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Abstract

Conventional value-added models (VAMs) compare average test scores across schools after
regression-adjusting for students’ demographic characteristics and previous scores. This paper
tests for VAM bias using a procedure that asks whether VAM estimates accurately predict the
achievement consequences of random assignment to specific schools. Test results from admis-
sions lotteries in Boston suggest conventional VAM estimates are biased, which motivates the
development of a hierarchical model describing the joint distribution of school value-added, bias,
and lottery compliance. We use this model to assess the substantive importance of bias in con-
ventional VAM estimates and to construct hybrid value-added estimates that optimally combine
ordinary least squares and lottery-based instrumental variables estimates of VAM parameters.
The hybrid estimation strategy provides a general recipe for combining non-experimental and
quasi-experimental estimates. While still biased, hybrid school value-added estimates have lower
mean squared error than conventional VAM estimates. Simulations calibrated to the Boston data
show that, bias notwithstanding, policy decisions based on conventional VAMs that account for
lagged achievement are likely to generate substantial achievement gains. Hybrid estimates that
incorporate lotteries yield modest further gains.
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I. Introduction

Public school districts increasingly use value-added models (VAMs) to assess teacher and school effectiveness.

Conventional VAM estimates compare test scores across classrooms or schools after regression-adjusting for

students’ demographic characteristics and earlier scores. Achievement differences remaining after adjustment

are attributed to differences in teacher or school quality. Some districts use estimates of teacher value-added

to guide personnel decisions, while others use VAMs to generate “report cards” that allow parents to compare

schools.1 Value-added estimation is a high-stakes statistical exercise: low VAM estimates can lead to school

closures and teacher dismissals, while a growing body of evidence suggests the near-term achievement gains

produced by effective teachers and schools translate into improved outcomes in adulthood (see, e.g., Chetty

et al. [2011] and Chetty, Friedman and Rockoff [2014b] for teachers and Angrist et al. [2016a] and Dobbie

and Fryer [2015] for schools).

Because the stakes are so high, the use of VAM estimates for teacher and school assessment remains

controversial. Critics note that VAM estimates may be misleading if the available control variables are inad-

equate to ensure ceteris paribus comparisons. VAM estimates may also reflect considerable sampling error.

The accuracy of teacher value-added models is the focus of a large and expanding body of research. This

work demonstrates that teacher VAM estimates have predictive value, but has yet to generate a consensus

on the substantive importance of bias or guidelines for “best practice” VAM estimation (Kane and Staiger

2008; Rothstein 2010; Koedel and Betts 2011; Kinsler 2012; Kane et al. 2013; Chetty, Friedman and Rockoff

2014a; Chetty, Friedman and Rockoff 2016; Rothstein 2016). While the social significance of school-level

VAMs is similar to that of teacher VAMs, validation of VAMs for schools has received less attention.

The proliferation of partially-randomized urban school assignment systems provides a new tool for mea-

suring school value-added. Centralized assignment mechanisms based on the theory of market design, includ-

ing those used in Boston, Chicago, Denver, New Orleans, and New York, use information on parents’ prefer-

ences over schools and schools’ priorities over students to allocate scarce admission offers. These matching

algorithms typically use random sequence numbers to distinguish between students with the same priorities,

thereby creating stratified student assignment lotteries. Similarly, independently-run charter schools often

use admissions lotteries when oversubscribed. Scholars increasingly use these lotteries to identify causal

effects of enrollment in various school sectors, including charter schools, pilot schools, small high schools,

and magnet schools (Cullen, Jacob and Levitt 2006; Hastings and Weinstein 2008; Abdulkadiroğlu et al.

2011; Angrist, Pathak and Walters 2013; Bloom and Unterman 2014; Deming et al. 2014). Lottery-based

estimation of individual school value-added is less common, however, reflecting the fact that lottery samples

for many schools are small, while other schools are undersubscribed.

This paper develops econometric methods that leverage school admissions lotteries for VAM testing and

estimation, accounting for the partial coverage of lottery data. Our first contribution is the formulation

1The Education Commission of the States notes that Alabama, Arizona, California, Florida, Indiana, Louisiana, Maine,
Mississippi, New Mexico, North Carolina, Texas, Utah, and Virginia issue letter-grade report cards with grades determined at
least in part by adjusted standardized test scores (http://www.ecs.org/html/educationissues/accountability/stacc_intro.
asp).
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of a new lottery-based test of conventional VAMs. This test builds on recent experimental and quasi-

experimental VAM validation strategies, including the work of Kane and Staiger (2008), Deutsch (2012),

Kane et al. (2013), Chetty, Friedman and Rockoff (2014a) and Deming (2014). In contrast with earlier

studies, which implicitly look at average-across-schools validity in a test with one degree of freedom, ours is

an over-identification test that looks at each of the orthogonality restrictions generated by a set of lottery

instruments. Intuitively, the test developed here asks whether conventional VAM estimates correctly predict

the effect of randomized admission at every school that has a lottery, as well as the effects of VAM on average.

Our test of VAM validity parallels a classical over-identification test, since the latter can be described either

as testing instrument-error orthogonality or as a comparison of alternative just-identified IV estimates that

should be the same under the null hypothesis.2

Application of this test to data from Boston reveals moderate but statistically significant bias in conven-

tional VAM estimates. This finding notwithstanding, conventional VAM estimates may nevertheless provide

a useful guide to school quality if the degree of bias is modest. To assess the practical value of VAM esti-

mates, we develop and estimate a hierarchical random coefficients model that describes the joint distribution

of value-added, VAM bias, and lottery compliance across schools. The model is estimated via a simulated

minimum distance (SMD) procedure that matches moments of the distribution of conventional VAM es-

timates, lottery reduced forms, and first stages to those predicted by the random coefficients structure.

Estimates of the model indicate substantial variation in both causal value-added and selection bias across

schools. The estimated joint distribution of these parameters implies that conventional VAM estimates are

highly correlated with school effectiveness.

A second contribution of our study is to use the random coefficients framework and lottery variation

to improve conventional VAM estimates. Our approach builds on previous estimation strategies that trade

reduced bias for increased variance (Morris 1983; Judge and Mittlehammer 2004, 2007; Mittlehammer and

Judge 2005). Specifically, we compute empirical Bayes (EB) hybrid posterior predictions that optimally

combine relatively imprecise but unbiased lottery-based estimates with biased but relatively precise conven-

tional VAM estimates. Importantly, our approach makes efficient use of the available lottery information

without requiring a lottery for every school. Hybrid estimates for undersubscribed schools are improved

by information on the distribution of bias contributed by schools with oversubscribed lotteries. The hybrid

estimation procedure generates estimates that, while still biased, have lower mean squared error than con-

ventional VAM estimates. Our framework provides a general recipe for combining non-experimental and

quasi-experimental estimators and may therefore be useful in other settings.3

Finally, we quantify the consequences of bias in conventional VAM estimates and the payoff to hybrid

estimation using a Monte Carlo simulation calibrated to our Boston estimates. Simulation results show that

policy decisions based on conventional estimates that control for baseline test scores or measure score growth

2The theory behind VAM over-identification testing is sketched in Angrist et al. (2016b).
3These settings include the analysis of teacher, hospital, doctor, firm, and neighborhood effects, as in Chetty, Friedman and

Rockoff (2014a, 2014b), Chandra et al. (2016), Fletcher, Horwitz and Bradley (2014), Card, Heining and Kline (2013), and
Chetty and Hendren (2015). Chetty and Hendren combine observational and quasi-experimental estimates of neighborhood
effects, a connection discussed in Section V.

3



are likely to boost achievement. For example, replacing the lowest-ranked Boston school with an average

school is predicted to generate a gain of 0.24 test score standard deviations (σ) for affected students, roughly

two-thirds of the benefit obtained when true value-added is used to rank schools (0.37σ). Hybrid estimates are

highly correlated with conventional estimates (the rank correlation is 0.74), and hybrid estimation generates

modest additional gains, reducing mean squared error by 30 percent and increasing the benefits of school

closure policies by about 0.08σ (33 percent). Conventional school VAMs would therefore appear to provide a

useful guide for policy-makers, while hybrid estimators generate worthwhile improvements in policy targeting.

The next section describes the Boston data used for VAM testing and estimation, and Section III describes

the conventional value-added framework as applied to these data. Section IV derives our VAM validation test

and discusses test implementation and results. Section V outlines the random coefficients model and empirical

Bayes approach to hybrid estimation, while Section VI reports estimates of the model’s hyperparameters

and the resulting posterior predictions of value-added. Section VII discusses policy simulations. Finally,

Section VIII concludes with remarks on how the framework developed here might be used in other settings.

All Appendix material appears in the Online Appendix.

II. Setting and Data

II.A. Boston Public Schools

Boston public school students can choose from a diverse set of enrollment options, including traditional

Boston Public School (BPS) district schools, charter schools, and pilot schools. As in most districts, Boston’s

charter schools are publicly funded but free to operate within the confines of their charters. For the most

part, charter staff are not covered by collective bargaining agreements and other BPS regulations.4 Boston’s

pilot school sector arose as a union-supported alternative to charter schools, developed jointly by the BPS

district and the Boston Teachers Union. Pilot schools are part of the district but typically have more control

over their budgets, scheduling, and curriculum than do traditional public schools. On the other hand, pilot

school teachers work under collective bargaining provisions similar to those in force at traditional public

schools.

Applicants to traditional public and pilot schools rank between three and ten schools as the first step in

a centralized match (students not finishing elementary or middle school who are happy to stay where they

are need not participate in the match). Applicants are then assigned to schools via a student-proposing

deferred acceptance mechanism, as described in Abdulkadiroğlu et al. (2006). This mechanism combines

student preferences with a strict priority ranking over students for each school. Priorities are determined

by whether an applicant is already enrolled at the school and therefore guaranteed admission, has a sibling

enrolled at the school, or lives in the school’s walk-zone. Ties within these coarse priority groups are broken

by random sequence numbers, which we refer to as lottery numbers. In an evaluation of the pilot sector

4Boston’s charter sector includes both “Commonwealth” charters, which are authorized by the state and run as independent
school districts, and “in-district” charters, which are authorized and overseen by the Boston School Committee.
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exploiting this centralized random assignment scheme, Abdulkadiroğlu et al. (2011) find mostly small and

statistically insignificant effects of pilot school attendance relative to the traditional public school sector.

In contrast with the centralized match that assigns seats at traditional and pilot schools, charter applicants

apply to individual charter schools separately in the spring of the year they hope to enter. By Massachusetts

law, oversubscribed charter schools must select students in public admissions lotteries, with the exception

of applicants with siblings already enrolled in the charter, who are guaranteed seats. Charter offers and

centralized assignment offers are made independently; students applying to the charter sector can receive

multiple offers. In practice, some Boston charter schools offer all of their applicants seats, while others fail

to retain usable information on admissions lotteries. Studies based on charter lotteries show that Boston

charter schools boost test scores and increase four-year college attendance (see, for example, Abdulkadiroğlu

et al. [2011] and Angrist et al. [2016a]).

