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Abstract

Non-random sorting can bias observational measures of institutional quality
and distort quality-based polices. I develop alternative quasi-experimental ap-
proaches to quality estimation that accommodate nonlinear causal effects, in-
stitutional specialization, and unobserved selection-on-gains. I use this frame-
work to compute empirical Bayes posteriors of the quality of 4,821 U.S. hospitals,
combining estimates from ambulance referral quasi-experiments with predictions
from observational risk-adjustment models. Higher-spending, higher-volume, and
privately-owned hospitals are of higher quality, and most healthcare markets ex-
hibit positive Roy selection-on-gains. I then simulate Medicare reimbursement and
consumer guidance programs based on different hospital quality measures. Higher-
spending providers tend to see moderately larger performance-linked subsidies
when quality posteriors replace conventional rankings, while teaching hospitals
are reimbursed relatively less. Admissions policy simulations highlight limitations
of consumer guidance programs in settings with unobserved Roy selection: redi-
recting patients to top-ranked hospitals may worsen expected survival when based
on observational rankings, while quasi-experimental rankings appear to generate
modest gains.
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1 Introduction

Outcome-based rankings of institutional quality draw interest in many settings, from school and

teacher value-added to the lasting socioeconomic effects of residential, educational, and occupational

choice.1 In the U.S. these measures have come to play an important policy role, particularly in the

regulation of education and healthcare systems. Hospitals with low risk-adjusted mortality rates,

for example, tend to be rewarded with higher Medicare reimbursements, while providers with poor

survival outcomes may be flagged publicly as low-performers. These quality-based policies, in turn,

have been found to shape both hospital incentives and patient admission decisions (Norton et al.,

2017; Gupta, 2017; Dranove and Sfekas, 2008; Chandra et al., 2015).

To date, performance-based regulation has exclusively relied on observational quality estimators,

such as value-added models (VAMs) in education and risk-adjustment models (RAMs) in health.

These models leverage strong selection-on-observables assumptions – that a patient’s choice of hos-

pital, for example, is as-good-as-random conditional on a set of observed covariates. When hospital

sorting is instead correlated with unobserved determinants of patient health, hospital RAMs and

the supervisory policies leveraging them are prone to systematic bias. RAM-based admission guid-

ance may itself be a source of this selection bias, to the extent it encourages the selection of more

appropriate hospitals, as may be other factors like the medical expertise of a patient’s ambulance

driver or the non-random co-location of high-quality providers and differentially-healthy patients.

As in other settings, instrumental variable (IV) methods in principle offer a solution to this sort

of selection bias. In practice, researchers hoping to exploit plausibly quasi-experimental variation

in institutional choice face several methodological challenges. Linear IV methods, including those

developed by Angrist et al. (2017) to reduce bias in school VAMs, typically depend on an assumption

of constant causal effects – for example that switching from the highest- to the lowest-ranked hospital

has the same expected health effect on all potential patients.2 This rules out both institutional

comparative advantage and selection-on-gains, forces that are likely important in many settings

including healthcare (Chandra and Staiger, 2007; Chandra and Staiger, 2017). Constant effect

restrictions are also largely inappropriate for modeling binary outcomes, including the 30-day survival

indicators underlying hospital RAMs.

1See, for example, Chetty et al. (2014b), Angrist et al. (2017), Chetty and Hendren (2017), Hoxby (2017), and
Card et al. (2013) for recent estimates of the effects of teachers, schools, neighborhoods, colleges, and firms.

2Unlike with binary treatments, multi-dimensional linear IV has no local average treatment effect (LATE) in-
terpretation except under strong additional assumptions (Behaghel et al., 2013; Kirkebøen et al., 2016; Hull, 2015;
Blackwell, 2017). Even in these cases, LATE-based quality measures are likely to be undesirable, as differences in
complier populations could affect the rankings of institutions with the same average effectiveness. As formalized in
Section 2, quality differences in my framework reflect average treatment effects, though estimating other parameters,
such as average treatment effects on the treated, is also possible.
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This paper develops a flexible approach for measuring institutional quality with quasi-experimental

data that, in contrast to linear IV methods, allows for nonlinear causal response functions and unob-

served selection on institutional specialization. Conventional nonlinear IV estimators are likelihood-

based in a way that can be computationally intractable or requiring parametric assumptions which

are difficult to assess or interpret in practice. Simply estimating a nonlinear “first stage” for institu-

tional sorting requires fitting a high-dimensional multinomial choice model, the practical difficulties

of which are well known (Hausman and Wise, 1978; McFadden, 1989; McColloch and Rossi, 1994;

Berry et al., 1995). In related work, Geweke et al. (2003) use Markov-chain Monte Carlo techniques

to simplify the estimation of hospital quality for 114 Los Angeles County providers, leveraging

differential distance instruments, a multinomial probit model of hospital selection, and a probit

specification for the short-term mortality outcomes of elderly pneumonia patients. To evaluate this

likelihood, Geweke et al. (2003) specify independent priors for each of the model’s 268 free parame-

ters and make several additional functional form restrictions and calibrations, some of which appear

to be rejected by the data. Characterizing the role played by such parameterizations, versus the

potentially-exogenous variation of the instruments, can prove quite difficult.

Rather than fitting a fully-specified likelihood to individual microdata, my approach matches

a sparse set of moments from a multi-dimensional Roy (1951) selection model to quantities identi-

fied under quasi-random instrument assignment. This yields a tractable framework for estimating

institutional effectiveness that is fully non-parametric given sufficiently-rich instrument variation.

When quasi-experimental data is more limited, I propose and build intuition for using distributional

restrictions on the model’s latent variables in order to extrapolate from observed quasi-experimental

quantities to the structural parameters of interest. A minimum distance procedure easily implements

this semi-parametric approach, even for large-scale problems.

I next use this framework to estimate the quality of a large set of U.S. hospitals from a nationally-

representative sample of emergency Medicare patients. Leveraging quasi-experimental variation in

the referral preferences of a patient’s assigned ambulance company, I fit a multivariate probit model

for hospital admissions and 30-day survival that allows for, but does not impose, Roy selection on

hospital specialization. Doyle et al. (2015) first propose ambulance company instruments as a more

credible alternative to distance-based identification strategies, which may be biased by non-random

hospital and patient co-location (Hadley and Cunningham, 2004). While Doyle et al. (2015) and,

more recently, Doyle et al. (2017a) use ambulance referral variation to instrument in linear models for

the average Medicare spending and quality rating of a patient’s hospital, respectively, my nonlinear

approach instruments a patient’s hospital directly. This allows ambulance referral variation in affect

patient outcomes through any hospital-specific characteristic, observed or unobserved, rather than
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through spending or other quality proxies.

This first estimation step yields a set of noisy quality estimates for 2,082 hospitals with sufficient

quasi-experimental data, representing 85% of admissions. As in other recent explorations of quasi-

experimental institutional effects (Angrist et al., 2017, Chetty and Hendren, 2017, Finkelstein et al.,

2017), I then use these estimates to fit a hierarchical linear model relating true hospital quality to

conventional RAM quality predictions. This model is used to compute empirical Bayes posteriors for

the full sample of hospitals which optimally combine quasi-experimental and observational estimates

in a classical bias-variance tradeoff, reducing overall mean squared prediction error.

Analyses of the quality posteriors reveal several dimensions of hospital quality and patient sort-

ing. Higher-volume hospitals and those that spend more per Medicare patient produce better average

survival outcomes over a given patient population, while government-run hospitals are of systemat-

ically lower-quality. Specifically, I estimate that moving a typical patient to a hospital with a one

standard deviation higher log volume or log average spending increases her expected 30-day survival

probability by 0.2 and 0.1 percentage points, respectively, while moving her to a government-run hos-

pital from one that is privately-owned decreases expected survival by 0.4 percentage points. These

results are qualitatively similar to earlier observational and quasi-experimental studies (Foster et al.,

2013; Chandra et al., 2015; Doyle et al., 2015), and I find similar patterns in analyses of conventional

RAM predictions.

Turning to sorting, I find that hospital quality and selection bias are negatively correlated, sug-

gesting that better hospitals tend to serve sicker patients on average. Consequently, conventional

rankings of hospitals and rankings based on quality posteriors are highly correlated despite per-

vasive bias. I moreover find robust evidence of hospital comparative advantage and positive Roy

selection, with patients being admitted to more appropriate hospitals on average. Only 5-15% of

the survival rate benefit of this selection-on-gains appears due to patients choosing hospitals that

are closer to them or that tend to serve observably-similar individuals, implying both that hospitals

specialize on unobservables and that patients and ambulance companies at least somewhat sort on

this specialization.

Finally, I quantify the economic importance of non-random hospital selection by simulating

quality-based Medicare reimbursement and patient guidance policies. I find that counterfactually

ranking hospitals by their quality posteriors changes the types of providers subsidized by a Value-

Based Purchasing program relatively little, though higher-spending and non-teaching hospitals tend

to see moderately higher reimbursements. In simulations of quality-based admission policies, I find

that a typical patient has a 3.2 percentage point higher 30-day survival rate when choosing hospitals

on the basis of RAM predictions, rather than admitting at random. Admission to hospitals with the
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highest quality posteriors yields larger survival rate improvements of between 3.6 and 4.5 percentage

points. Nevertheless, the scope for health gains from quality-based admission policies is limited

by the extent of positive Roy selection, which makes current patient choices better than random.

