i    and   ϵ i   . Similarly,  
E [ Z i    Y ˆ   i  ]  = E [ Z i  ( D  i  ′  α +  X  i  ′   Γ) ] = E [ Z i    D  i  ′  α] . Thus  E [ Z i    Y i  ]  
= E [ Z i     Y ˆ   i  ]  is equivalent to  E [ Z i    D  i  ′  (β − α) ]  = 0 . 

sets of schools within which both causal and 
OLS  value-added are constant.

III. Validating VAM in CMS

Our investigation of bias in VAM estimates 
for CMS is based on the Deming (2014) sam-
ple of 87,351  fourth to eighth grade students 
attending CMS schools between 1996 and 
2004. We use this sample to estimate three 
OLS  value-added models for the average of 
math and reading test scores: an “uncontrolled” 
model that adjusts only for  year-of-test effects, a 
“lagged score” model that adds cubic polynomi-
als in math and reading test scores from the pre-
vious grade, and a “gains” model that replaces 
the outcome variable with  grade-to-grade test 
score changes in the uncontrolled model. Seats 
at CMS schools are assigned via a centralized 
matching mechanism that randomly breaks ties 
between students with the same preferences 
and priorities at oversubscribed schools, induc-
ing a set of stratified admission lotteries. Our 
lottery sample is restricted to schools with at 
least 25 students subject to random assignment 
in the  2002–2003 school year. The resulting 
sample includes 2,213 students, each of whom 
picked 1 of 24  over-subscribed schools as a 
first choice.

Application of our test to CMS data reveals 
that, except for the most naïve VAM model, 
failures of  over-identifying restrictions are a 
more important specification error than fore-
cast bias. This can be seen in Table 1, the first 
three columns of which report results of the 
tests developed in Section II. As shown in col-
umn 1, the 2SLS forecast coefficient equals 
0.109 for the uncontrolled model, an estimate 
that is statistically different from one. The 
overidentifying restrictions for this model are 
also rejected, and the joint test of all restric-
tions generates a stronger rejection than tests 
of either forecast bias or overidentification 
alone. At 136.58, the sum of forecast bias and 
overidentification test statistics (which use the 
unrestricted estimate of   σ   2  ) generates a result 
qualitatively similar to that generated by the 
joint test statistic of 111.86 (computed using 
the restricted estimate).

Forecast coefficient estimates for the lagged 
score and gains models equal 0.848 and 0.960, 
estimates that are not statistically different from 
1. These estimates are imprecise, however, with 
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95 percent confidence intervals including values 
below zero and close to two. Moreover, the first 
stage  F -statistics for these models equal 11.75 
and 11.50, close to the  rule-of-thumb threshold 
of 10 often used to diagnose weak instruments 
(Staiger and Stock 1997). This  suggests that 
forecast bias tests for the lagged score and gains 
models may not be reliable. The overidentifica-
tion and joint tests of all restrictions reject VAM 
validity for these models despite imprecision of 
the forecast coefficient. This highlights the value 
of looking at the full set of VAM restrictions as 
well as forecast bias.

Columns  4–6 of Table 1 report test results 
allowing for heteroskedasticity in   ϵ i   . The fore-
cast coefficients in these models are estimated 
using the efficient IV estimator introduced in 
White (1982). The estimated forecast coef-
ficients in columns  4–6 are similar to those 
in columns  1–3, with results close to 1 in the 
lagged score and gains models. On the other 
hand,  heteroskedasticity-robust overidentifica-
tion test statistics are mostly larger than those 
imposing homoskedasticity. Robust standard 
errors for estimates of reduced form parame-
ters (not reported in the table) are also smaller 

than those computed assuming homoskedastic-
ity. These findings suggest the robust variance 
estimates are biased downwards.

IV. Summary and Conclusions

School admission lotteries offer the oppor-
tunity to validate school  value-added models. 
The restrictions in the VAM framework can be 
checked by specification tests of the sort tradi-
tionally associated with simultaneous equation 
models. We show here that an omnibus test of 
the restrictions generated by admissions lot-
teries combines a test of forecast bias with a 
 Sargan-style overidentification test. Applied 
to data from the  Charlotte-Mecklenburg 
school district, our test rejects conventional 
 value-added models, mostly because of a failure 
of the  over-identifying restrictions implicit in 
the VAM framework.

VAMs that fail to pass an omnibus spec-
ification test may nevertheless be useful. In 
Angrist et al. (2015), we use a random coef-
ficients model to quantify the joint distribu-
tion of causal  value-added and OLS bias, and 
show how this model can be used to generate 

Table 1—Tests for Bias in Charlotte-Mecklenburg Value-Added Models

Assuming homoskedasticity Allowing for heteroskedasticity

Uncontrolled Lagged score Gains Uncontrolled Lagged score Gains
(1) (2) (3) (4) (5) (6)

Forecast coefficient 0.109 0.848 0.960 0.119 0.969 1.074
(0.088) (0.576) (0.792) (0.075) (0.543) (0.791)

First stage F-stat. 13.46 11.75 11.50 19.46 11.87 9.09

Bias tests:
 Forecast bias (1 d.f.) 102.71 0.07 <0.01 137.07 <0.01 <0.01

[<0.001] [0.792] [0.960] [<0.001] [0.955] [0.925]
 Overidentification (23 d.f.) 33.87 33.64 34.01 39.49 39.29 40.18

[0.067] [0.071] [0.065] [0.018] [0.018] [0.015]
 All restrictions (24 d.f.) 111.86 34.33 34.56 147.03 39.32 40.17

[<0.001] [0.079] [0.075] [<0.001] [0.025] [0.021]

Sum of FC bias and overid. 136.58 33.71 34.02 176.57 39.30 40.19

Notes: This table reports estimates of the VAM forecast coefficient and the results of test for bias in value-added models for 
4th–8th graders in Charlotte-Mecklenburg. The lottery sample includes 2,213 students applying to oversubscribed schools. The 
uncontrolled model includes only year-of-test indicators as controls, while the lagged score model adds cubic polynomials in 
baseline math and reading test scores. The gains model controls for year-of-test indicators and uses score gains from baseline 
as the outcome. Forecast coefficients are estimated by 2SLS (assuming homoskedasticity) or by two-step optimal IV (allow-
ing for heteroskedasticity) using lottery offers as instruments. The full set of restrictions is tested using an unrestricted residual 
variance estimate. Standard errors are reported in parentheses; p-values are reported in brackets.
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improved  value-added predictions that partially 
correct for bias. Estimates from Boston suggest 
that policies based on VAMs can generate large 
 achievement gains even when the underlying 
estimates are biased. Hybrid  value-added predic-
tions that incorporate lottery information gener-
ate  further gains. At the same time, rejections of 
the assumptions underlying conventional VAMs 
offer an important caution, and highlight the 
value of model assessment procedures that go 
beyond conventional specification testing.
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