II.B. Data and Descriptive Statistics

The data analyzed here consist of a sample of roughly 28,000 sixth-grade students attending 51 Boston

traditional, pilot, and charter schools in the 2006-2007 through 2013-2014 school years. In Boston, sixth

grade marks the first grade of middle school, so most rising sixth graders participate in the centralized match.

For our purposes, baseline test scores come from fifth grade Massachusetts Comprehensive Assessment System

(MCAS) tests in math and English Language Arts (ELA), while outcomes are measured at the end of sixth

grade. Test scores are standardized to have mean zero and unit variance in the population of Boston charter,

pilot, and traditional public schools, separately by subject, grade, and year. Other variables used in the

empirical analysis are school enrollment, race, sex, subsidized lunch eligibility, special education status,

English-language learner status, and suspensions and absences. Appendix A describes the administrative

files and data processing conventions used to construct the working extract.

Our analysis combines data from the centralized traditional and pilot match with lottery data from

individual charter schools. The BPS lottery instruments code offers at applicants’ first choice (highest

ranked) middle schools in the match. In particular, BPS lottery offers indicate applicants whose lottery

numbers are at least as high as the worst number offered a seat at their first-choice school, among those

in the same priority group. Conditional on application year, first-choice school, and an applicant’s priority

at that school (what we call the assignment strata), offers of seats at a first choice are randomly assigned.

Charter lottery instruments indicate offers made on the night of the admissions lottery at each charter school.

These offers are randomly assigned for non-siblings conditional on the target school and application year.5

The schools and students analyzed here are described in Table I. We exclude schools serving fewer than

25 sixth graders in each year, leaving a total of 25 traditional public schools, 9 pilot schools, and 17 charter

schools. Of these, 37 schools have sixth grade as a primary entry point and 28 (16 traditional, 7 pilot, and 5

charter) had at least 50 students subject to random sixth grade assignment. Applicants to these 28 schools
5For a much smaller group of applicants, the centralized BPS mechanism induces random tie-breaking for lower-ranked school

choices. The use of tie-breaking from these choices generates complications beyond the scope of this paper; see Abdulkadiroğlu
et al. (2015) for a comprehensive analysis of empirical strategies that exploit centralized assignment.
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constitute our lottery sample. Conventional ordinary least squares (OLS) value-added models are estimated

in a sample of 27,864 Boston sixth graders with complete baseline, demographic, and outcome information;

8,718 of these students are also in the lottery sample.

About 77 percent of Boston sixth graders enroll at schools with usable lotteries, and, as can be seen in

the descriptive statistics reported in Table II, demographic characteristics for this group are comparable to

those of the full BPS population. Columns 3 and 4 of Table II report characteristics of the subset of students

subject to randomized lottery assignment. Lotteried students are slightly more likely to be African American

and to qualify for a subsidized lunch, and somewhat less likely to be white or to have been suspended or

recorded as absent in fifth grade. Table II also documents the comparability of students who were and were

not offered seats in a lottery. These results, reported in columns 5-7, compare the baseline characteristics of

lottery winners and losers, controlling for assignment strata. Consistent with conditional random assignment

of offers, estimated differences by offer status are small and not significantly different from zero, both overall

and within school sectors.6

III. Value-added Framework

As in earlier investigations of school value-added, the analysis here builds on a constant-effects causal model.

This reflects a basic premise of the VAM framework: internally valid treatment effects from earlier years and

cohorts are presumed to have predictive value for future cohorts. Student i’s potential test score at school

j, Yij , is therefore written as the sum of two non-interacting components, specifically:

Yij = µj + ai, (1)

where µj is the mean potential outcome at school j and ai is student i’s “ability,” or latent achievement

potential. This additively-separable model implies that causal effects are the same for all students. The

constant effects framework focuses attention on the possibility of selection bias in VAM estimates rather

than treatment effect heterogeneity (though we explore heterogeneity as well).

A dummy variable, Dij , is used to indicate whether student i attended school j in sixth grade. The

observed sixth-grade outcome for student i can therefore be written

Yi = Yi0 +
J∑
j=1

(Yij − Yi0)Dij

= µ0 +
J∑
j=1

βjDij + ai. (2)

6Lottery estimates may be biased by selective sample attrition. As shown in Appendix Table A.I, follow-up data are
available for 81 percent of lottery applicants, while sample retention is 2.8 percentage points higher for lottery winners than for
losers, a difference driven by traditional public school lotteries. Table II shows that that baseline characteristics are balanced
in the sample with follow-up scores, so the modest differential attrition documented in Table A.I seems unlikely to affect the
results reported here.
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The parameter βj ≡ µj − µ0 measures the causal effect of school j relative to an omitted reference school

with index value 0. In other words, βj is school j’s value-added.

Conventional value-added models use regression methods to mitigate selection bias. Write

ai = X ′iγ + εi, (3)

for the regression of ai on a vector of controls, Xi, which includes lagged test scores. Note that E [Xiεi] = 0

by definition of γ. This decomposition implies that observed outcomes can be written

Yi = µ0 +
J∑
j=1

βjDij +X ′iγ + εi. (4)

It bears emphasizing that equation (4) is a causal model: εi is defined so as to be orthogonal to Xi, but need

not be uncorrelated with the school attendance indicators, Dij .

We are interested in how OLS regression estimates compare with the causal parameters in equation (4).

We therefore define population regression coefficients in a model with the same conditioning variables:

Yi = α0 +
J∑
j=1

αjDij +X ′iΓ + vi. (5)

This is a population projection, so the residuals in this model, vi, are necessarily orthogonal to all right-

hand-side variables, including school attendance dummies.

Regression model (5) has a causal interpretation when the parameters in this equation coincide with those

in the causal model, equation (4). This in turn requires that school choices be unrelated to the unobserved

component of student ability, an assumption that can be expressed as:

E [εi|Dij ] = 0; j = 1, ..., J. (6)

Restriction (6), sometimes called “selection-on-observables,” means that αj = βj for each school. In practice,

of course, regression estimates need not have a causal interpretation; rather, they may be biased. This

possibility is represented by writing

αj = βj + bj ,

where the bias parameter bj is the difference between the regression and causal parameters for school j.

IV. Validating Conventional VAMs

IV.A. Test Procedure

The variation in school attendance generated by oversubscribed admission lotteries allows us to assess the

causal interpretation of conventional VAM estimates. A vector of dummy variables, Zi = (Zi1, .., ZiL)′,
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indicates lottery offers to student i for seats at L oversubscribed schools. Offers at school ` are randomly

assigned conditional on a set of lottery-specific stratifying variables, Ci`. These variables include an indicator

for applicants to school ` and possibly other variables such as application cohort and walk zone status. The

vector Ci = (C ′i1, .., C ′iL)′ collects these variables across all lotteries. The models used here also add the OLS

VAM controls (Xi in equation 5) to the vector Ci to increase precision.

We assume that lottery offers are (conditionally) mean-independent of student ability. In other words,

E[εi|Ci, Zi] = λ0 + C ′iλc, (7)

for a set of parameters λ0 and λc. This implies that admission offers are valid instruments for school

attendance after controlling for lottery assignment strata, an assumption that underlies recent lottery-based

analyses of school effectiveness (Cullen, Jacob and Levitt 2006; Abdulkadiroğlu et al. 2011; Deming et al.

2014).

With fewer lotteries than schools (that is, when L < J), the restrictions in (7) are insufficient to identify

the parameters of the causal model, equation (4). Even so, these restrictions can be used to test the selection-

on-observables assumption. Equations (6) and (7) imply that L+J orthogonality conditions are available to

identify J school effects βj . The resulting L overidentifying restrictions generate an over-identification test

of the sort widely used with instrumental variables (IV) estimators.

To describe the over-identification test statistic, let Z denote the N × L matrix of lottery offers for a

sample of N students, and let C denote the corresponding matrix of stratifying variables, with associated

projection matrix PC = C(C ′C)−1C and annihilator matrix MC = I − PC . A Lagrange multiplier (LM)

over-identification test statistic, associated with two-stage least squares (2SLS) models estimated assuming

homoskedasticity, can be written:

T̂ = ε̂′PZ̃ ε̂

σ̂2
ε̃

, (8)

where PZ̃ = MCZ(Z ′MCZ)−1Z ′MC is the lottery offer projection matrix after partialling out randomization

strata, ε̂ is an N × 1 vector of OLS VAM residuals (since OLS and 2SLS coincide when Dij itself is in the

instrument list), and σ̂2
ε̃ = ε̂′MC ε̂/N is an estimate of the residual variance of εi partialling out strata effects.

Under the joint null hypothesis described by selection-on-observables and lottery exclusion (equations 6 and

7), the statistic T̂ has an asymptotic χ2
L distribution.7

A simple decomposition of T̂ reveals an important connection with previously used VAM validity tests.

Let Ŷi denote the fitted values generated by OLS VAM estimation (computed from regression model 5), and

7The test statistic in (8) is derived assuming homoskedastic errors. An analogous test allowing heteroskedasticity uses a
White (1980) robust covariance matrix to test that coefficients on lottery offers equal zero in a regression of ε̂i on Zi and Ci.
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let Y and Ŷ denote N × 1 vectors collecting individual Yi and Ŷi. The LM statistic can be written

T̂ = ((Y − ϕ̂Ŷ ) + (ϕ̂− 1)Ŷ )′PZ̃((Y − ϕ̂Ŷ ) + (ϕ̂− 1)Ŷ )
σ̂2
ε̃

= (ϕ̂− 1)2

σ̂2
ε̃ (Ŷ ′PZ̃ Ŷ )−1

+ (Y − ϕ̂Ŷ )′PZ̃(Y − ϕ̂Ŷ )
σ̂2
ε̃

. (9)

Here, the scalar ϕ̂ = (Ŷ ′PZ̃ Ŷ )−1Ŷ ′PZ̃Y is the 2SLS estimate from a model that uses lottery offers as

instruments in an equation with Yi on the left and Ŷi, treated as endogenous, on the right. Equation (9)

shows that the omnibus test statistic T̂ combines two terms. The first is a one-degree-of-freedom Wald-type

test statistic for ϕ̂ = 1 (note that the denominator of this term estimates the asymptotic variance of ϕ̂).