Moving a random patient from her selected hospital to the the highest-RAM provider is found

to decrease her expected survival by around 0.2 percentage points; only with quasi-experimental

reductions in average selection bias do quality-based redirection policies improve survival outcomes

from this benchmark, by around 0.2-1.1 percentage points. This exercise highlights a general issue for

performance-based guidance policies in the presence of unobserved institutional specialization, as well

as the potential value of new econometric methods to accommodate treatment effect heterogeneity.

I organize the remainder of this paper as follows: the next section develops a moment-based

approach for estimating institutional quality with instrumental variables and discusses both non-

and semi-parametric quality identification. Section 3 outlines the institutional setting for hospital

quality and describes the Medicare analysis sample and estimation procedure. Lastly, section 4

discusses my findings on hospital quality, patient sorting, and the consequences of non-random

sorting in performance-based healthcare policies. Section 5 concludes.

2 Quality identification

2.1 The Quasi-experimental Setting

We observe an outcome Yi for a set of individuals i selecting one of many possible institutions

j = 1, . . . , J . A set of indicators Dij , collected in the vector Di, index this choice. For example,

Dij = 1 may denote patient i’s admission to hospital j, while Yi = 1 if she survives the first 30 days

following her admission with Yi = 0 otherwise. Corresponding to each institutional alternative is a

potential outcome Yij ; these are linked to observed outcomes by

Yi =
∑

j
YijDij . (1)

Policymakers aim to rank institutions by their quality, defined here as qj = E[Yij ].3 Quality repre-

sents the expected outcome from sending a representative individual in the population to institution

j, so that institutional quality comparisons avoid any bias from non-random sorting that leads

to correlation between Yij and Dij . The difference in average selected and potential outcomes,

3I choose this definition of quality as it is appears closest to the one-dimensional representative summary of hospital
performance, or “value,” referenced by policymakers (e.g. DHHS (2015)). As shown below, other moments of the
potential outcome distribution are identified by my semi-parametric framework; I leave for future work the analysis
of using these for quality-based hospital regulation.
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E[Yij |Dij = 1]− E[Yij ], quantifies this selection bias for institution j.

Along with choices and outcomes, suppose we observe an individual’s assignment to a discretely-

valued instrument Zi. Without loss, let Zi be a vector of indicators Zi` for the set of L possible

instrument values and denote vectors in the support of Zi by z`. For example, in the hospital

application, Zi` = 1 (and Zi = z`) if ambulance company ` is dispatched to individual i. Attending

institution j after being assigned to the `th instrument value generates latent utility Uij(z`), and

institutions are chosen to maximize these subjective payoffs. Institutional selection is thus given by

Dij = 1[Uij(Zi) ≥ Uik(Zi),∀k]. (2)

Equations (1) and (2) structure the vector of observed outcomes, institutional choices, and in-

strument assignments, (Yi, D′i, Z ′i)′, with a generalized multi-dimensional Roy (1951) selection model

(e.g., Heckman et al. (2008)). This model asserts the existence of counterfactual outcomes Yij and

latent utilities Uij(z`) with a conventional stable unit treatment value assumption (Imbens and Ru-

bin, 2015) and adopts an implicit exclusion restriction, that the instrument only affects outcomes

through the choice of institution. Importantly, however, the model does not limit the possibility

of either institutional comparative advantage or endogenous selection on potential outcomes: the

causal institutional effects Yij − Yik need not be constant across individuals i, and potential out-

comes may be correlated with the latent utilities governing institutional choice. This allows for the

possibility of “essential heterogeneity,” in the language of Heckman et al. (2006).

A conditional independence assumption completes the quasi-experimental framework: given a

vector of auxiliary controls Xi, the instrument Zi is assumed to be as-good-as-randomly assigned

with respect to the vector of latent outcomes and utilities:

Assumption 1 (Independence):
(

(Yij , (Uij(z`))`=1,...,L)j=1,...,J

)
⊥⊥ Zi | Xi.

Quasi-random instrument assignment ensures that while realized institutional choices may be cor-

related with potential outcomes, there is variation in conditionally-exogenous factors Zi` that can

affect sorting through the frontier of latent payoffs, Uij(Zi). My approach leverages this variation

with knowledge or first-step estimation of the conditional expectation functions p`(Xi) = E[Zi`|Xi].

I refer to these as instrument “propensity scores” and maintain throughout an assumption of com-

mon support: that p`(Xi) is bounded away from zero for each `. All individuals in the population

of interest thus face a non-zero risk of assignment to each of the L instrument values. I return to

how the analysis sample is constructed to plausibly satisfy this condition in section 3.

5



2.2 Non-parametric Identification

Quasi-experimental instrument assignment is sufficient for non-parametric estimation of certain

causal moments of the model’s latent variables, Yij and Uij(z`). Namely, the following lemma

shows that Assumption 1 identifies both the first-stage shares of individuals who would choose each

institution j if assigned to each instrument value ` (what I refer to as “choice probabilities”) along

with the means of any function of potential treatment-j outcomes for such individuals (termed “mean

selected outcomes”):

Lemma 1 (Identification of choice probabilities and mean selected outcomes): Let f(·) be any mea-

surable function of Yi. Under Assumption 1,

Pr(Uij(z`) ≥ Uik(z`),∀k) = E

[
DijZi`
p`(Xi)

]
(3)

E[f(Yij)|Uij(z`) ≥ Uik(z`),∀k] = E

[
f(Yi)DijZi`
p`(Xi)

]
/E

[
DijZi`
p`(Xi)

]
. (4)

Proof : See the econometric appendix.

Note that if the instrument is unconditionally independent of potential outcomes, as in a randomized

control trial, we may takeXi to be empty so that the propensity scores p`(Xi) are constant; the right-

hand side of equations (3) and (4) would then reduce to E[Dij |Zi` = 1] and E[f(Yi)|Dij = 1, Zi` =

1], respectively. More generally, these formula use the non-parametrically identified propensity

scores to appropriately re-weight the data in order to mimic this idealized experimental setting.

Even with high-dimensional confounders in Xi, the scalar propensity score adjustment is sufficient

for identifying choice probabilities and mean selected outcomes (Rosenbaum and Rubin, 1983),

simplifying subsequent analyses.

Without further parameterizations of the model, equations (3) and (4) are enough to estimate

institutional quality in settings with sufficiently rich quasi-experimental data. Intuitively, by varying

` and setting f(Yi) = Yi we may non-parametrically observe average outcomes at institution j

across different groups of individuals for whom utility is maximized at j when Zi = z`. We can

moreover rank these averages by the fraction each group represents of the population, Pr(Uij(z`) ≥

Uik(z`),∀k). If the number of observed instrument values grows with the sample, we may expect to

find assignments that bring this choice probability arbitrarily close to one. In the limit we could thus

estimate the population E[Yij ] = qj by constructing averages of estimated mean selected outcomes

that place more weight on instrument values z` with the highest estimated choice probabilities.

Formally, given any consistent set of propensity score estimators p̂`(·), we have the following

result:
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Proposition 1 (Non-parametric quality identification): For each j, collect the set of choice probabil-

ities Gj` = Pr(Uij(z`) ≥ Uik(z`),∀k) in the vector Gj . If the support of G′jZi has a supremum

of 1 then, under Assumption 1, q̂j
p−→ qj where given N independent, identically-distributed

draws of (Yi, D′i, Z ′i, X ′i)′,

q̂j = arg1 min
q,b

∑
`:Ĝj`≥ĉj

ŵj`

(
Ĥj` − q − (1− Ĝj`)b

)2
, (5)

for Ĝj` = 1
N

∑N
i=1

DijZi`
p̂`(Xi) , Ĥj` =

∑N
i=1

YiDijZi`
p̂`(Xi) /

∑N
i=1

DijZi`
p̂`(Xi) , and where ĉj and the ŵj` are

scalars with ĉj ≤ max`(Ĝj`), ĉj
p−→ 1 and wj` > 0.

Proof : Let ̂̀∗(j) be an arbitrary element from the set of instrument values ` maximizing the sample

choice probabilities Ĝj`. Under the assumptions, Ĝ
j ̂̀∗(j) p−→ 1 and Ĥ

j ̂̀∗(j) p−→ E[Yij ] by the Weak

Law of Large Numbers. Thus q̂j
p−→ qj , provided the bandwidth ĉj approaches 1 and the weights ŵj`

are positive. �

The local linear regression estimator q̂j is consistent for institution j’s quality when G′jZi, the

institution-specific choice probability of the instrument assigned to individual i, has sufficiently

large support. This result follows a broad literature on non-parametric identification of Roy models,

including Heckman and Honore (1990), Lewbel (2007), and D’Haultfoeuille and Maurel (2013). In

fact, the estimator developed in Lewbel (2007) will also be consistent for qj under a somewhat

stronger support condition than the one used in Proposition 1.4 Other estimators can be obtained

by adding higher-order polynomials or other transformations of the regressor 1− Ĝj`; characterizing

the optimal choice of regressors, bandwidths, and weights is left for future research.

