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On Residualized Outcome Regressions

Since the seminal work of Frisch and Waugh (1933) and Lovell (1963), researchers have
known that the coefficients of a multivariate regression can be obtained by regressing the
outcome on a residualized regressor – specifically, the residual from projecting the regressor
on all other right–hand side variables. Occasionally researchers will flip this logic, regressing
instead a residualized outcome on a set of non-residualized treatments. This is sometimes done
to simplify computation of high-dimensional models, especially if the treatments are group
indicators. For example, computing classroom-level averages of residualized test score outcomes
can be significantly easier and faster than estimating a large-scale teacher value-added model
in a single step. Other times researchers may use residualized outcomes to visualize a study’s
identifying variation, for example by plotting group-by-time trends of outcome residuals in a
difference-in-differences design.

This note shows that these sorts of residualized outcome regressions can be difficult to
interpret, especially in settings with multiple treatments. Residualizing outcomes is harmless
when the partialled-out controls are independent from treatment, as in a randomized control
trial or regression discontinuity design; in some cases this may even increase precision (Lee and
Lemieux, 2010). In general, however, regressing a residualized outcome on a single treatment
variable yields an attenuated estimate of the “true” regression coefficient, while multivariate
residualized outcome regressions identify particular linear combinations of the true coefficients.
Thus in the above difference-in-differences example the coefficients may mix together multiple
different true leads and lags, complicating the interpretation of the residualized outcome plot.

Formally, suppose our population regression of interest is

Yi = α+D′iβ +X ′iγ + εi, (1)

where Di contains a set of J treatment variables and Xi is a vector of auxiliary controls.
Typically the “true” treatment parameter β is estimated by ordinary least squares; in matrix
notation and by the classic theory of Frisch and Waugh (1933) and Lovell (1963), this can be
written

β̂ = (D̃′D̃)−1D̃′Y. (2)

Here Y and D̃ collect observations of Yi and D̃′i, where D̃i denotes the residuals from projecting
Di on Xi and a constant. In contrast, a residualized outcome regression estimate can be written

β̃ = (D′D)−1D′Ỹ , (3)

where D and Ỹ collect observations of de-meaned D′i and the residuals from regressing Yi on
Xi and a constant (note here Di is de-meaned to account for the constant in the second step
regression).

To link these two estimates let MX = I − X(X ′X)−1X ′ be the control residual-maker
matrix, where I denotes the identity matrix and X collects observations of X ′i and a constant.
Since Ỹ = MXY , MXD = D̃, and MX is both symmetric and idempotent, we have

β̃ = (D′D)−1(MXD)′Y
= Ω̂β̂, (4)

where Ω̂ = (D′D)−1(D̃′D̃) = (D′D)−1(D′D̃) is a J × J matrix containing the coefficients from
regressing the elements of D̃i on Di. With β̂

p−→ β, we will generally not also have β̃ p−→ β

unless Ω̂ p−→ I. Of course the residualized outcome regression is consistent for β when Xi is
uncorrelated with Di, as in a randomized trial, since then D̃i and Di coincide asymptotically.
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To unpack this result, first suppose that we have a single treatment (J = 1). Then

Ω̂ =
∑

i D̃
2
i∑

i D
2
i

= 1− R̂2 ∈ (0, 1), (5)

where R̂2 is the sample R-squared from regressing Di on Xi. Thus in the single-treatment
case the residualized outcome regression gives an attenuated estimate of β while preserving
the sign of β̂. This is, in fact, classic attenuation bias: the residual outcome regression uses
a mismeasured regressor Di in place of the true regressor D̃i, with uncorrelated measurement
error Di − D̃i.

Unfortunately, the bias from Ω̂ becomes more complicated when there are multiple main-
tained treatments. Unless Ω̂ is diagonal, the estimates β̃j will mix together multiple true
coefficient estimates β̂k, and may thus not even be of the right sign. To see this most sim-
ply, suppose Di contains a set of mutually-exclusive treatment indicators Di1, . . . DiJ with one
control group indicator Di0 omitted. Writing the auxiliary regression of Di on Xi as

Di = µ+ ΓXi + νi, (6)

we have the (j, k)th element of the matrix Ω̂ satisfying

Ω̂jk
p−→E[Dik − µ− ΓkXi | Dij = 1]− E[Dik − µ− ΓkXi | Di0 = 1]

= 1{k = j} − Γk (E[Xi | Dij = 1]− E[Xi | Di0 = 1]) , (7)

where Γk denotes the kth row of Γ. Thus with many group treatments the residualized outcome
regression estimate of βj will be contaminated by β̂k for k 6= j unless either the controls are
balanced across treatments j and 0 (in which case the term in parentheses is zero) or are
uncorrelated with treatment k (in which case Γk = 0). Both conditions are again satisfied
when Xi and Di are independent, as in a randomized trial.

Except in special cases, residualized outcome regressions are therefore unlikely to capture the
underlying regression parameters of interest, or even their sign. Difference-in-difference trends
in residualized outcomes will in general mix together multiple true leads and lags, while two-
step teacher value-added estimation may misattribute one classroom’s test score improvements
to another. Researchers hoping to reduce the computational burden of large-scale regressions,
or to simply illustrate a research design, may wish to avoid this two-step procedure in favor
of estimating and plotting conventional regression coefficients. For this the classic theory of
Frisch and Waugh (1933) and Lovell (1963), as well as more recent advances in high-dimensional
regression estimation (Abowd et al., 2002; Guimaraes and Portugal, 2010; Correia, 2016), may
provide alternative simplifying tools.
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