The second is the Sargan (1958) statistic for testing the L− 1 overidentifying restrictions generated by the

availability of L instruments to estimate this single parameter.8

In what follows, the estimate ϕ̂ is called a “forecast coefficient.” This connects T̂ with tests of “forecast

bias” implemented in previous VAM validation efforts (Kane, Rockoff and Staiger 2008; Rothstein 2010;

Chetty, Friedman and Rockoff 2014a). These earlier tests similarly ask whether the coefficient on predicted

value-added equals one in IV procedures relating outcomes to VAM fitted values (though the details some-

times differ). Forecast bias arises when VAM estimates for a group of schools are off the mark, a failure

of average predictive validity. Importantly, the omnibus test statistic, T̂ , checks more than forecast bias:

this statistic asks whether each over-subscribed lottery generates score gains commensurate with the gains

predicted by OLS VAM.

IV.B. Test Results

The conventional VAM setup assessed here includes two value-added specifications. The first, referred to

as the “lagged score” model, includes indicators for sex, race, subsidized lunch eligibility, special education

status, English-language learner status, and counts of baseline absences and suspensions, along with cubic

functions of baseline math and ELA test scores. Specifications of this type are at the heart of the econometric

literature on value-added models (Kane, Rockoff and Staiger 2008; Rothstein 2010; Chetty, Friedman and

Rockoff 2014a). The second, a “gains” specification, uses grade-to-grade score changes as the outcome

variable and includes all controls from the lagged score model except baseline test scores. This model

parallels widely used accountability policies that measure test score growth.9 As in Rothstein (2009), we

benchmark the extent of cross-school ability differences by also estimating an “uncontrolled” model that

adjusts only for year effects. Although the uncontrolled model almost certainly provides a poor measure of

8Angrist et al. (2016b) interpret VAM validity tests using the general theory of specification testing developed by Newey
(1985) and Newey and West (1987). In practice, Wald and LM test statistics typically use different variance estimators in the
denominator.

9The gains specification can be motivated as follows: suppose that human capital in grade g, denoted Aig , equals lagged
human capital plus school quality, so that Aig = Aig−1 + qig where qig =

∑
j
βjDij + ηig and ηig is a random component

independent of school choice. Suppose further that test scores are noisy proxies for human capital, so that Yig = Aig + νig
where νig is classical measurement error. Finally, suppose that school choice in grade g is determined solely by Aig−1 and
variables unrelated to achievement. Then a lagged score model that controls for Yig−1 generates biased estimates, but a gains
model with Yig − Yig−1 as the outcome variable measures value-added correctly.
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school value added, many districts distribute school report cards based on unadjusted test score levels.10

Figure I summarizes the value-added estimates generated by sixth-grade math scores. We focus on math

scores because value-added for math appears to be more variable across schools than value-added for ELA

(bias tests for ELA, presented in Appendix Table A.II, yield similar results). Each bar in Figure I reports

an estimated standard deviation of αj across schools, expressed in test score standard deviation units and

adjusted for estimation error.11 Adding controls for demographic variables and previous scores reduces the

standard deviation of αj from 0.5σ in the uncontrolled model to about 0.2σ in the lagged score and gains

models. This shows that observed student characteristics explain a substantial portion of the variation in

school averages. The last three bars in Figure I report estimates of within-sector value-added standard

deviations, constructed using residuals from regressions of α̂j on dummies for schools in the charter and

pilot sectors. Controlling for sector effects reduces variation in αj , reflecting sizable differences in average

conventional value-added across sectors.

Panel A of Table III summarizes test results for sixth grade math VAMs. The first row shows the forecast

coefficient, ϕ̂. The estimator used here is the optimal IV procedure for heteroskedastic models described

by White (1982). The second row reports first stage F -statistics measuring the strength of the relationship

between lottery offers and predicted value-added. With a weak first stage, forecast coefficient estimates may

be biased towards the corresponding OLS estimand, that is, the coefficient from a regression of test scores on

VAM fitted values. In simple models this regression coefficient must equal one, so a weak first stage makes

a test of H0 : ϕ = 1 less likely to reject.12 First-stage F -statistics for the sixth grade lagged score and gains

models are close to 30, suggesting finite-sample bias is not an issue in the full lottery sample. First-stage

strength is more marginal, however, when charter lotteries are omitted.

Table III reports p-values for three VAM validity tests. The first is for forecast bias, that is, the null

hypothesis that the forecast coefficient equals one. The second tests the associated set of overidentifying

restrictions, which require that just-identified IV estimates of the forecast coefficient be the same for each

lottery instrument, though not necessarily equal to one. The third omnibus test combines these restrictions.

On average, VAM fitted values predict the score gains generated by random assignment remarkably well.

This can be seen in columns 1 and 2 of Panel A in Table III, which show that the lagged score and gains

specifications generate forecast coefficients equal to 0.86 and 0.95; the former is only marginally statistically

different from one (p = 0.07), while the second has p = 0.55. At the same time, the over-identification and

omnibus tests reject for both models.13

The source of these rejections can be seen in Figure II, which plots reduced form estimates of the effects
10California’s School Accountability Report Cards list school proficiency levels (see http://www.sarconline.org). Mas-

sachusetts’ school and district profiles provide information on proficiency levels and test score growth (see http://profiles.
doe.mass.edu).

11The estimated standard deviations plotted in the figure are given by σ̂α = ( 1
J

∑
j
[(α̂j − µ̂α)2 − SE(α̂j)2])1/2, where µ̂α

is mean value-added and SE(α̂j) is the standard error of α̂j .
12When estimated in the same sample with no additional controls, OLS regressions on OLS fitted values necessarily produce

a coefficient of one. In practice, the specification used here to test VAM differs from the model producing fitted values in that
it also controls for lottery strata and excludes non-lotteried students.

13As a point of comparison, Angrist et al. (2016b) report tests of VAM validity in the Charlotte-Mecklenberg lottery data
analyzed by Deming (2014). There as well the forecast coefficient is close to one, while the omnibus test generates a p-value of
0.02.
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of lottery offers on test scores against corresponding first-stage effects of lottery offers on conventional VAM

fitted values for sixth grade math scores. Each panel also shows a line through the origin with slope equal to

the forecast coefficient reported in Table III (plotted as a solid line) along with a dashed 45-degree line. In

other words, Figure II gives a visual instrumental variables representation of the forecast coefficient: VAM

models that satisfy equation (6) should generate points along the 45-degree line, with deviations due solely

to sampling error. Though the lines of best fit have slopes close to one, points for many lotteries are farther

from the diagonal than sampling variance alone would lead us to expect. Earlier validation strategies focus

on forecast coefficients, ignoring overidentifying restrictions. Figure II shows that such strategies may fail

to detect substantial deviations between conventional VAM predictions and reduced form lottery effects for

some lotteries.

Figure II also suggests that a good portion of conventional VAM estimates’ predictive power for Boston

schools comes from charter school lotteries, which contribute large first stage and reduced form effects. The

relationship between OLS value-added and lottery estimates is weaker in the traditional public and pilot

school sectors. This is confirmed in columns 3 and 4 of Table III, which report results of VAM bias tests

for sets of instruments that exclude charter lotteries. At 0.55 and 0.68, estimated forecast coefficients from

traditional public and pilot lotteries are further from one than the coefficients computing using all lotteries.

Although removal of charter lotteries reduces precision, omnibus tests continue to reject at the 1-percent

level.14

Finally, Panel B of Table III reports test results combining data from sixth through eighth grade. As in

Abdulkadiroğlu et al. (2011) and Dobbie and Fryer (2013), school effects on seventh and eighth grade scores

are modeled as linear in the number of years spent in each school. Given constant linear school enrollment

effects, regressions of later-grade outcomes on baseline controls and years of enrollment in each school recover

causal school effects in the absence of sorting on unobserved ability. The omnibus VAM validity test in this

case regresses residuals from the multi-grade (stacked) model on sixth grade lottery offers while the forecast

coefficient is generated by using lottery offers to instrument OLS VAM fitted values from the multi-grade

model. The omnibus tests show clear rejections in the multi-grade set-up as well as for sixth grade only, in

spite of the fact that the first-stage F -statistics are noticeably lower.

IV.C. Heterogeneity vs. Bias

The omnibus test results reported in Table III suggest conventional VAM estimates fail to predict the effects of

lottery offers perfectly. This is consistent with bias in OLS VAMs. In a world of heterogeneous causal effects,

however, these rejections need not reflect selection bias. Rather, they might signal divergence between the

local average treatment effects (LATEs) identified by lottery instruments and possibly more representative

14The first stage F -statistics for the specifications without charter lotteries are 11.2 and 9.3, suggesting weak instruments
might be a problem in this model. It is encouraging, therefore, that limited information maximum likelihood (LIML) fore-
cast coefficient estimates are virtually the same as the estimates reported in Table III. A related concern is whether the
heteroskedastic-robust standard errors and test statistics used in Table III are misleading due to common school-year shocks (as
suggested by Kane and Staiger [2002] for teachers). Reassuringly, cluster-robust test results are also similar to those in Table
III.
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effects captured by OLS, at least for some lotteries (Imbens and Angrist 1994; Angrist, Imbens and Rubin

1996). Moreover, with unrestricted potential outcomes, even internally valid OLS VAM estimates (that

is, those satisfying selection-on-observables) capture weighted average causal effects that need not match

average effects for the entire sample of students attending particular schools (Angrist 1998).

Three analyses shed light on the distinction between heterogeneity and bias. The first is a set of bias tests

using OLS VAM specifications that allow school effects to differ across covariate-defined subsamples (e.g.

special education students or those with low levels of baseline achievement). This approach accounts for

variation in school effects across covariate cells that may be weighted differently by IV and OLS. The second

analysis tests for bias in OLS VAMs estimated in the lottery sample. This asks whether differences between

IV and OLS are caused by differences between students subject to lottery assignment and the general student

population. The final analysis estimates OLS VAM separately for applicants who respond to lottery offers

(“compliers”) and for other groups, within the sample of lottery applicants.