2.3 Semi-parametric Identification

Further restrictions on the selection model can substitute for rich quasi-experimental data when

institutional quality is not non-parametrically identified. Intuitively, parameterizations of the joint

distribution of latent variables Yij and Uij(z`) in terms of a low-dimensional vector θ0 also render

the identified moments in Lemma 1 known functions of θ0. Quasi-experimental variation in the

moments that is sufficient to uniquely pin down the elements of θ0 relevant to E[Yij ] would then

identify quality without the large support condition of Proposition 1. Unlike conventional nonlinear

IV estimators, this approach does not require specifying and maximizing a complete likelihood for the

4Namely, note that we can write Dij = 1[0 ≤ M∗ij + Vij ≤ A∗i ] where for independent Mi ∼ U [0, 1] and gj =
min`Gj`, we let M∗ij = −Mi + gj , Vij = G′jZi − gj , and A

∗
i = 1 −Mi. This corresponds to equation (1) in Lewbel

(2007) and his support condition is satisfied if G′jZi continuously varies over [p, 1].
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individual microdata. Rather, quality is estimated by computationally-tractable minimum distance

procedure applied to a set of estimated causal moments.5 I first motivate and describe this approach

with a generic parameterization of the latent variables; the next subsection then formally establishes

identification of quality in a particular class of parameterizations for binary potential outcomes,

which I later use to estimate hospital quality.

For some known distribution function F (·), suppose(
(Yij , (Uij(z`))`=1,...,L)j=1,...,J

)
∼ F (θ0), (6)

so that the various choice probabilities and mean selected outcomes identified under Assumption

1 are also known functions of the unknown θ0 ∈ RK . Let m(·) be a vector collecting some subset

of these functions and let m̂ be the sample analogues of the corresponding formulas of Yi, Di, Zi,

and p`(Xi) from Lemma 1, constructed with some consistent set of propensity score estimators p̂`(·).

Under mild regularity conditions (see, e.g., Hirano et al. (2003)), we have
√
N(m̂−m(θ0))⇒ N(0, Q),

where Q is an identified asymptotic variance matrix. Next, suppose we may partition the structural

parameter vector as θ0 = [θ̃0, θ̄0] where for any θ = [θ̃, θ̄] satisfying m(θ) = p lim m̂ we have θ̃ = θ̃0.

A consistent minimum distance estimator of the identified subvector of θ0 is then given by the

corresponding elements of

θ̂ = arg min
θ

(m̂−m(θ))′Â(m̂−m(θ)), (7)

for some weight matrix Â. Furthermore, under the same conditions for asymptotic normality of m̂,

√
N(ˆ̃θ − θ̃0)⇒ N

(
0, (M ′AM)−1M ′AQAM(M ′AM)−1) (8)

where M = ∂m(θ)
∂θ̃
|θ0 and Â p−→ A.6 Therefore if, given (6), E[Yij ] = F̃j(θ̃0) for known F̃j(·), we may

form a consistent and asymptotically normal quality estimate q̂j = F̃j(ˆ̃θ) based on the first-step

quasi-experimental moment estimates.

Minimum distance quality estimation is likely to be tractable, even as the numbers of institutions

J , instrument values L, and controls in Xi grow large. Each element of m̂ is determined by one of

L−1 propensity scores which do not depend on the model’s structural parameters in θ0 and may be

separately approximated by standard techniques, such as the method of nonparametric sieves (Ge-

5One may make a link between this approach and classic notion of “indirect inference” (Gourieroux et al., 1993),
with parameterizations of the potential outcome distribution acting as an auxiliary model for the complete likelihood.

6As usual, an efficient choice of Â is Q̂−1 for some consistent variance estimator Q̂ p−→ Q, in which case
√
N(ˆ̃θ−θ̃0)⇒

N
(
0, (M ′Q−1M)−1

)
. Note that with Q identified without knowledge of the structural θ0, this estimator can be

formed in a single step and its asymptotic variance is consistently estimated by
(
M̂ ′Q̂−1M̂

)−1
for M̂ = ∂m(θ)

∂θ̃
|θ̂.
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man and Hwang, 1982) or doubly-robust estimators in settings with high-dimensional data (Belloni

et al., 2014). Given m̂, evaluating the minimum distance objective function requires computing at

most ((D+ 1)J − 1)L nonlinear functions of the structural parameters, where D is the dimension of

the outcome function f(·).7 Importantly, these functions do not depend on the data so that, unlike

with conventional likelihood-based IV estimators, the difficulty of the nonlinear computation does

not increase with the number of observations. For some specifications, including several within the

class considered in the next subsection, m(θ) will take a form that is straightforward to evaluate by

standard statistical software. Simulation methods can solve more exotic parameterizations; again

the fact that the simulated objects are non-stochastic simplifies this relative to classical applications

of simulated minimum distance (McFadden, 1989, Pakes and Pollard, 1989).

The separation of quasi-experimental moments in m̂ from the structural assumptions underlying

m(θ) also helps to clarify the role of the latter in semi-parametric quality estimation. The mini-

mum distance approach uses a low-dimensional parameterization of the latent variable distribution

in order to extrapolate from a discrete set of non-parametric instrumental variable moments to the

structural parameters of interest. Figure 1 illustrates an example of this extrapolation. The vertical

and horizontal values of each point give an estimated mean selected outcome and choice probabil-

ity, respectively, of a fixed institution over a range of observed instrument values. Given choice

probabilities that are arbitrarily close to one, quality would be revealed non-parametrically by the

corresponding mean selected outcomes, as in Proposition 1. Alternatively, structural assumptions

like equation (6) implicitly specify a family of curves that are assumed to generate the population

quasi-experimental moments. The minimum distance procedure searches within this family for the

curve that best fits the sample moments, accounting for first-step estimation error, and produces a

quality estimate equal to curve-of-best-fit’s horizontal intercept at one. When the latent variable

model is overidentified, in the sense that only a subset of estimable quasi-experimental moments

uniquely pin down the true curve, the quality of curve fit will moreover inform an omnibus speci-

fication test statistic equal to the efficiently-maximized objective function (7). Thus for any given

problem, the roles played by the natural experiment and parametric restrictions can be readily visu-

alized, and alternative restrictions can be imposed without recomputing the sparse causal moments

generated by the experiment.8

7Namely, there are at most (J − 1)L linearly-independent choice probabilities and DJL mean selected outcomes.
8This graphical intuition is similar to that of the approach of Brinch et al. (2017), who parameterize conditional

marginal treatment effect curves in the binary treatment case; here both the extrapolation and number of instruments
needed for identification in the multiple-treatment Roy model are given implicitly by the choice of F (·) and do
not depend on the distribution of quasi-experimental controls except through the set of non-parametric instrument
propensity scores. As a result, it does not requires estimating the functions E[Yi|Dij = 1, Zi` = 1, Xi = x] and
E[Dij |Zi` = 1, Xi = x] for each j, `, and value in x in the support of the quasi-experimental controls Xi, as in Brinch
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2.4 An Elliptical Parameterization for Binary Potential Outcomes

The minimum distance approach requires a researcher to specify appropriate structural restrictions,

trading off flexibility (a F (·) that accommodates a wide variety of potential treatment effects and

institutional selection patterns) and tractability (a quality-relevant parameter subvector θ̃0 that is

uniquely pinned down by a small set of quasi-experimental moments). Here I propose one class of

latent variable parameterizations that are likely to strike such a balance, in settings with binary

outcomes. These specify a multivariate elliptical copula for the dependence of institutional selection

on potential outcomes, with minimal restrictions on marginal substitution patterns. I show that

quality is identified in these models provided a researcher has access to as many distinct instrument

values as institutions.

The model starts with a latent index parameterization of binary potential outcomes. Suppose

Yij = 1[hij ≥ 0]. (9)

for unobserved hij . For example in the hospital application hij may denote the latent health of

emergency patient i upon admission to hospital j, with patients surviving the first 30 days after

admission (Yij = 1) when their health is above some threshold, here normalized to zero. With the

vector hi collecting the J health indices, the observed outcome equation (1) becomes

Yi = 1[h′iDi ≥ 0]. (10)

Note here that the random coefficients in hi retain the feature of institutional comparative advantage

from the general selection model: some individuals may be more likely to survive when moved from

hospital j to hospital k (hij > hik), while for others such a move may result in worse health outcomes.

To structure institutional selection patterns I first impose a monotonicity assumption, as in the

identification of local average treatment effects and related causal parameters (Imbens and Angrist,

1994; Heckman et al., 2006):

Assumption 2 (Monotonicity): ∀`,j,m, Pr(Uij(z`) ≥ Uij(zm)) = 1 or Pr(Uij(z`) < Uij(zm)) = 1.

This assumption restricts the instrument to only monotonically affect institutional selection, in the

sense that a change from Zi = zm to Zi = z` that makes selection of institution j strictly more

likely for any mass of individuals i cannot make selection of institution j strictly less likely for any

other mass of individuals. In the healthcare application, emergency patients are referred to hospitals

et al. (2017), which can be infeasible or difficult in practice and complicate finite-sample inference (Robins and Ritov
(1997); Angrist and Hahn (2004); Hirano et al. (2003); Cattaneo et al. (2017).
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by ambulance, with Zi` indicating the quasi-experimental assignment of ambulance company ` to

patient i. As suggested by Doyle et al. (2015), differences in ambulance referral preferences may

generate variation in hospital admissions given this assignment. Assumption 2 then requires that, to

the extent any two ambulance companies have different preferences for referring to a hospital j, they

are fixed over different subpopulations of patients. I discuss the appropriateness of this restriction

in the next section.