Estimates by subgroup, reported in Panel A of Table IV, consistently generate rejections in omnibus

tests of VAM validity. Column 2 reports test results allowing VAM estimates to differ by year, thereby

accommodating “drift” in school effects over time (Chetty, Friedman and Rockoff [2014a] document such

drift in teacher value-added); columns 3-5 show results for subgroups defined by subsidized lunch eligibility,

special education status, and baseline test score terciles; and column 6 reports results from models that allow

value-added to differ across cells constructed by fully interacting race, sex, subsidized lunch eligibility, special

education, English-language learner status, and baseline score tercile. The forecast coefficients and omnibus

test statistics generated by each of these subgroup schemes are similar to those for the full sample. As can

be seen in panel B of Table IV, test results for models that use only the quasi-experimental sample for OLS

VAM estimation are also similar to the full sample results. This suggests that rejection of the omnibus test

is not driven by differences in OLS VAM between students subject to random assignment and the general

population.15

Lottery-based IV estimates identify average causal effects for compliers, that is, lottery applicants whose

attendance choices shift in response to random offers, rather than the full population of students that enroll

in a particular school. To investigate the link between lottery compliance and treatment effects, we predict

value-added at the target school for every lottery applicant based on covariate-specific OLS estimates from the

model in column 6 of Table IV (estimated in the lottery sample). Maintaining the hypothesis of OLS VAM

validity, we allow for the possibility that heterogeneous effects are reflected in a set of covariate-specific

estimates. These predictions are then used to compare an imputed average value-added for compliers to

imputed average value-added for “never takers” (those who decline lottery offers) and “always takers” (those

who enroll in the target school even when denied an offer) in each lottery. Averages for the three lottery

15In a subset of the data used here, Walters (2014) documents a link between the propensity to apply to Boston charter
schools and the causal effect of charter school attendance. This finding is not at odds with our constant effects assumption
because Walters studies the effects of charter schools relative to a heterogeneous mix of traditional public schools, while we
allow a distinct effect for every traditional public school. The effect heterogeneity uncovered by Walters may reflect variation
in the quality of fallback public school options across charter applicants. Consistent with this possibility, Walters demonstrates
that the relationship between charter application choices and causal effects is driven primarily by heterogeneity in outcomes at
fallback traditional public schools.
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compliance groups are estimated using methods described in Appendix B.1.

Figure III shows that imputed OLS value-added estimates for compliers, always takers, and never takers

are similar. Formal tests for equality fail to reject the hypotheses that predicted effects for compliers equal

predicted effects for always takers (p = 0.72) or never takers (p = 0.39). This suggests that lottery compliance

is not a major source of treatment effect heterogeneity linked to observable characteristics, though we cannot

rule out unobserved differences between compliers and other groups.

V. The Distribution of School Effectiveness

The test results in Table III suggest conventional VAM estimates are biased. At the same time, OLS VAM

estimates tend to predict lottery impacts on average, with estimated forecast coefficients close to one. OLS

estimates would therefore seem to be useful even if imperfect. This section develops a hybrid estimation

strategy that combines lottery and OLS estimates in an effort to quantify the bias in conventional VAMs

and produce more accurate value-added estimates.

V.A. A Random Coefficients Lottery Model

The hybrid estimation strategy uses a random coefficients model to describe the joint distribution of value-

added, bias, and lottery compliance across schools. The model is built on a set of OLS, lottery reduced form,

and first stage estimates. The OLS estimates come from equation (5), while the lottery reduced form and

first stage equations are:

Yi = τ0 + C ′iτc + Z ′iρ+ ui, (10)

Dij = φ0j + C ′iφcj + Z ′iπj + ηij ; j = 1, ..., J.

Assumption (7) implies that the reduced form effect of admission in lottery ` is given by

ρ` =
J∑
j=1

π`jβj ,

where ρ` and π`j are the elements of ρ and πj corresponding to Zi`. This expression shows that the lottery

at school ` identifies a linear combination of value-added parameters, with coefficients πj` equal to the shares

of students shifted into or out of each school by the `th lottery offer.

OLS, reduced form, and first stage estimates are modeled as noisy measures of school-specific parameters,

which are in turn modeled as draws from a distribution of random coefficients in the population of schools.

Specifically, we have:

α̂j = βj + bj + eαj ,

ρ̂` =
∑
j

π`jβj + eρ` , (11)
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π̂`j = π`j + eπ`j ;

where eαj , e
ρ
` and eπ`j are mean-zero estimation errors that vanish as within-school and within-lottery samples

tend to infinity. Subject to the usual asymptotic approximations, these errors can be modeled as normally

distributed with a known covariance structure. Table I shows that the OLS and lottery estimation samples

used here typically include hundreds of students per school, so the use of asymptotic results seems justified.

The second level of the model treats the school-specific parameters βj , bj , and {π`j}L`=1 as draws from a

joint distribution of causal effects, bias, and lottery compliance patterns. The effect of admission at school

` on the probability of attending this school is parameterized as

π`` = exp (δ`)
1 + exp(δ`)

, (12)

where the parameter δ` can be viewed as the mean utility in a binary logit model predicting compliance with

a random offer of a seat at school `. Likewise, the effect of an offer to attend school ` 6= j on attendance at

school j is modeled as

π`j = −π`` ×
exp (ξj + ν`j)

1 +
∑
k 6=` exp (ξk + ν`k) . (13)

In this expression, the quantity ξj+ν`j is the mean utility for school j in a multinomial logit model predicting

alternative school choices among students that comply with offers in lottery `. The parameter ξj allows for

the possibility that some schools are systematically more or less likely to serve as fallback options for lottery

losers, while ν`j is a random utility shock specific to school j in the lottery at school `. The parametrization

in (12) and (13) ensures that lottery offers increase the probability of enrollment at the target school and

reduce enrollment probabilities at other schools, and that effects on all probabilities are between zero and

one in absolute value.

Each school is characterized by a vector of four parameters: a value-added coefficient, βj ; a selection bias

term, bj ; an offer compliance utility, δj ; and a mean fallback utility, ξj . These are modeled as draws from

a prior distribution in a hierarchical Bayesian framework. A key assumption in this framework is that the

distribution of VAM bias is the same for schools with and without oversubscribed lotteries. This assumption

allows the model to “borrow” information from schools with lotteries and to generate posterior distributions

for non-lottery schools that account for bias in conventional VAM estimates. Importantly, however, we allow

for the possibility that average value-added may differ between schools with and without lotteries. Section

VI.B investigates the empirical relationship between oversubscription and bias.

Let Qj denote an indicator for whether quasi-experimental lottery data are available for school j. School-

specific parameters are modeled as draws from the following conditional multivariate normal distribution:

(βj , bj , δj , ξj)|Qj ∼ N ((β0 + βQQj , b0, δ0, ξ0),Σ) . (14)

The parameter βQ captures the possibility that average value-added differs for schools with lotteries. The

matrix Σ describes the variances and covariances of value-added, bias, and first stage utility parameters,
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and is assumed to be the same for lottery and non-lottery schools. Finally, lottery and school-specific utility

shocks are also modeled as conditionally normal:

ν`j |Qj ∼ N
(
0, σ2

ν

)
. (15)

The vector θ ≡ (β0, βQ, b0, δ0, ξ0,Σ, σ2
ν) collects the hyperparameters governing the prior distribution of

school-specific parameters. Our empirical Bayes framework first estimates these hyperparameters and then

uses the estimated prior distribution to compute posterior value-added predictions for individual schools.

Some of the specifications considered below extend the setup outlined here to allow the prior mean vector

(β0, b0, δ0, ξ0) to vary across school sectors (traditional, charter, and pilot).

V.B. Simulated Minimum Distance Estimation

We estimate hyperparameters by simulated minimum distance (SMD), a variant of the method of simulated

moments (McFadden 1989). SMD focuses on moments that are determined by the parameters of interest,

choosing hyperparameters to minimize deviations between sample moments and the corresponding model-

based predictions. Our SMD implementation uses means, variances, and covariances of functions of the

OLS value-added estimates, α̂j , lottery reduced forms, ρ̂`, and first stage coefficients, π̂`j . For example, one

moment to be fit is the average α̂j across schools; another is the cross-school variance of the α̂j . Other

moments are means and variances of reduced form and first stage estimates across lotteries. Appendix B.2

lists the moments used for SMD estimation.

The fact that the moments in this context are complicated nonlinear functions of the hyperparameters

motivates a simulation approach. For example, the mean reduced form is E[ρ`] =
∑
j E [π`jβj ]. This is

the expectation of the product of a normally distributed random variable with a ratio involving correlated

log-normals (described by 12 and 13), a moment for which no analytical expression is readily available.

Moments are therefore simulated by fixing a value of θ and drawing a vector of school-level parameters

using equations (14) and (15). Likewise, the simulation draws a vector of the estimation errors in (11) from

the joint asymptotic distribution of the OLS, reduced form and first stage estimates. The parameter and

estimation draws are combined to generate a simulated vector of parameter estimates for the given value

of θ. Finally, these are used to construct a set of model-based predicted moments. The SMD estimator

minimizes a quadratic form in the difference between predicted moments and the corresponding moments

observed in the data. As described in Appendix B.2, the SMD estimates reported here are generated by a

two-step procedure with an efficient weighting matrix in the second step.

V.C. Empirical Bayes Posteriors

Studies of teacher and school value-added typically employ EB strategies that shrink noisy teacher- and

school-specific value-added estimates towards the grand mean, reducing mean squared error (see, e.g., Kane,

Rockoff and Staiger [2008] and Jacob and Lefgren [2008]). In a conventional VAMmodel where OLS estimates
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are presumed unbiased, the posterior mean value-added for school j is

E [αj |α̂j ] =
(

σ2
α

σ2
α + V ar(eαj )

)
α̂j +

(
1− σ2

α

σ2
α + V ar(eαj )

)
α0, (16)

where α0 and σ2
α are the mean and variance of the conventional OLS VAM parameters αj . An EB posterior

mean plugs estimates of these hyperparameters into (16).

Our setup extends this idea to a scenario where the estimated α̂j may be biased but lotteries are available

to reduce this bias. The price for bias reduction is a loss of precision: because IV uses only the variation gen-

erated by random assignment, lottery-based estimates are less precise than the corresponding OLS estimates.

Because some schools are undersubscribed, there are also fewer lottery instruments than schools and a VAM

is not identified using lotteries alone. Even so, in the spirit of the combination estimators discussed by Judge

and Mittlehammer (2004, 2007), our empirical Bayes approach trades off the advantages and disadvantages

of OLS and IV to construct minimum mean squared error (MMSE) estimates of value-added.

To see how this trade-off works, suppose the first stage parameters, π`j , are known rather than estimated

(equivalently, eπ`j = 0 ∀`, j). Let Π denote the L× J matrix of these parameters, and let β, α̂ and ρ̂ denote

vectors collecting βj , α̂j and ρ̂`. Appendix B.3 shows that the posterior distribution for β in this case is

multivariate normal with mean:

E [β|α̂, ρ̂] = Wα(α̂− b0ι) +Wρρ̂+ (I −Wα −WρΠ)β0ι, (17)

where ι is a J × 1 vector of ones. Posterior mean value-added is a linear combination of OLS estimates

net of mean bias, (α̂ − b0ι), lottery reduced form estimates, ρ̂, and mean value-added, β0ι. The weighting

matrices, Wα and Wρ, are functions of the first stage parameters and the covariance matrix of estimation

error, value-added, and bias. Expressions for these matrices appear in Appendix B.3. As with conventional

EB posteriors, an empirical Bayes version of the posterior mean plugs first-step estimates of b0, β0, Wα, and

Wρ into equation (17).

Suppose that all schools are oversubscribed, so that L = J . In this case, the first stage matrix Π is

square; if it is also full rank, the parameters of equation (4) are identified using lotteries alone. Lottery-

based value-added estimates may then be computed by indirect least squares as β̂ = Π−1ρ̂, and the posterior

mean in equation (17) becomes

E
[
β|α̂, β̂

]
= Wα(α̂− b0ι) +Wβ β̂ + (I −Wα −Wβ)β0ι, (18)

for Wβ = WρΠ. This expression reveals that when a lottery-based value-added model is identified, the

posterior mean for value-added is a matrix-weighted average of three quantities: quasi-experimental IV

estimates, conventional OLS estimates net of mean bias, and prior mean value-added, with weights (that

sum to the identity matrix) optimally chosen to minimize mean-squared error.

In the same spirit as our hybrid strategy, Chetty and Hendren (2015) combine noisy quasi-experimental
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estimates of neighborhood effects based on movers with precise averages of permanent resident outcomes to

generate optimal forecasts of neighborhood causal effects. A further special case of equation (18) illuminates

the link between this approach and ours. Suppose the estimation error in OLS estimates is negligible

(V ar(eαj ) = 0), and that IV estimation error eβj is uncorrelated across schools. Appendix B.3 shows that

under these simplifying assumptions, the jth element of equation (18) becomes

E
[
βj |α̂, β̂

]
=
(

σ2
β(1−R2)

V ar(eβ
j

)+σ2
β

(1−R2)

)
β̂j +

(
1− σ2

β(1−R2)
V ar(eβ

j
)+σ2

β
(1−R2)

)
(rα(α̂j − b0) + (1− rα)β0) , (19)

where σ2
β is the variance of βj , rα = Cov(βj , αj)/V ar(αj) is the reliability ratio from a regression of causal

value-added on OLS value-added, and R2 is the R-squared from this regression. This expression coincides

with equation (21) in Chetty and Hendren (2015) and can also be seen to be the same as the canonical

empirical Bayes shrinkage formula in equation (1.5) of Morris (1983).16

In practice, some schools are undersubscribed, so IV estimates of individual school value-added cannot be

computed. Nevertheless, equation (17) shows that predictions at schools without lotteries can be improved

using lottery information from other schools. Lottery reduced form parameters embed information for all

fallback schools, including those without lotteries. This is a consequence of the relationship described by

equation (11), which shows that the reduced form for any school with a lottery depends on the value-added

of all other schools that applicants to this school might attend. Specifically, as long as π`j 6= 0, the reduced

form for lottery ` contains information that can be used to improve the posterior prediction of βj . The test

results in columns 2 and 3 of Table V show that estimates of π`j are significantly different from zero (at 5

percent) for 12 of the 22 undersubscribed schools in our sample. The ten schools not on this list have primary

entry grades other than sixth. In other words, oversubscribed sixth grade lotteries contribute information

on all schools with sixth grade entry.

Finally, equation (17) also reveals how knowledge of conventional VAM bias can be used to improve

posterior predictions even for schools that are never lottery fallbacks. Appendix B.3 shows that the posterior

mean for βj gives no weight to ρ̂ when π`j = 0 and Cov(eαj , e
ρ
` ) = 0 across all lotteries, `. In this case the

posterior mean for βj simplifies to

E [βj |α̂, ρ̂] = rα(α̂j − b0) + (1− rα)β0. (20)

Even without a lottery at school j, predictions based on equation (20) improve upon the conventional VAM

posterior given by equation (16). The improvement here comes from the fact that the schools with lotteries

provide information that can be used to determine the reliability of conventional VAM estimates.17

16The connection with Morris can be made by observing that when α̂j = αj , the term rα(α̂j − b0) + (1 − rα)β0 is the
fitted value from the regression of βj on αj . Chetty and Hendren (2015) normalize mean value-added and bias to β0 = b0 = 0,
rearranging (19) to read:

E
[
βj |α̂j , β̂j

]
= rαα̂j +

(
σ2
β

(1−R2)

V ar(eβ
j

)+σ2
β

(1−R2)

)(
β̂j − rαα̂j

)
.

17Using the fact that αj = βj + bj , equation (16) can be written to look more like equation (20):
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Equations (17) through (20) are pedagogical formulas derived assuming first stage parameters are known.

With an estimated first stage, the posterior distribution for value-added does not have a closed form. Al-

though the posterior mean for the general case can be approximated using Markov Chain Monte Carlo

(MCMC) methods, with a high-dimensional random coefficient vector, MCMC may be sensitive to starting

values or other tuning parameters. We therefore report EB posterior modes (as in Chamberlain and Imbens

[2004]; these are also known as maximum a posteriori estimates). The posterior mode is relatively easily cal-

culated, and coincides with the posterior mean when value-added is normally distributed as in the fixed first

stage case (see Appendix B.4 for details). As a practical matter, the posterior modes for value-added turn

out to be similar to the weighted averages generated by equation (17) under the fixed first stage assumption,

with a correlation across schools of 0.95 in the lagged score model (see Appendix Figure A.I).

VI. Parameter Estimates

VI.A. Hyperparameters

The SMD procedure for estimating hyperparameters takes as input a set of lottery reduced form and first

stage estimates, along with conventional VAM estimates for each value-added model. The lottery estimates

come from regressions of test scores and school attendance indicators (the set of Dij) on lottery offer dum-

mies (Zi), with controls Ci for randomization strata and the baseline covariates from the lagged score VAM

specification (strata controls are necessary for instrument validity, while baseline covariates increase preci-

sion). Combining the lottery estimates with OLS estimates of the αj generates hyperparameter estimates

for a particular value-added model.

As can be seen in columns 1-3 of Table VI, the hyperparameter estimates reveal substantial variation

in both causal value-added and selection bias across schools. The standard deviation of value-added, σβ ,

is similar across specifications, ranging from about 0.20σ in the uncontrolled specification to 0.22σ in the

lagged score and gains models. This stability is reassuring: the control variables that distinguish these models

should not change the underlying distribution of causal school effectiveness if our estimation procedure works

as we hope.

In contrast with the relatively stable estimates of σβ , the estimated standard deviation of bias, σb,

shrinks from 0.50σ with no controls to under 0.2σ in the lagged score and gains specifications. In other

words, controlling for observed student characteristics and past scores reduces bias in conventional value-

added estimates markedly. On the other hand, the estimated standard deviations of bias are statistically

significant for all models, implying that controls for demographic variables and baseline achievement are not

sufficient to produce unbiased comparisons. Columns 2 and 3 of Table VI show that the standard deviations

of bias in the lagged score and gains models equal 0.18σ and 0.17σ, slightly smaller than the standard

E [αj |α̂j ] = rα

(
σ2
β

+σ2
b

+2σβb
σ2
β

+σβb

)
(α̂j − b0) +

(
1− rα

(
σ2
β

+σ2
b

+2σβb
σ2
β

+σβb

))
β0 + b0,

This adds bias, b0, to a weighted average of bias-corrected OLS and global mean value-added.
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deviation of causal value-added.18

Earlier work on school effectiveness explores differences between Boston’s charter, pilot, and traditional

public sectors (Abdulkadiroğlu et al. 2011; Angrist et al. 2016a). These estimates show strong charter

school treatment effects in Boston, a finding that suggests accounting for sector differences may improve the

predictive accuracy of school value-added models. Columns 4 and 5 of Table VI therefore report estimates

of lagged score and gains models in which the means of the random coefficients depend on school sector

(Appendix Table A.III reports the complete set of parameter estimates for the lagged score model). Consis-

tent with earlier findings, models with sector effects show that average charter school value-added exceeds

traditional public school value-added by roughly 0.4σ. Estimated differences in value-added between pilot

and traditional public schools are smaller and statistically insignificant. By contrast, bias seems unrelated

to sector, implying that conventional VAM models with demographic and lagged achievement controls accu-

rately reproduce lottery-based comparisons of the charter, pilot and traditional sectors (also consistent with

the findings of Abdulkadiroğlu et al. [2011]). The estimates of σβ and σb show that sector effects reduce

cross-school variation in both value-added and bias by about 20-25 percent. The large charter effect on value

added notwithstanding, most of the variation in middle school quality in Boston is within sectors rather than

between.

Estimated covariances between βj and bj , denoted σβb, are negative and mostly statistically significant,

a result that can be seen in the third row of Table VI. A negative covariance between value-added and

bias suggests that conditional on demographics and past achievement, students with higher ability tend to

enroll in schools with lower value-added. Conventional VAMs therefore overestimate the effectiveness of

low-quality schools and underestimate the effectiveness of high-quality schools. Estimates of βQ, the lottery

school value-added shifter, are close to zero in models without sector effects, and positive but small when

sector effects are included. The estimate of βQ for the lagged score model is statistically significant, implying

that schools with lotteries are slightly more effective than undersubscribed schools in the same sector.

Studies of teacher value-added emphasize the reliability ratio rα = Cov(αj , βj)/V ar(αj) as a summary

measure of the predictive value of VAM estimates (Chetty, Friedman and Rockoff 2014a; Rothstein 2016).19

The fourth row of Table VI reports model-based estimates of this parameter. The estimated reliability of the

uncontrolled specification equals 0.08 with a standard error of 0.20, implying that school average test scores

are only weakly related to school effectiveness. Reliability ratios in the lagged score and gains models equal

0.64 and 0.75 in models without sector effects, and 0.69 and 0.78 in models with sector effects. Consistent

with the test results in Section IV, these estimates show that conventional VAM estimates are strongly, but

not perfectly, linked to causal school quality.

18Rothstein (2009) tests for bias in teacher VAMs using Granger-type causality tests that regress lagged test scores on future
teacher dummies. Like our random coefficients model, these tests generate estimates of the standard deviation of bias in VAM
estimates.

19Chetty, Friedman and Rockoff (2014a) use this parameter to define “forecast bias,” equal to 1−rα. We use “reliability” here
to distinguish between rα and the forecast coefficient ϕ̂, which captures a different weighted average across schools. Appendix
B.5 discusses the relationship between ϕ̂ and rα.
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VI.B. School Characteristics, Value-added, and Bias

The individual school value-added posterior modes generated by our hybrid estimation strategy are positively

correlated with conventional posterior means that ignore bias in OLS value-added estimates. This is evident

in Figure IV, which plots hybrid modes against posterior means from conventional value-added models. Rank

correlations in the lagged score and gains models are 0.79 and 0.74. The relationship between conventional

and hybrid posteriors is weaker for lottery schools (indicated by filled markers) than for schools without

lotteries: rank correlations for these two groups equal 0.60 and 0.90 in the gains model. This reflects the fact

that lotteries are more informative about causal effects for schools with randomized admission. Although

hybrid and conventional posteriors are strongly correlated, hybrid estimation changes some schools’ ranks,

so accountability decisions may be improved using the hybrid estimates.