Assumption 2 is valuable in that it significantly reduces the dimensionality of possible latent

variable parameterizations. As shown by Heckman and Pinto (2017), monotonicity over multiple

unordered treatments is equivalent to an additively-separable model of latent utility,

Uij(z`) = πj` + ηij , (11)

so that, for example, Cov(Yij , Uij(z`)) = Cov(Yij , Uij(zm)) = Cov(Yij , ηij) for any `,m. With the

vector πj collecting the πj`, the generic selection equation (2) can then be written

Dij = 1[π′jZi + ηij ≥ π′kZi + ηik,∀k] (12)

A final parametric assumption defines F (·), along with equations (9) and (11): that the set of

latent outcome and utility indices are distributed continuously and joint-elliptically in the population

of individuals

Assumption 3 (Ellipticity): Given equations (9) and (11), and with the vector ηi collecting the

set of ηij , the density of (h′i, η′i)′ satisfies, for some known positive function g(·),

f(h′
i
,η′
i
)′(t) ∝ |S|−1/2g((t− s)′S−1(t− s)), (13)

where s is a vector of length 2J and S is a 2J × 2J positive-definite matrix.

The set of elliptical distributions satisfying Assumption 3 is quite large, including the familiar

multivariate normal (where g(u) = exp(−u/2)), logistic (g(u) = exp(−u)
(1+exp(−u))2 ), and Student’s t dis-

tributions (g(u) = (1 + u
m )−(n+m)/2 for some n,m ∈ N+), along with less-commonly encountered

distributions such as the symmetric multivariate stable, Laplacian, and general hyperbolic distri-

butions. Moreover the restriction on marginal selection patterns imposed by Assumptions 2 and 3

is generally without observational loss: as shown in the econometric appendix, any set of positive

choice probabilities can be rationalized by equation (12) with elliptical ηi. This flexibility notwith-

standing, the following result shows that each elliptical joint distribution of latent variables provides

a tractable model for the dependence between potential outcomes and selection that yields quality

identification with a relatively small number of quasi-experimental moments:
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Proposition 2 (Semi-parametric quality identification): Suppose Assumptions 1-3 hold. Then if

L ≥ J and the J×1 vectors of choice probabilities are unique across instrument values, quality

is identified from a consistent estimator of all quasi-experimental moments.

Proof : See the econometric appendix.

Although a large number of parameters underlie the elliptical model - including the J ×L utility

shifters πj` and the 2J + J(2J + 1) elements of the s vector and S matrix in Assumption 3, the

proof to Proposition 2 shows that all quasi-experimental moments can, under Assumptions 2 and

3, be written as a function of only J2 + (J − 1)L parameter combinations, J of which determine

institutional quality. These parameter combinations make up the relevant structural subvector θ̃0.

Since with Bernoulli outcomes we have at most (2J − 1)L linearly-independent moments identified

under Assumption 1, this subvector is identified by the minimum distance estimator provided there

are L ≥ J non-redundant instrument values. That is, as with linear IV models, minimum distance

quality identification requires as many instruments Zi` as endogenous variables Dij .

To build further intuition for this result, consider a setting with J = 2 institutions and a multi-

variate normal specification for the latent outcome and utility indices:

Yi = 1[hi1Di1 + hi2Di2 ≥ 0] (14)

Di1 = 1[π′1Zi + ηi1 ≥ π′2Zi + ηi2] (15)

Di2 = 1[π′2Zi + ηi2 ≥ π′1Zi + ηi1], (16)

where (hi1, hi2, ηi1, ηi2)′ ∼ N(µ,Σ). With L instrument values, there are a total of 2L+14 underlying

parameters in π1, π2, µ, and Σ. Nevertheless, each of the 2L choice probabilities and mean selected

outcomes for institution 1 can be written, respectively,

Pr(π1` − π2` ≥ ηi2 − ηi1) = Φ

π1` − π2` − (µη2 − µη1)√
σ2
η2 + σ2

η1 − 2ση1η2


≡ Φ(π̃1`) (17)

and

Pr(hi1 ≥ 0 | π1` − π2` ≥ ηi2 − ηi1) = Φ
(
µh1

σh1
, π̃1`; ρ1

)
/Φ(π̃1`), (18)

which are functions of only 2+L combinations of these parameters (here Φ(·) is the standard normal

cumulative distribution function, Φ(·, ·; ·) is the standard bivariate normal cumulative distribution

function, and ρ1 = Corr(h1, ηi1 − ηi2)). The order condition for identifying these parameter combi-
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nations is thus 2L ≥ 2+L, or L ≥ J , while the rank condition holds if π̃1` 6= π̃1m for ` 6= m. Finally,

note that, institution 1’s quality is a known function of the identified parameter combinations, since

q1 = E[Yi1] = Pr(hi1 ≥ 0) = Φ(µh1/σh1). This same logic holds for identifying the quality of

institution 2, and generalizes for the case of J > 2 institutions and other elliptical distributions.

3 Estimating Hospital Quality

3.1 Data and Observational RAMs

I use the preceding econometric framework to estimate the quality of U.S. hospitals according to their

effects on short-term patient mortality. Typical hospital RAMs are based on three-year windows of

emergency Medicare claims (YNHHSC/CORE, 2013); correspondingly, I draw a sample of 405,172

Medicare fee-for-service beneficiaries, brought to an acute-care hospital by an ambulance for one

of 29 emergency conditions in 2010-2012.9 Observations come from a nationally-representative

20% random sample of administrative inpatient claims from the Centers of Medicare and Medicaid

Services (CMS) and include information on basic patient demographics (such as age, sex, race,

admitting condition, and home ZIP code); diagnoses and procedures from previous inpatient and

outpatient claims (“comorbidities”); the identity of, ZIP code location of, and procedures performed

by a patient’s assigned ambulance company; the identity and location of the patient’s hospital; and

her subsequent short-term mortality. As in Card et al. (2009), I restrict this sample to patients

admitted for a “nondeferrable” primary condition, i.e. those averaging a weekend admissions rate

close to 2/7ths. These are the same conditions used by Doyle et al. (2015) and are listed in the notes

to Table 1. I also follow standard CMS risk-adjustment methodology in attributing outcomes to

a patient’s first hospital admission in 2010-2012, ignoring all subsequent transfers or readmissions.

Finally, I divide the national sample into groups of patients residing in the same hospital service area

(HSAs). HSAs are sets of ZIP codes defined by the Dartmouth Atlas of Health Care as regions where

patients receive most of their emergency care. For my purposes, HSAs delineate local emergency

care markets, within which it is plausible that ambulance company propensity scores (defined below)

have full support. A data appendix describes the sample construction in detail.

Table 1 summarizes the distribution of patient conditions, ambulances, hospitals, HSAs, and

30-day survival probabilities in the analysis sample. Hospital RAMs were first developed to measure

quality by the short-run mortality of Medicare patients with circulatory and respiratory conditions,

such as acute myocardial infarction, heart failure, and pneumonia, though often with an eye towards

9Due to data limitations, I am not able to include Veterans Affairs hospitals in this analysis.
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extending the measures to a broader patient population (Krumholz et al., 2006).10 My focus on

emergency conditions is driven both by the availability of quasi-experimental ambulance company

referral variation and by the traditional focus on patients with an elevated risk of mortality.11

Panel A of Table 1 shows that circulatory and respiratory conditions make up 42% of emergency

admissions in my sample, with the remainder split between digestive (7%), injury (18%), and other

(34%) conditions.

Each patient in the analysis sample was referred by one of 9, 590 ambulance companies to one

of 4, 821 hospitals. Panel B of Table 1 shows that the distribution of within-HSA hospital counts

is skewed, with around half of all hospitals operating in their own single-hospital market. These

markets tend to be small, with an average of only 61 admitted patient observations. In contrast,

the remaining 695 multi-hospital HSAs n the sample average 366 admitted patient observations and

represent 63% of the analysis sample. Since the ambulance referral design leverages within-market

differences in company assignment, causal quality analyses will tend to focus on local comparisons

between the 2,357 hospitals in a multi-hospital HSA. Nevertheless, as on average roughly 30% of

patients are referred to hospitals outside of their HSA, even in single-hospital HSAs the quasi-

experimental variation has scope to detect and correct for non-random sorting. I discuss how this

market outside option is treated in the estimation strategy below.

The last column of Table 1 describes average 30-day patient survival, which is the typical horizon

for mortality RAMs. Around 83% of patients survive the first 30 days following their emergency

admission, with survival rates as low as 78% for patients with respiratory conditions and as high

as 93% for those with injuries. Panel B shows that the average survival rate does not vary much

by the HSA hospital count. The 25th and 75th percentiles of hospital-specific 30-day survival rates

(not reported in the table) are 0.8 and 0.92, respectively.

I first use this sample to obtain a set of observational RAM quality predictions, following the

standard CMS risk-adjustment methodology.. These specify an additively-separable latent index

model for 30-day survival:

Yij = 1[αj + εi ≥ 0], (19)

10A related quality-based regulatory effort models Medicare patient readmissions (Gupta, 2017; Doyle et al. (2017a)).
Since a patient who dies at a low-quality hospital cannot be readmitted, more complex assumptions would be required
to causally attribute variation in these outcome to hospital quality. I leave this issue for future work.