Hybrid estimation generates posterior modes for bias as well as value-added. The value-added and bias

posteriors therefore permit an exploration of the association between school characteristics, causal value-

added and bias. Table VII reports coefficients from regressions of posterior modes for bias and value-added

on school characteristics, with and without controls for sector. As can be seen in columns 1 and 3, students

that appear more advantaged (based on baseline scores and special education status, for example) tend

to enroll in schools with higher value-added, but this pattern is largely explained by the higher likelihood

that these students enroll in charter schools. By contrast, column 4 shows that VAM bias is more positive

for schools with more advantaged students, including those with higher average baseline test scores, fewer

black students, fewer special education students, and fewer students eligible for subsidized lunches. The

correlation of bias with baseline scores is especially noteworthy: although we see positive selection into the

Boston charter sector, the popular impression that good schools have good peers is driven mostly by selection

bias.

A key assumption underlying the hybrid approach is that the distribution of bias in conventional VAM

estimates is unrelated to lottery over-subscription. This assumption restricts the relationship between student

ability and school enrollment patterns. For example, it requires that students who enroll in more and less

popular schools have similar ability conditional on demographic variables and lagged achievement. Evidence

in support of this assumption comes from the relationships between oversubscription rates, posterior bias

estimates, and baseline scores.

As can be seen in Panel A of Figure V, posterior bias estimates are uncorrelated with the extent of

oversubscription among lottery schools. Specifically, a regression of predicted bias from the lagged score

model on the log of the oversubscription rate yields a slope coefficient of -0.02 with a standard error of

0.06.20 The weak relationship between bias and the degree of oversubscription apparent in the figure is

consistent with the hypothesis that bias distributions are similar for schools where lottery information is and

is not available. Note also that this finding is not a mechanical consequence of assumptions imposed by the

hybrid model, since the model ignores the degree of oversubscription within the lottery sample.
20The oversubscription rate is defined as the ratio of the annual average number of lottery applicants to the average number

of seats for charter schools, and the ratio of the average number of first-choice applicants to the average number of seats for
traditional and pilot schools.
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Recall that Table II shows that baseline scores and other observed characteristics are similar for students

enrolled at schools with and without lotteries. Panel B of Figure V explores this pattern further by show-

ing that oversubscription rates are uncorrelated with average baseline scores at oversubscribed schools. A

regression of average baseline scores on log oversubscription produces a coefficient of -0.03 with a standard

error of 0.10. This finding, which does not rely on estimates from the model, shows that observed ability

of enrolled students is unrelated to lottery oversubscription within the lottery sample. We might therefore

expect unobserved ability to be unrelated to oversubscription as well. Both panels of Figure V support the

assumption postulating similar bias distributions for schools that are more and less heavily over-subscribed.21

VII. Policy Simulations

We use a Monte Carlo simulation to gauge the accuracy and value of VAM estimates for decision-making.

The simulation draws values of causal value-added, bias, and lottery first stage parameters from the esti-

mated distributions underlying Table VI.22 Estimation errors are also drawn from their joint asymptotic

distribution and are combined with parameter draws to construct simulated OLS, reduced form and first

stage estimates. These simulated estimates are then used to re-estimate the random coefficients model and

construct conventional and hybrid EB posterior predictions. Each simulation therefore replicates the infor-

mation available to a policymaker or parent, armed with both conventional and hybrid estimates, in a world

calibrated to our model.

VII.A. Mean Squared Error

Our first statistic for model assessment is root mean squared error (RMSE). Conventional VAMs generate

value added estimates of school quality with an RMSE far below that of a naive uncontrolled benchmark.

This can be seen in Figure VI, which compares RMSE across specifications and estimation procedures.

RMSE in the uncontrolled model is about 0.5σ, falling to around 0.18σ and 0.17σ in the lagged score and

gains VAMs. Adjustments for past scores and other student demographics eliminate a good portion of the

bias in uncontrolled estimates.

The RMSE of hybrid estimates is impressively stable across specifications, starting at 0.17σ in an un-

controlled benchmark model and falling to 0.14σ in the lagged score and gains models. With sector effects

included, hybrid estimation reduces RMSE from 0.15σ to about 0.12σ in the lagged score model and from

0.14σ to about 0.10σ in the gains model. The relatively stable hybrid RMSE shows how the hybrid esti-

mator manages to reduce bias even when non-lottery estimates are badly biased. Although the largest bias

mitigation seen in the figure comes from controlling for covariates, hybrid estimation reduces RMSE by a

further 20-30 percent.
21Appendix C investigates the sensitivity of policy simulation results to violations of this assumption. These results show

that hybrid estimation generates substantial gains even when the difference in mean bias between lottery and non-lottery schools
is on the order of 0.2σ.

22Simulation results for seventh and eighth grade, reported in Appendix Tables A.IV and A.V, yield conclusions similar to
those for sixth grade. These and other supplementary simulation results are discussed in Appendix C.
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Not surprisingly, the RMSE reduction yielded by the hybrid estimator reflects reduced bias at the cost

of increased sampling variance. This can be seen by writing the mean squared error of an estimator, β∗j , as

E
[(
β∗j − βj

)2
]

= E
[
V ar

(
β∗j |βj

)]
+ σ2

b∗ ,

where σ2
b∗ = E

[(
E
[
β∗j |βj

]
− βj

)2
]
is average bias squared and the expectation treats the value-added

parameters, βj , as random. Blue and red shading in Figure VI shows the proportions of MSE due to bias

and variance. OLS VAMs are precisely estimated: sampling variance contributes only a small part of their

overall MSE. Hybrid estimation reduces MSE, while also increasing the proportion of error due to sampling

variance to around 30 percent. This reflects the core tradeoff motivating the hybrid approach: hybrid

posteriors leverage lottery estimates to reduce bias in exchange for increased sampling variance relative to

conventional VAMs.23

VII.B. Consequences of School Closure

Massachusetts’ school accountability framework uses value-added measures to guide decisions about school

closures, school restructuring and turnarounds, and charter school expansion. A stylized description of these

decisions is that they replace weak schools with those judged to be stronger on the basis of value-added

estimates. We therefore simulate the achievement consequences of closing the lowest-ranked district school

(traditional or pilot) and sending its students to schools with average or better estimated value-added.

This analysis ignores possible transition effects such as disruption due to school closure, peer effects

from changes in school composition, and other factors that might inhibit replication of successful schools.

The results should nevertheless provide a rough guide to the potential consequences of VAM-based policy

decisions. Quasi-experimental analyses of charter takeovers and other school reconstitution efforts in Boston,

New Orleans, and Houston have shown large gains when low-performing schools are replaced by schools

operating according to pedagogical principles seen to be effective elsewhere (Fryer 2014; Abdulkadiroğlu

et al. 2016). This suggests transitional consequences are dominated by longer-run determinants of school

quality, at least for modest policy interventions of the sort considered here.

The potential for VAMs to guide decision-making is highlighted by the first row of Table V.III, which

shows the score gains produced by decisions based on true value added. Closing the worst school and

replacing it with an average school boosts achievement by 0.37σ, while more targeted replacement policies

generate even larger gains. Consistent with the high RMSE of uncontrolled estimates, however, Table V.III

also shows that policies based on uncontrolled test score levels generate only small gains. For example,

replacing the lowest-scoring district school with an average school is predicted to increase scores for affected

students by 0.06σ on average. Likewise, a policy that replaces the lowest-ranked school with an average top

quintile school generates a gain of 0.10σ. These small effects reflect the large variation in bias evident for

23Appendix Table A.VI shows hybrid estimates generate forecast coefficients close to one in both the lagged score and gains
specifications, with or without charter lotteries. The hybrid estimates also pass the overidentification and omnibus specification
tests.
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the uncontrolled model in Table VI: closure decisions based on average test scores target schools with many

low achievers rather than low value-added. The bias in uncontrolled VAM estimates also leads to a wide

dispersion of simulated closure effects, with a cross-simulation standard deviation (reported in brackets) of

around 0.2σ.

In contrast, closure and replacement decisions based on conventional lagged score and gains models yield

substantial achievement gains. For instance, replacing the lowest-ranked school with an average school boosts

scores by an average of 0.24σ when rankings are based on the gains specification. This is 65 percent of the

corresponding benefit generated by a policy that ranks schools by true value-added. Hybrid estimation

increases these gains to 0.32σ, an improvement of over 30 percent relative to the conventional model. This

incremental effect closes roughly half the gap between conventional estimates and the maximum possible

impact.

The effects of VAM-based policies and the incremental benefits of using lotteries grow when value-

added predictions are used to choose expansion schools in addition to closures. In the gains specification,

for example, replacing the lowest-ranked school with a typical top-quintile school generates an average

improvement of 0.39σ when conventional posteriors are used to estimate VAM and an improvement of 0.53σ

when rankings are based on hybrid predictions. The hybrid approach also modestly reduces the uncertainty

associated with VAM-based policies by doing a better job of finding reliably good replacement schools.

The largest gains seen in Table VIII result from a policy that replaces the lowest-ranking traditional

or pilot school with a charter school. This mirrors Boston’s ongoing in-district charter conversion policy

experiment (Abdulkadiroğlu et al. 2016). Reflecting the large difference in mean value-added between charter

and district schools, charter conversion is predicted to generate significant gains regardless of how value-added

is estimated. Accurate value-added estimation increases the efficacy of charter conversion, however: selecting

schools for conversion based on the lagged score value-added model rather than the uncontrolled model boosts

the effect of charter expansion from 0.28σ to 0.58σ, while use of the hyrid estimator pulls this up to 0.67σ,

close to the maximum possible gain of 0.71σ.

The results in Table VIII show that, even when VAM estimates are imperfect, they predict causal value-

added well enough to be useful for policy. For example, causal value-added is more than 0.2σ below-average

for schools ranked at the bottom by the conventional lagged score and gains specifications. As can be seen in

Table VI, this represents roughly a full standard deviation in the distribution of true school quality. Value-

added for low-ranked schools is even more negative when rankings are based on hybrid estimates. Schools

selected for replacement may not be the very worst schools in the district. At the same time, these schools

are likely to be much worse than average, so policies that replace them with schools predicted to do better

generate large gains.24

24The simulations in Table VIII predict the consequences of decisions based on the eight years of data in our sample. Districts
often estimate value-added over shorter time periods. To gauge the effects of using four years of data, Appendix Table A.VII
reports simulation results that double sampling variance. This produces results which are qualitatively similar to those from the
full sample, with slightly smaller closure effects. Appendix Table A.III reports estimates from a model (described in Appendix
C) that allows value-added and bias to vary by year. These estimates suggest a limited role for idiosyncratic temporal variation
in VAM hyperparameters.
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VIII. Conclusions and Next Steps

School districts increasingly rely on regression-based value-added models to gauge and report on school

quality. This paper leverages admissions lotteries to test and improve conventional VAM estimates of school

value-added. An application of our approach to data from Boston suggests that conventional value-added

estimates for Boston’s schools are biased. Nevertheless, policy simulations show that accountability decisions

based on estimated VAM are likely to boost achievement. A hybrid estimation procedure that combines

conventional and lottery-based estimates generates predictions that, while still biased, achieve lower mean-

squared error and improved policy targeting relative to conventional VAMs.