1141% of Medicare patients hospitalized for a nondeferrable condition in 2010-2012 were admitted by an ambulance
company; comparisons of the analysis sample with this broader group of emergency admissions are reported in columns
1 and 2 of Appendix Table A1 and discussed in the data appendix.
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where

εi = γ′Wi − νi (20)

for a set of observed risk-adjusters Wi. Thus in a conventional RAM

Yi = 1[α′Di + γ′Wi ≥ νi], (21)

where α collects the quality indices αj . Identification of the RAM parameters α and γ follows from a

selection-on-observables assumption that hospital choice is independent of latent health conditional

on the included controls, νi ⊥⊥ Di | Wi. Following YNHHSC/CORE (2013), I parameterize νi by

an independent logit distribution and obtain quality predictions α̂j by estimating condition-specific

regressions of 30-day survival on hospital effects and patient age, sex, and 17 comorbidity indicators;

the data appendix describes this estimation procedure in more detail.

Observational RAMs leave unexplained most of the sample variation in patient mortality. This

is illustrated in Figure 2, which plots the ratio of residual to total 30-day survival variance in

three condition-specific RAMs. Only around 7% of circulatory and respiratory survival variance

is explained by a patient’s hospital, admitting condition, and year of admission in the most basic

RAM1 specification. This reduction is somewhat smaller for digestive conditions and injuries, and

around 14% for other conditions. Relatively more sophisticated specifications, which add patient

demographics (RAM2) and both demographics and patient comorbidities (RAM3), account for an

additional 4% of circulatory and respiratory survival variance, with similarly modest declines in the

other condition categories.

If the residual determinants of patient mortality are completely exogenous to the hospital selec-

tion process, predictions from observational RAMs may still provide unbiased measures of hospital

quality. However, to the extent survival variance may be further reduced by observable admission

correlates, such as a patient’s referring ambulance company, observational RAMs are likely to be

biased. The econometric appendix formalizes this argument and develops instrument-based tests

for RAM unbiasedness, extending earlier methods for validating linear education VAMs (Kane and

Staiger, 2008; Chetty et al., 2014a; Deming, 2014; Angrist et al., 2016; Angrist et al., 2017). These

results of these tests, summarized in Appendix Table A2, decisively reject the RAM assumption of

selection-on-observables, with a p-value of less than 0.001.12 This suggests pervaisive selection bias

in the observational RAMs, as well as scope for leveraging the yet-unused variation in ambulance

12I verify that these rejections are not driven by my benchmark RAM specifications by replicating and testing the
official 2013 CMS models for AMI, pneumonia, and heart failure patients. RAM bias tests continue to forcefully reject
the selection-on-observables null for these models; see the appendices for details.
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company referral patterns to both characterize and reduce this bias. I next describe how I make use

of this variation.

3.2 Quasi-experimental Estimation

I apply the identification result in Proposition 3 to semi-parametrically estimate the quality of 2,082

hospitals with sufficient quasi-experimental admissions variation. Doyle et al. (2015) and Doyle

et al. (2017b) first propose that in regions served by multiple ambulance companies, centralized

policies of rotational and simultaneous dispatch generate plausibly-exogenous ambulance company

assignment, while subsequent expression of non-random ambulance preferences systematically affect

the admissions of otherwise identical patients. Table 2 explores both of these claims empirically by

comparing individuals in the analysis sample who live in the same ZIP code but who are assigned to

different ambulance companies likely to refer to hospitals with higher and lower RAM predictions.

Specifically, I compute the ZIP code distance between each ambulance company’s office and each

nearby hospital, and label companies as likely to deliver patients to a low- or high-ranked hospital

if their closest hospital is in the first or fourth quartile of predictions, in the HSA, from the fullest

RAM3 specification. I then regress patient characteristics on either these group indicators (with

group means reported in columns 1 and 2) or on the ambulance company’s closest hospital’s predicted

RAM itself (with the regression coefficient reported in column 4), along with a full set of ZIP code

fixed effects. P-values for the test that patient characteristics are not systematically correlated with

these dimensions of ambulance company heterogeneity are reported in columns 3 and 5.

Patients assigned to ambulance companies located close to a high-ranked hospital see signifi-

cantly increased RAM-predicted hospital quality, despite appearing identical to other patients in

terms of their demographics, the location of their emergency, and their admitting condition (panel

A), as well as a host of comorbidity indicators describing their medical history (panel B). This

balance of observable characteristics is consistent with the quasi-random assignment of ambulance

company indicators Zi`, conditional on patient location Xi (Assumption 1). Panel C of Table 2 fur-

ther suggests that ambulance assignment is balanced across a set of ambulance services performed

pre-hospitalization, such as distance traveled in excess of the hospital ZIP code distance, whether

the patient was assigned paramedics, or whether intravenous medication was delivered en route.

This supports the exclusion of ambulance-based instruments from potential survival outcomes Yij ,

allowing for interpretation of reduced-form ambulance effects on mortality outcomes by way of first-

stage hospital admission. This is a weaker exclusion restriction than in Doyle et al. (2015), Doyle

et al. (2017a), and Doyle et al. (2017b), where ambulances are assumed to only affect outcomes via

the treatment intensity or observational RAM of a patient’s provider. P -values for the joint test of
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balance across all 32 covariates in panels A, B, and C, is 0.98 in column 3 and 0.88 in column 5.13

Despite this balance, the first row of Table 2 suggests ambulances do vary systematically in their

referral preferences, with patients assigned to ambulances close to highly-ranked hospitals more likely

to see a higher-ranked hospital admission. I structure this variation with a first-stage monotonicity

restriction (Assumption 2), implying here that differences in referral patterns do not systematically

vary by patient heterogeneity. Doyle et al. (2015) defend a similar assumption of monotone referral

based on a survey of emergency care technicians, finding that differences in referral patterns across

ambulance companies are largely driven by institutional and personal relationships with hospitals

rather than patient characteristics. Monotonicity is especially plausible in the relatively homogenous

sample of emergency Medicare patients studied here; differential treatment of uninsured patients by

profit-driven ambulance companies, for example, is not likely a concern. My own interviews with

emergency medical staff suggest differential hospital distance may play a particularly strong role

in determining referral patterns: ambulance companies may tend towards referring patients to the

hospital based closest to their offices in order to minimize excess travel time and maximize local

availability.14

I derive first-step estimates of hospital choice probabilities and mean selected survival outcomes

from a flexible probit specification for ambulance company propensity scores p`(Xi). These model

the latent risk of assignment by a cubic polynomial in company-patient distance:

E[Zi`|Xi] = Φ
(
δ0` +

∑
k

(
δ1`kdk(Xi) + δ2`kdk(Xi)2 + δ3`kdk(Xi)3)) , (22)

where k indexes the set of ambulance company instruments and dk(x) denotes the distance between

ambulance company k’s home office and a patient located in ZIP code x. Minimum distance quality

estimates correct for first-step error in estimating these scores. For robustness I also control for the

vector of RAM controls Wi though, consistent with Assumption 1, results are essentially unchanged

when these are excluded (see Appendix Table A6).15

My benchmark specification uses a multivariate normal model latent health and utility (Assump-

13Doyle et al. (2015) likewise validate instrument balance in their analysis sample (see their Tables 1 and A3) and
report anecdotal evidence for Assumption 1 from a 30-city survey of dispatch policies. They also show that there is
no relationship between their ambulance-based instrument and a patient’s probability of emergency room admission
conditional on ZIP code; see their Figure A1. I find that patient observables are also balanced by assignment to
ambulance companies that tend to refer to high- vs. low-survival (instead of RAM prediction) hospitals, with overall
joint p-values of 0.81 and 0.93 (instead of 0.98 and 0.88).

14This appears especially true for ambulances owned by municipal and local fire departments, which are often the
only local emergency transport provider and thus have a strong preference to return to their home ZIP code.

15Given the sometimes large number of controls and the sometimes small estimation samples, maximum likelihood
estimates of equation (22) occasionally fail to converge, I sequentially drop the RAM controls and higher-order distance
terms in these samples until convergence is achieved.
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tion 3), to form minimum distance estimates of hospital quality.16 As shown in Appendix Table

A6, however, similar results are obtained throughout with a fatter-tailed multivariate Student’s t(2)

distribution. Quality is identified in both models within HSAs with L ≥ J ambulance companies,

where J is the number of institutional alternatives. Although most hospitals in the analysis sample

are in single-hospital HSAs, patients are sometimes referred outside of their home HSA, yielding

scope for non-random selection bias even in small markets. I therefore include the market outside

option as a distinct treatment, so that J equals one plus the number of hospitals located in a patients

HSA. Finally, to keep the model just-identified and reduce the scope for finite sample bias, I use

only the J largest companies for estimation and restrict the analysis to hospitals with at least 25

observed admissions.17

Figure 3 summarizes the full set of quasi-experimental estimates by plotting the joint distribution

of differences in estimated hospital choice probabilities and mean selected outcomes for each of the

2,082 hospitals with enough quasi-experimental variation. These differences are taken over the

two ambulance instruments with the largest and smallest estimated choice probabilities for each

hospital; the marginal x-axis distribution thus summarizes one dimension of first-stage variation in

institutional choice. The average choice probability difference is 0.33, with more than two-thirds of

hospitals seeing a choice probability difference of at least 0.2. This suggests significant first-stage

admissions variation throughout the sample. Nevertheless, only 11% of hospitals have a maximal

estimated choice probability of at least 0.9, with only 5% exceeding 0.95. The quasi-experimental

data are thus likely not rich enough for the non-parametric approach of section 2.3, justifying the

extrapolative structure of joint-normality.

Figure 3 also shows that the average associated mean selected outcome difference is negative (-2

percentage points), and grows more negative with the difference in choice probabilities: a simple

regression of mean selected outcome gaps on choice probability differences yields a coefficient of -0.06

(0.01), indicated by the solid line in the figure. Intuitively, a negative relationship between mean

selected outcomes and choice probabilities tends to suggest that patients are positively selected;

that is, average hospital survival tends to decline when patients less likely to select the hospital are

admitted. This intuition is exact in the multivariate normal case with J = 2, since mean selected

16Note that under joint-normality, a patient’s utility from care can be written as a linear function of potential
health, as in the classic Grossman (1972) healthcare demand model.

17See Cattaneo et al. (2017) for a recent discussion of bias in estimating generalized Roy models with high-
dimensional instruments or controls. Appendix Figure A1 plots the distribution of minimum distance first stage
F -statistics, testing the equality of choice probabilities, for each hospital against quality estimate standard errors. As
expected, the hospitals with lower first stage F -statistics tend to have higher quality standard errors; less weight will
be placed on these estimates in the empirical Bayes procedure. The median first-stage F -statistic here is 10.1.
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outcomes are then everywhere monotone in choice probabilities.18 Here it suggests we are likely to

find positive Roy selection at the HSA level, which subsequent analyses confirm.

The dashed red curve in Figure 4 plots the distribution of the 2,082 minimum distance estimates

of hospital quality indices, defined as βj = Φ−1(qj). The mean and standard deviation of these

estimates are both around 0.8, with most mass concentrated between Φ(0) = 0.5 and Φ(2) ≈ 0.98.

Due to the HSA-stratified estimation procedure, this wide dispersion reflects both causal (within-

HSA) differences in potential survival outcomes for the same patient population and variation in

average patient health across different HSAs, along with typically non-ignorable estimation error. I

next outline an empirical Bayes procedure to account for these different variance components and

produce more accurate predictions of hospital quality that combine quasi-experimental and RAM-

based estimates.

3.3 Quality Posteriors

Under Assumptions 1-3 I obtain, for a subset of hospitals j with sufficient quasi-experimental data,

minimum distance estimates β̂j that are noisy but consistent measures of the true hospital quality

indices βj . At the same time, I observe a full set of observational RAM predictions α̂j from estimates

of equation (21) that are likely to be positively, but not perfectly, correlated with quality due to the

sorting bias detected in section 3.1. Following Morris (1983) and Raudenbush and Byrk (1986), I

estimate a hierarchical linear model (HLM) to link these two quality measures.19 This is

β̂j = βj + ιj

= κ+ λα̂j + µh(j) + υj + ιj , (23)

where κ+λE[α̂j ] = E[βj ] is the average hospital quality index (per Figure 4, around 0.8), µh(j) is a

random effect for the HSA h(j) of hospital j, υj is the residual quality index of hospital j, and ιj is a

mean-zero estimation error term. The HSA random effects, assumed to be normally-distributed with

mean zero and variance σ2, capture between-HSA variation in unmeasured quality, while within-

HSA variation in residual quality indices υj ∼ N(0, φ2) reflect causal differences not accounted for by

observational RAMs. Subject to the usual first-order asymptotic approximation, the estimation error

18In terms of section 2.4’s notation, Pr(hi1 ≥ 0 | π̃1` ≥ η̃i) =
∫ π̃1`
−∞ Φ

(
(µh1/σh1 − ρ1t)/

√
1− ρ2

1

)
φ(t)

Φ(π̃1`)
dt and

the sign of the derivative of this mean selected outcome with respect to π̃1` can be shown to be the same as the sign of
−ρ1 = Corr(h1, η̃i). With π̃1` everywhere increasing in the corresponding choice probability, mean selected outcomes
are thus decreasing if ρ1 > 0, or if patients with higher utility for hospital 1 tend to have better health outcomes
there.

19McClellan and Staiger (1999) previously use a HLM to combine multiple observational hospital quality measures.
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term ιj can also be modeled as normally-distributed, with a known covariance structure. Consistent

estimation of the HLM’s hyperparameters κ, λ, σ, and φ comes from an ordinary least squares (OLS)

regression of quality index estimates β̂j on RAM predictions α̂j , while efficient estimates leverage

a maximum likelihood (MLE) procedure that effectively weights observations with differing degrees

of minimum distance estimation error.

Table 3 reports OLS and MLE estimates of equation (23), where for ease of interpretation α̂j is

normalized to be of zero mean and unit standard deviation and β̂j is also de-meaned. Columns 1

and 2 regress quality index estimates on RAM1 predictions which, as in Figure 2, only control for

patient diagnosis and year of admission, while columns 3 and 4 includes patient demographics in the

RAM2 specification. Columns 5 and 6 report OLS and MLE hyperparameter estimates using the

richest RAM3 specification, which also controls for patient comorbidities. The predictions from all

three models are found to be predictive of the quality index estimates, with λ̂ = 0.12− 0.13, though

the OLS estimates are far from statistically significant due to the relative imprecision of the equal-

weighted regression. Efficiently-weighted MLE estimates reduce the standard error on λ̂ from around

0.12 to around 0.01 without much change in the estimates. Consistent with the graphical evidence in

Figure 2 and the formal tests in Figure 3, including demographics and comorbidities barely increases

the correlation of RAM with true quality. Overall, the HLM’s variance decomposition suggests that

around 50% of the national variation in quality indices βj is found between HSAs, with 30% explained

by observational RAM predictions and 20% left unexplained within HSAs. The significantly positive

relationship between observational measures and true hospital quality is consistent with the linear

IV estimates of Doyle et al. (2017a).

I take column 6 of Table 3 as my preferred estimate of equation (23), though I also check sensitiv-

ity to other HLM specifications. Column 7, for example, includes the predictions of all three RAMs

simultaneously, showing that the most sophisticated RAM3 predictions remains highly predictive

conditional on the other two. Columns 8 and 9, in turn, test for nonlinearities in the relationship

between observational RAM and quality indices by including a cubic polynomial in RAM3 predic-

tions and interactions with the HSA hospital counts. Estimated coefficients on the added terms are

small and not statistically significant at conventional levels while the overall residual variance falls

little, suggesting that the parsimonious specification of (23) is a reasonable approximation to the

true conditional expectation.

I use the HLM hyperparameter estimates to generate empirical Bayes posterior predictions of

hospital quality that, as in Angrist et al. (2017), Chetty and Hendren (2017), and Finkelstein et al.

(2017), shrink consistent but noisy quasi-experimental estimates of institutional quality towards

precise, but likely biased, observational predictions. The random-effects structure of equation (23)
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further allows the vector of estimates for each HSA to be jointly shrunk towards a HSA-specific

mean, thereby accounting for the local correlation in hospital quality found in Table 3. Specifically,

the posterior mean and variance of a HSA’s quality indices given vectors of its RAM predictions α̂h
and minimum distance estimates β̂h are

E[βh|α̂h, β̂h] = Ωhβ̂h + (IJ(h) − Ωh)(κ+ λα̂h) (24)

V ar(βh|α̂h, β̂h) = (IJ(h) − Ωh)(φ2IJ(h) + σ2), (25)

where Ωh is a weighting matrix given by the variance hyperparameters and Ξh, the variance-

covariance matrix of estimation error:

Ωh = (φ2IJ(h) + σ2)(φ2IJ(h) + σ2 + Ξh)−1. (26)

Without HSA-level random effects (σ = 0) and correlated estimation error across hospitals serving

the same HSA population (so that Ξh is diagonal), these formulas yield the usual empirical Bayes

procedure seen in Morris (1983), applied hospital-by-hospital. When additionally λ = 0, so that

observational RAM predictions do not reveal anything about true hospital quality, the minimum

distance estimates are shrunk towards the grand mean in proportion to one-minus the quality index

signal-to-noise ratio, as with the simplest empirical Bayes procedures. Given the posterior mean

and variance of hospital j’s quality index βj , posterior mean hospital quality is then given by

E[qj |α̂h(j), β̂h(j)] = E[Φ(βj)|α̂h(j), β̂h(j)]

= Φ

 E[βj |α̂h(j), β̂h(j)]√
1 + V ar(βj |α̂h(j), β̂h(j))

 (27)

since βj is normally-distributed conditional on α̂h(j) and β̂h(j) by equation (23).20

I construct hospital quality posteriors using these formulas and the MLE hyperparameter esti-

mates in column 6 of Table 3. The solid blue line in Figure 4 shows the resulting distribution of

quality index posteriors for the 2,082 hospitals with first-step estimates, while Appendix Figure A2

plots the full distribution of quality posteriors and observed survival rates. As expected, the pos-

terior mean distribution is much tighter than the estimate distribution, reflecting empirical Bayes

shrinkage and theoretically-improved mean squared prediction error. One-minus the mean quality

index signal-to-noise ratio, which gives a rough measure of the typical shrinkage factor, is 0.77 with

a standard deviation of 0.23. Correspondingly, the empirical Bayes procedure reduces the standard

deviation of quality index predictions significantly, from 0.79 to 0.14.