Hybrid school value-added estimation requires some kind of lottery-based admissions scheme, such as

those increasingly used for student assignment in many of America’s large urban districts. As our analysis

of charter schools shows, however, admissions need not be centralized for lotteries to be of value. The utility

of hybrid estimation in other cities will vary with the extent of lottery coverage, but results for Boston show

hybrid estimation remains useful even when lottery data are missing for many schools. Our approach also

rules out effect heterogeneity linked to school choices, which may be less appropriate in settings with more

specialized schools and very heterogeneous student populations.

The methods developed here may be useful for combining quasi-experimental and non-experimental

estimators in other contexts. Candidates for this extension include the quantification of teacher, doctor,

hospital, firm, or neighborhood effects. Assignment lotteries in these settings are rare, but our hybrid

estimation strategy may be extended to exploit other sources of quasi-experimental variation. A hybrid

approach to testing and estimation is likely to be fruitful in any context where a set of credible quasi-

experiments is available to discipline a larger set of non-experimental comparisons.
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Notes: This figure displays standard deviations of school effects from OLS value-added 
models. See notes to Table 3 for a description of the controls included in the lagged score 
and gains models; the uncontrolled model includes only year effects. The variance of OLS 
value-added is obtained by subtracting the average squared standard error from the sample 
variance of value-added estimates, then taking the square root. Within-sector variances are 
obtained by first regressing value-added estimates on charter and pilot dummies, then 
subtracting the average squared standard error from the sample variance of residuals and 
taking the square root.

Figure I. Standard Deviations of School Effects from OLS Value-added Models
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Figure II. Visual Instrumental Variables Tests for Bias
Notes: This figure plots lottery reduced form effects against value-added first stages 
from each of 28 school admission lotteries. See the notes for Table III for a 
description of the value-added models and lottery specification. Filled markers 
indicate reduced form and first stage estimates that are significantly different at the 
10% level. Slopes of solid lines correspond to the forecast coefficients from Table 
III, while dashed lines indicate the 45-degree line. Omnibus p -values are for the 
over-identification test statistic described in Section IV.A.
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Notes: This figure compares OLS estimates of average value-added for admission lottery 
compliers to estimates for always- and never-takers in each of 28 school lotteries. OLS 
estimates comes from a lagged-score VAM that allows school effects to differ across the 
subgroups used in column 6 of Table IV, estimated in the lottery sample. Complier, always-
taker, and never-taker means are estimated using methods described in Appendix B. p -
values are for joint tests of complier and always-/never-taker equality across all schools. The 
joint p -value for both panels is 0.289.

Figure III. Comparisons of Conventional Value-Added by Lottery Compliance
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Notes: This figure plots empirical Bayes posterior mode predictions of value-added from the 
random coefficients model against posterior means based on OLS value-added. Posterior 
modes are computed by maximizing the sum of the log-likelihood of the OLS, reduced form, 
and first stage estimates conditional on all school-specific parameters plus the log-likelihood 
of these parameters given the estimated random coefficient distribution. Conventional 
posteriors shrink OLS estimates towards the mean in proportion to one minus the signal-to-
noise ratio. Filled markers indicate lottery schools. Dashes indicate OLS regression lines.

Figure IV. Empirical Bayes Posterior Predictions of School Value-Added
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Notes: Panel A of this figure plots posterior mode predictions of bias in sixth grade math VAMs 
against oversubscription rates for schools with admission lotteries. The oversubscription rate is 
defined as the log of the ratio of the average number of first-choice applicants (for traditional and 
pilot schools) or the average number of total applicants (for charters) to the average number of 
available seats for each admission grade. Bias modes come from the lagged score model with sector 
effects. Panel B plots school average baseline math and ELA scores against oversubscription rates.  
Points in the figure are constructed by first regressing bias modes, mean baseline scores and 
oversubscription rates on pilot and charter indicators, then computing residuals from these 
regressions. Dashes indicate OLS regression lines.

Figure V. Relationship Between Oversubscription and Bias Measures for Lottery Schools
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Notes: This figure plots root mean squared error (RMSE) for posterior predictions of sixth grade math value-
added. Conventional predictions are posterior means constructed from OLS value-added estimates. Hybrid 
predictions are posterior modes constructed from OLS and lottery estimates. The total height of each bar 
indicates RMSE. Blue bars display shares of mean squared error due to bias, and red bars display shares due 
to variance. RMSE is calculated from 500 simulated samples drawn from the data generating processes 
implied by the estimates in Table VI. The random coefficients model is re-estimated in each simulated 
sample.

Figure VI. Root Mean Squared Error for Value-Added Posterior Predictions
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OLS sample
Lottery 
sample OLS sample

Lottery 
sample

(1) (2) (3) (4) (5) (6) (7) (8)

1,095 79 Y Y 538 310 Y Y
1,025 445 Y Y 1,260 433 Y Y
1,713 1,084 Y Y 585 296 Y Y
547 218 Y Y 78 5 Y
217 46 Y 453 46 Y Y

1,354 581 Y Y 380 67 Y Y
263 44 Y 242 179 Y Y

1,637 492 Y Y 558 73 Y Y
472 104 Y 18 12

1,238 591 Y Y
537 11 738 406 Y Y
331 35 Y Y 361 23
335 82 Y 357 215 Y
952 232 Y Y 393 332 Y Y
294 71 Y Y 338 16
333 90 Y 511 115 Y Y
766 243 Y Y 71 8
372 47 Y Y 300 23
137 14 Y 389 342 Y Y

1,091 225 Y Y 654 34
1,086 127 Y Y 45 3
577 104 Y Y 53 2
622 61 Y 415 305 Y Y
906 270 Y Y 70 6
267 19 104 23

701 92
85 37

A. Traditional publics (25) B. Pilots (9)

C. Charters (17)

Notes: This table counts the students included in each school in the OLS value-added and lottery samples. The 
sample covers cohorts attending sixth grade in Boston between the 2006-2007 and 2013-2014 school years. 
Columns 3 and 7 indicate schools for which sixth grade is the primary entry grade; columns 4 and 8 indicate 
whether the school has enough students subject to conditionally-random admission variation to be included in 
the lottery sample. Total numbers of schools in each sector are included in parentheses in the column headings.

Table I. Boston Students and Schools
Total enrollment

6th grade 
entry?

Lottery 
school?

Total enrollment
6th grade 

entry?
Lottery 
school?



All students
Lottery school 

students All students
Lottery school 

students All lotteries Traditional Pilot Charter
Baseline covariate (1) (2) (3) (4) (5) (6) (7) (8)
Hispanic 0.345 0.342 0.354 0.361 -0.017 -0.007 0.003 -0.006

(0.013) (0.017) (0.033) (0.018)
Black 0.410 0.394 0.485 0.468 -0.011 -0.005 -0.052 -0.009

(0.014) (0.018) (0.034) (0.020)
White 0.122 0.125 0.072 0.078 0.010 0.006 0.005 0.009

(0.007) (0.008) (0.015) (0.010)
Female 0.490 0.487 0.504 0.502 0.017 0.034* -0.013 -0.025

(0.014) (0.019) (0.037) (0.020)
Subsidized lunch 0.806 0.811 0.830 0.831 0.020* 0.020 0.006 -0.005

(0.010) (0.013) (0.026) (0.016)
Special education 0.208 0.214 0.195 0.196 0.006 -0.003 -0.022 0.015

(0.011) (0.013) (0.030) (0.016)
English-language learner 0.205 0.224 0.206 0.214 0.006 -0.001 0.018 0.004

(0.011) (0.014) (0.027) (0.016)
Suspensions 0.093 0.073 0.076 0.070 -0.025 -0.025 0.009 -0.016

(0.016) (0.023) (0.025) (0.017)
Absences 1.710 1.567 1.534 1.466 -0.087 -0.138* -0.092 0.110

(0.095) (0.080) (0.260) (0.167)
Math score 0.058 0.053 0.004 0.016 0.022 -0.026 0.080 0.036

(0.024) (0.030) (0.061) (0.035)
ELA score 0.030 0.006 0.013 0.016 0.035 0.045 0.060 0.013

(0.025) (0.030) (0.061) (0.036)

N 27,864 21,446 8,718 7,748 8,718 4,849 1,303 3,655

Table II. Descriptive Statistics

Notes: This table reports sample mean characteristics and investigates balance of random lottery offers. Column 1 shows mean characteristics for all Boston sixth 
graders enrolled between the 2006-2007 and 2013-2014 school years, and column 2 shows means for students enrolled at schools that have randomized entrance 
lotteries in at least one year. Columns 3 and 4 report mean characteristics for students subject to random lottery assignment. Columns 5-8 report coefficients from 
regressions of baseline characteristics on lottery offers, controlling for lottery strata. Robust standard errors are reported in parenthenses.
*significant at 10%; **significant at 5%; ***significant at 1%

Lottery offer balanceOLS sample Lottery sample
Means



Lagged score Gains Lagged score Gains
(1) (2) (3) (4)

Forecast coefficient (𝜑) 0.864 0.950 0.549 0.677
(0.075) (0.084) (0.164) (0.193)

First stage F -statistic 29.6 26.6 11.2 9.3

p -values:
  Forecast bias 0.071 0.554 0.006 0.095
  Overidentification 0.003 0.006 0.043 0.052

Omnibus test χ2 statistic (d.f.) 77.7 (28) 72.1 (28) 48.0 (23) 41.7 (23)
  p -value <0.001 <0.001 <0.001 0.010

N

Forecast coefficient (𝜑) 0.880 0.924 0.683 0.726
(0.055) (0.060) (0.124) (0.133)

First stage F -statistic 14.7 15.0 7.6 7.8

p -values:
  Forecast bias 0.028 0.204 0.011 0.039
  Overidentification 0.011 0.011 0.062 0.065

Omnibus test χ2 statistic (d.f.) 172.8 (75) 167.0 (75) 111.6 (60) 107.9 (60)
  p -value <0.001 <0.001 <0.001 <0.001

N

Table III. Tests for Bias in Conventional Value-Added Models
All lotteries Excluding charter lotteries

Notes: This table reports the results of tests for bias in conventional value-added models (VAMs) for sixth through 
eighth grade math scores. The lagged score VAM includes cubic polynomials in baseline math and ELA scores, 
along with indicators for application year, sex, race, subsidized lunch, special education, limited-English 
proficiency, and counts of baseline absences and suspensions. The gains VAM drops the lagged score controls and 
uses score growth from baseline as the outcome.  Seventh and eighth grade VAMs measure exposure to each 
school using total years of enrollment since the lottery. Forecast coefficients are from instrumental variables 
regressions of test scores on fitted values from conventional VAMs, instrumenting fitted values with lottery offer 
indicators. IV models are estimated via an asymptotically efficient GMM procedure and  control for lottery strata 
fixed effects, demographic variables, and lagged scores. The forecast bias test checks whether the coefficient from 
this model equals one, and the overidentificiation test checks the model's overidentifying restrictions. The 
omnibus test combines forecast bias and overidentifying restrictions. Panel A uses sixth grade math scores, while 
Panel B stacks math score outcomes and VAM fitted values from sixth through eighth grade.  Standard errors and 
test statistics in Panel B cluster on student. Columns 3 and 4 exclude charter school lotteries.