20If x ∼ N(m, v), E[Φ(x)] = Pr(y − x < 0) = Φ(−E[y − x]/
√
V ar(y − x)) = Φ(m/

√
1 + v) where y ∼ N(0, 1).
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Importantly, equation (23) also produces posterior quality predictions for hospitals without a

first-step quality estimate due to small size or insufficient ambulance instruments. These are the

HLM fitted values, plotted by a dotted green distribution curve in Figure 4, which uses the pop-

ulation relationship between observational RAM and hospital quality to extrapolate to underiden-

tified regions. This extrapolation is valid when equation (23) describes the relationship between

quality indices and observational RAM across all hospitals, whether or not they have enough quasi-

experimental data to be included in estimation. Appendix Table A1 shows that the average charac-

teristics of patients and hospitals in HSAs with and without minimum distance estimates are quite

similar, while Table A6 shows that all main results continue to hold or are strengthened when the

HLM includes interactions with the HSA’s hospital count, the main driver of minimum distance

estimate availability. I next describe these main results in detail.

4 Results

The hyperparameter estimates in Table 3 indicate significant within-HSA variation in true hospital

quality that is positively, but only partially, correlated with observational RAM predictions. I next

use the empirical Bayes posterior predictions of hospital quality to characterize this variation as

well as the non-random patient sorting that causes observational and quasi-experimental quality

estimates to diverge. I then quantify the significance of selection bias in two quality-based policies

currently in place in U.S. healthcare markets.

4.1 Correlates of Hospital Quality

Within-HSA comparisons of quality E[Yij ] = qj reflect average causal effects of moving a repre-

sentative patient across different local hospital types. I quantify these effects by regressing quality

posteriors and other outcome measures on hospital characteristics and HSA fixed effects, within

the set of 695 multi-hospital HSAs. The characteristics include indicators for a hospital’s owner-

ship structure (either private non-profit, private for-profit, or government owned); an indicator for

whether it is a teaching hospital; log annual spending on the hospital’s emergency Medicare patients

over 2010-2012; and log emergency Medicare patient volume over the same period. As shown in

Table A1, most hospitals in the sample (61%) operate as private non-profits, with 18% and 21%

registered as for-profit and government-run hospitals respectively. 22% of providers are categorized

as teaching hospitals, and average log patient spending and volume come to 9.3 and 3.5.

Columns 1-3 of Table 4 summarize regressions of observed hospital survival rates, while columns

4-6, 7-9, and 10-12 regress hospital RAM predictions, minimum distance quality index estimates, and
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quality posteriors, all normalized to standard deviation units for comparability.21 While the survival

rate coefficient estimates are small and mostly insignificant, a consistent pattern appears from the

less-biased quality measures in columns 4-12: government-run hospitals tend to be of statistically-

significantly lower quality on average (panel A), while higher-spending and higher-volume hospitals

tend to be of higher quality (panel B). I do not find statistically-significant differences between

for-profit and non-profit hospitals, nor any significant correlation with teaching status, though the

associated standard errors are sometimes large. Notably, the minimum distance quality estimates

generate very similar correlations as the RAM predictions and quality posteriors (which are partly

influenced by the RAM), though they are much less precise.

Rescaling columns 10-12, the estimates suggest that moving a typical patient from a government-

run hospital to a local privately-owned hospital increases her expected 30-day survival by 0.4 per-

centage points on average, while moving patients between providers with a one standard deviation

difference in log volume or log average spending affects short-run mortality by around 0.2 and 0.1

percentage points, respectively. Log spending and volume are positively correlated in this sample

(ρ = 0.44), however, and column 12 shows that there is no significant effect on expected mortality

from moving patients to hospitals with different spending levels holding volume fixed. Moving repre-

sentative patients from non-teaching to teaching hospitals is predicted to decrease expected 30-day

survival by 0.4 percentage points, though again this estimate is not statistically significant.

Qualitatively, the findings in Table 4 are broadly consistent with previously documented corre-

lates of observational quality measures, including in Sloan et al. (2001), Silber et al. (2010), Foster

et al. (2013), Doyle et al. (2015), and Chandra et al. (2015).22 This is perhaps unsurprising, as

similar conclusions can be drawn just from the observational RAM estimates in columns 4-6. As a

quantitative benchmark, Ruhnke et al. (2011) estimate an average decline in the 30-day mortality of

Medicare patients with pneumonia of around 3.4 percentage points over the nearly 30 years between

1987 and 2005 due to technological advances. The predicted survival effects above are significant in

this historical context.

Appendix Tables A3 and A4 explore other dimensions of hospital quality, including its correlation

over time, across different emergency conditions, and with measured quality inputs such as average

staff salary, the use of electronic records or case management, and the breadth of accreditation or

types of imaging technologies. Quality indices are estimated to be quite persistent, with a typical

21For consistency, here and throughout I use empirical Bayes posterior survival rates that shrink observed rates
towards the grand mean in proportion to one-minus the signal to noise ratio. This matters little for all results, as the
typical observed survival rate is quite precisely estimated.

22The instrumented quality measures used by McClellan and Staiger (2000) and Geweke et al. (2003) also show
small and rarely significant differences between for-profit and non-profit hospitals.
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three-year lag correlation of around 0.7 and slightly decaying autocorrelations over longer horizons.

There is also a significantly positive correlation of the quality-of-care across patients with different

conditions, especially respiratory and circulatory diagnoses (ρ = 0.64). Table A4 moreover shows

that all measured inputs appear significantly correlated with quality posteriors, with staff salary

remaining the most predictive in a multivariate regression with all inputs and hospital volume. It is

worth emphasizing that these estimates, as well as those in Table 4, are causal in a limited sense, as

they do not reveal the effect of a hospital changing its ownership structure, increasing its volume, or

paying its staff more. Nevertheless, these supplementary analyses support the claim that the quality

posteriors capture intuitive and persistent aspects of true hospital productivity.

4.2 Patient Sorting and Selection Bias

Comparing quality posteriors E[Yij ] and observed survival rates E[Yij |Dij = 1] captures outcome-

relevant sorting patterns and the degree of selection bias affecting observational hospital quality

measures. Figure 5 shows that quality and survival are positively though imperfectly correlated

within multi-hospital HSAs, with ρ = 0.64. Moreover, the figure displays a clear pattern of negative

correlation between quality and selection bias, defined again as E[Yij |Dij = 1]−E[Yij ]. Points above

the dashed 45 degree line represent hospitals with relatively higher selection bias, which tend to be

those of lower relative quality, while points below the solid line less positively selected than average

while tending to be of relatively higher quality. Overall, I find a rank correlation of quality and

bias posteriors of -0.81. This negative correlation suggests that hospitals that are of higher quality

tend to treat sicker-than-average patients, and implies that reductions in selection bias may not

dramatically alter the performance rankings of hospitals, despite a meaningful distribution of bias

with a standard deviation of 2.8 percentage points. Indeed, RAM predictions and quality posteriors

in this sample have a correlation of around 0.9. Interestingly Angrist et al. (2017) also find a negative

correlation between school quality and selection bias in their study of Boston middle schools, along

with a correlation between conventional VAM predictions and quasi-experimental quality posteriors

of 0.85.

Unlike in the constant effects model of Angrist et al. (2017), however, the generalized Roy

(1951) framework deployed here provides another way to characterize institutional selection: the

extent to which patient sorting exploits hospital comparative advantage by favoring more appropriate

hospitals (i.e., selection-on-gains). To explore this, Figure 6 plots the distribution of volume-weighted

average selection bias posteriors for the set of 695 multi-hospital HSAs. Under constant treatment

effects, HSA-level selection bias equals zero by construction: any volume-preserving transfer of

patients across hospitals trades off equal gains and losses across different subpopulations. The
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wide distribution in bias posteriors plotted in Figure 6, however, suggests a large degree of hospital

specialization and selection on match-specific quality. Furthermore, the vast majority of HSAs (88%)

appear to have positive average selection bias, and the average HSA-level selection bias posterior is

3.6 percentage points. This suggests that a typical patient is more likely to survive at her selected

hospital than at a hospital picked at random from most healthcare markets; that is, patients appear

to benefit significantly from positive selection-on-gains.

What explains this striking pattern of positive Roy selection? Differential hospital distance is

among the most obvious candidate, since individuals suffering from an acute emergency may only

survive if brought to the closest available emergency room, a hospital characteristic that varies

trivially over patients. On the other hand, although distance is an obvious predictor of hospital

admissions, it is found to be a weak one empirically. Chandra et al. (2015), for example, find that

only half of emergency patients in their sample are admitted to their nearest hospital. Similarly, in

my sample there is significant variation in hospital “distance bias,” defined as E[dij |Dij = 1]−E[dij ],

where dij denotes the ZIP code distance between patient i and hospital j. The volume-weighted

HSA-level mean of this measure is -0.91 across the 695 multi-hospital HSAs, reflecting that on average

patients are admitted to hospitals around 0.91 miles closer to them than the typical hospital in their

market. However, this average varies widely, with patients in some regions sorting to hospitals no

more than 0.1 miles closer to them than a provider picked at random.