A. Sixth grade

6,162

B. All middle school grades

15,027

8,718

20,935



Baseline 
year

Subsidized 
lunch

Special 
education

Baseline 
score tercile

Interacted 
groups

(1) (2) (3) (4) (5) (6)

Lagged score Forecast coefficient (𝜑) 0.864 0.916 0.849 0.863 0.866 0.930
(0.075) (0.072) (0.075) (0.074) (0.075) (0.061)

Omnibus test χ2(28) statistic 77.7 68.2 82.8 79.0 83.3 73.4
  p -value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Gains Forecast coefficient (𝜑) 0.950 1.016 0.944 0.955 0.891 0.953
(0.084) (0.082) (0.083) (0.083) (0.079) (0.065)

Omnibus test χ2(28) statistic 72.1 65.7 74.4 72.4 80.9 66.6
  p -value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Lagged score Forecast coefficient (𝜑) 0.868 0.962 0.851 0.872 0.873 0.934
(0.070) (0.068) (0.069) (0.070) (0.070) (0.052)

Omnibus test χ2(28) statistic 62.3 51.8 67.9 63.5 65.9 56.3
  p -value <0.001 0.004 <0.001 <0.001 <0.001 0.001

Gains Forecast coefficient (𝜑) 0.926 1.035 0.912 0.937 0.890 0.941
(0.077) (0.077) (0.076) (0.077) (0.073) (0.055)

Omnibus test χ2(28) statistic 57.8 50.2 60.1 58.4 61.1 42.2
  p -value <0.001 0.006 <0.001 <0.001 <0.001 0.041

Notes: This table reports lottery-based tests for bias in school value-added models that allow for effect heterogeneity by baseline characteristics. See the notes to 
Table III for a description of the lagged score and gains models and test procedure.  Panel A estimates value-added in the full OLS sample, while Panel B 
restricts estimation to the lottery subsample. Column 1 repeats estimates that do not allow effect heterogeneity, while columns 2-6 allow value-added to differ 
across groups defined by the covariates in the column headings. The covariates used to define groups in column 6 are race, gender, subsidized lunch, special 
education, English language learner status, and baseline score terciles based on average fifth grade math and ELA test scores in the OLS sample. 

Table IV. Robustness of Sixth Grade Bias Tests to Effect Heterogeneity

Baseline VAM 
specification

VAM estimated by subgroup

Value-added 
model

A. VAM estimated on the OLS sample

B. VAM estimated on the lottery sample



(1) (2) (3) (4) (5) (6)

39 0.013 Y 320 <0.001 Y
36 0.018 Y 11 0.080

113 <0.001 Y 16 0.427
79 <0.001 Y 16 0.204
94 <0.001 Y 24 0.724
21 0.045 Y 42 0.145
60 0.006 Y 3 0.111
12 0.016 2 0.390

10 0.257
5 0.033 Y 33 0.010

15 0.169 112 <0.001
34 0.378

A. Traditional publics C. Charters

B. Pilots

Notes: This table reports p -values for tests of whether each non-lottery school in the OLS sample serves as a fallback for one 
of the 28 lottery schools. Columns 1 and 4 count the number of students in the lottery sample who are observed enrolling in 
the undersubscribed school when not given a offer. Columns 2 and 5 test jointly whether the undersubscribed school's first 
stage coefficients are zero in all lotteries with such students. Columns 3 and 6 indicate whether sixth grade is a school's 
primary entry point. First stage regressions control for lottery strata indicators, demographic variables, and lagged test scores.

Table V. Fallback Status of Schools Without Sixth Grade Lotteries
Lottery students 

with fallback 
enrollment

p -value: not a 
lottery fallback

Sixth grade 
entry? 

Lottery students 
with fallback 
enrollment

p -value: not a 
lottery fallback

Sixth grade 
entry? 



Uncontrolled Lagged score Gains Lagged score Gains
(1) (2) (3) (4) (5)

σ β Std. dev. of causal VA 0.195 0.220 0.222 0.171 0.170
(0.024) (0.021) (0.023) (0.028) (0.023)

σ b Std. dev. of VAM bias 0.501 0.182 0.166 0.148 0.133
(0.061) (0.048) (0.048) (0.029) (0.030)

σ βb Covariance of -0.018 -0.014 -0.017 -0.016 -0.013
VA and bias (0.010) (0.003) (0.004) (0.006) (0.003)

r𝛼 Regression of VA 0.078 0.644 0.753 0.694 0.783
on OLS (reliability ratio) (0.204) (0.066) (0.072) (0.152) (0.122)

VA shifters Charter 0.426 0.396
(0.104) (0.106)

Pilot 0.130 0.111
(0.129) (0.129)

Lottery school (β Q ) 0.040 -0.024 -0.033 0.104 0.066
(0.127) (0.061) (0.054) (0.042) (0.041)

Bias shifters Charter -0.005 -0.063
(0.103) (0.099)

Pilot -0.121 -0.089
(0.124) (0.121)

χ2 statistic (d.f.): 10.9 (7) 10.8 (7) 9.1 (7) 9.0 (13) 6.0 (13)
Overid. p- value: 0.145 0.147 0.247 0.773 0.946

Table VI. Joint Distribution of Causal Value-added and VAM Bias for Sixth Grade Math Scores

Notes: This table reports simulated minimum distance estimates of parameters of the joint distribution of causal school value-added 
and OLS bias. The moments used in estimation are functions of OLS value-added, lottery reduced form, and first stage estimates, as 
described in Appendix B. Uncontrolled estimates come from an OLS regression that controls only for year effects. See notes to Table 
III for a description of the control variables included in the lagged score and gains value-added models. Simulated moments are 
computed from 500 samples constructed by drawing school-specific parameters from the random coefficient distribution along with 
estimation errors based on the asymptotic covariance matrix of the estimates. Columns 4 and 5 allow the means of the random 
coefficients distribution to depend on school sector. Moments are weighted by an estimate of the inverse covariance matrix of the 
moment conditions, calculated from a first-step estimate using an identity weighting matrix. The weighting matrix is produced using 
1,000 simulations, drawn independently from the samples used to simulate the moments.

Models without sector effects Models with sector effects



Value-added Bias Value-added Bias
School characteristic (1) (2) (3) (4)
Fraction black 0.158 -0.208*** -0.050 -0.217***

(0.143) (0.075) (0.083) (0.073)
Fraction hispanic 0.065 0.031 0.268** 0.048

(0.201) (0.105) (0.127) (0.112)
Fraction subsidized lunch -0.132 -0.452** 0.085 -0.474***

(0.306) (0.181) (0.203) (0.164)
Fraction special education -0.977*** -0.501*** 0.009 -0.508**

(0.330) (0.157) (0.316) (0.217)
Fraction English-language learners -0.542** -0.135 0.297 -0.092

(0.247) (0.221) (0.243) (0.254)
Mean baseline math score 0.157* 0.143*** 0.012 0.145***

(0.088) (0.051) (0.070) (0.047)
Mean baseline ELA score 0.201** 0.135** 0.039 0.138**

(0.085) (0.060) (0.074) (0.060)

Charter and pilot controls? Y Y

Table VII. Correlates of Posterior Value-added and VAM Bias

Notes: This table reports coefficients from regressions of empirical Bayes posterior modes for causal value-
added and VAM bias on school characteristics. Columns 1 and 2 show coefficients from bivariate 
regressions, while columns 3 and 4 show coefficients from regressions controlling for charter and pilot 
indicators. Posterior modes come from the lagged score model with sector effects for sixth grade math 
scores. Robust standard errors are reported in parentheses.
*significant at 10%; **significant at 5%; ***significant at 1%

Overall Within-sector



Average district 
school

Average above-
median school

Average top-
quintile school

Average charter 
school

Model Posterior method (1) (2) (3) (4)
- True value-added 0.370 0.507 0.610 0.711

[0.080] [0.089] [0.094] [0.094]

Uncontrolled Conventional 0.056 0.078 0.095 0.280
[0.191] [0.197] [0.204] [0.198]

Hybrid 0.153 0.223 0.259 0.377
[0.143] [0.156] [0.169] [0.151]

Lagged score Conventional 0.226 0.307 0.367 0.577
[0.159] [0.168] [0.176] [0.165]

Hybrid 0.315 0.437 0.529 0.665
[0.131] [0.141] [0.147] [0.145]

Gains Conventional 0.240 0.327 0.391 0.580
[0.148] [0.156] [0.163] [0.153]

Hybrid 0.316 0.434 0.525 0.657
[0.115] [0.126] [0.136] [0.128]

Table VIII. Consequences of Closing the Lowest-Ranked District School for Affected Children

Notes: This table reports simulated test score impacts of closing the lowest-ranked BPS district school based on value-
added predictions. The reported impacts are average effects on test scores for students at the closed school. Standard 
deviations of these effects across simulations appear in brackets. Column 1 replaces the lowest-ranked district school with 
an average district school. Column 2 replaces the lowest-ranked school with an average above-median district school, and 
column 3 uses an average top-quintile district school. Column 4 replaces the lowest-ranked district school with an average 
charter school. See notes to Table III for a description of the controls included in each value-added model. Conventional 
empirical Bayes posteriors are means conditional on OLS estimates only, while hybrid posteriors are modes conditional 
on OLS and lottery estimates. All models include sector effects. Statistics are based on 500 simulated samples, and the 
random coefficients model is re-estimated in each sample.

Replacement school
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