Table 5 uses the HSA-level survival and distance bias measures to examine the extent to which

selection-on-distance explains the overall estimated 3.6 percentage-point survival benefit from selection-

on-gains. Panel A regresses survival bias on flexible polynomials in distance bias and indeed finds

a strong correlation, with a marginal “effect” of around a 0.1-0.25 percentage point decline in av-

erage HSA-level selection bias per mile of increased average HSA-level distance bias. Nevertheless,

the constant in even the most flexible cubic regression in column 3, representing average outcome

selection bias in a HSA with zero selection-on-distance, remains a significantly positive 3.4 percent-

age points. This suggests selection-on-distance explains only around 5% of the benefit from Roy

selection. Panel B reports non-parametric estimates of this quantity by directly computing mean

selection bias in HSAs with relatively little distance bias. Even in the 39 regions where average

distance bias is above −0.01 miles, patients are still around 3 percentage points more likely to sur-

vive at their chosen hospitals then with random admission (and 87% of these HSAs have positive

average bias posteriors). Thus selection on hospital distance appears to explain only a small fraction

of hospital Roy selection.23

23Appendix Table A6 also shows that these findings are also not driven by the tail behavior of the multivariate
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Similar analyses in Appendix Table A5 suggest this is also the case for other observables, includ-

ing patient diagnosis, demographics, and pre-existing conditions. Average HSA-level selection bias

controlling for the HSA-level observable “distance” between admitted patients and average patients

in the HSA range from 3.1 to 3.5 percentage points, suggesting observables explain at most 13%

of the estimated benefit of positive Roy selection (here distance for non-geographic observables is

computed by the Mahalanobis metric). Together, these results indeed suggest that hospitals special-

ize in ways that are unobserved to the econometrician (consistent with Chandra and Staiger (2007)

and Chandra and Staiger (2017)) but that are observed and selected on by ambulance companies

and patients. Accommodating these unobservables with the heterogenous-effects multivariate probit

specification – which are ruled out by other models such as the linear IV specification of Angrist

et al. (2017) or the fixed-coefficient probits of conventional RAMs and Geweke et al. (2003) – thus

appears empirically important in this setting.

4.3 Policy Consequences of Selection Bias

Non-random hospital choice generates a sizable distribution of posterior selection bias, with a overall

standard deviation of 2.8 percentage points. Although conventional risk-adjustment appears to offset

some of this bias, quality posteriors and RAM predictions often disagree: around 19% of hospitals

(131) with the best quality posteriors in each multi-hospital HSA are ranked differently by RAM,

while a similar 20% of HSAs (138) see disagreements on the worst local hospital. Nevertheless, it is

difficult to gauge the economic importance of RAM bias from these statistics alone – as shown in

Angrist et al. (2017), policy decisions based on biased quality rankings may still generate large social

gains. Furthermore, the overall negative quality-bias correlation means that policies that reward or

punish hospitals according to observational RAM rankings are most likely to understate true quality

differentials rather than drastically change the types of hospitals that are subsidized. To better

assess the economic implications of RAM bias, I next simulate these policies directly.

Medicare Reimbursement

I first consider how payments from Medicare’s Value-Based Purchasing (VBP) program would differ

if CMS’ hospital ranks were based on the estimated quality posteriors. VBP was launched in 2013

with the goal of incentivizing hospitals with quality-linked Medicare reimbursement adjustments in

a budget-neutral way (DHHS/CMS, 2015). Along with clinical process-of-care measures and patient

normal distribution assumed for latent health and utility. A multivariate Student’s t(2) specification finds that 84%
of HSAs exhibit positive Roy selection, with an average HSA-level bias posterior of 3.3 percentage points.
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surveys, risk-adjusted mortality became a part of a “total performance score” (TPS) assigned to each

hospital receiving Medicare reimbursement payments in fiscal year 2014. CMS withheld 1.25% of

each participating hospital’s FY2014 diagnosis-related group (DRG) payment, redistributing around

$1.1 billion of total withholdings by a linear TPS schedule. This round of VBP payments affected

only a small share of a hospital’s reimbursements: the average VBP repayment was 0.24 percentage

points (Conway, 2013). Nevertheless, the program has proved quite controversial as the withholding

rate has steadily increased, reaching to 2% in 2016 (Pear, 2014), and as CMS has announced plans

to tie 90% of all traditional Medicare payments to quality programs like VBP by 2018 (DHHS,

2015; Gupta, 2017). In recent work Norton et al. (2017) show that hospitals indeed respond to the

program’s seemingly modest incentives, with providers that face higher marginal VBP returns seen

to improve their respective TPS components in subsequent years.

I first replicate the FY2014 VBP payment schedule to simulate reimbursements adjustments

based on conventional RAM rankings. Total performance scores combine “achievement points,”

which are based on hospital quality estimates in the most recent period, and “improvement points,”

which are based on a hospital’s gain relative to a previous period. Following the CMS methodology, I

compute points from hospital risk-standardized mortality rates, defined with the notation of equation

(21) as

RSMRj =
1−

∑
i:Dij=1 Fν(α̂j + γ̂′Wi)

1−
∑
i:Dij=1 Fν(ᾱ+ γ̂′Wi)

(1− Ȳ ), (28)

where Fν is the logit cumulative distribution function, γ̂ is an estimate of the RAM parameter γ, ᾱ

is the mean RAM prediction α̂j , and 1− Ȳ is the average mortality rate in the sample. In practice,

risk-standardized survival rates, 1−RSMRj , correlate strongly with observational RAM predictions

(ρ = 0.98).

These rates are converted to points by a coarse schedule, with the greater of achievement and

improvement points constituting a hospital’s outcome domain score. In FY2014 outcome scores

made up 25% of a hospital’s TPS. Hospitals were repaid none of their DRG withholdings if they

scored the minimum level across all three quality domains and linearly accrued repayments with

increases in the TPS. I hold the non-outcome domains and DRG totals fixed at their true FY2014

values, generating benchmark outcome achievement points from the estimated 2010-2012 RAM and

computing improvement points from the gain in a hospital’s risk-standardized mortality rate between

2007-2009 and 2010-2012. I then compare simulated VBP repayment rates with those that would

be produced with TPS based solely on the hospital quality posteriors. The data appendix describes

the construction of simulated repayments in more detail.

The resulting distribution of differences in simulated VBP repayment rates is shown in Figure
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7. Ten percent of hospitals see no difference in VBP reimbursement when quality posteriors are

used in place of the current rankings; the average change is -0.1 percentage points, with a standard

deviation of 0.81, and the distribution is right-skewed. Most hospitals (74%), moreover, see a

repayment rate change of less than one percentage point in magnitude (recall that the withholding

rate is 1.25%). Regression estimates in Table 6, moreover, show that both the benchmark VBP

rates and the simulated changes from incorporating the quasi-experimental data are not correlated

with most of hospital observables. Non-profit, for-profit, government-run, and teaching hospitals are

all subsidized roughly the same, though the difference of -0.07 percentage points for government-

run hospitals is statistically significant. Similarly while higher-spending and lower-volume hospitals

tend to be subsidized more by conventional VBP, in practical terms these subsidizes are quite

small. Reimbursing on the basis of quality posteriors leads similarly-small differentials, though

teaching hospitals are now slightly penalized and higher-spending and volume hospitals moderately

subsidized. Overall, the relatively modest extent of changes to quality-based reimbursement are

consistent with the negative quality-bias correlation; as with the RAM predictions and quality

posteriors, benchmark VBP and quality-based achievement points are highly correlated with ρ ≈ 0.9.

The scope for selection bias to materially change the distribution of policy winners and losers thus

appears limited.

Patient Guidance

Along with hospital incentives, supervisory quality rankings have begun to shape patient admis-

sion decisions. The federal Hospital Compare website was launched in 2005 to help consumers

make informed decisions about their inpatient options via multiple hospital performance measures,

including observational RAM predictions starting in 2008. At the same time, a growing number

of private organizations – including the U.S. News and World Report, Consumer Reports, and the

Joint Commission – have developed competing hospital “report cards” with alternative observational

risk-adjustment measures. Although patients increasingly consult such rankings (Rice, 2014), and

research shows that higher-ranked hospitals tend to see increased future emergency patient market

shares (Chandra et al., 2015), there is little evidence on how quality-based admissions may affect

patient survival, particularly as they become more influential for patients and ambulance companies

and as they may affect, either directly or indirectly other sorts of regulatory policies influencing

hospital popularity or capacity.

The hyperparameter estimates in Table 3 suggest that redirecting a typical patient from a random

hospital to the provider with the highest RAM ranking in her HSA is likely to increase her expected

30-day survival, and that decisions based on less-biased quality posteriors should generate even
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better average health outcomes. At the same time, the significant and pervasive extent of positive

Roy selection-on-gains in Figure 6 suggests these gains may be at least partly offset by the fact

that a typical patient’s admissions is better than random. On average, patients already see large

survival gains from selecting more appropriate hospitals, so that policies that succeed in redirecting

individuals to the best-on-average hospital may actually do harm.

I quantify the net effect of these competing forces by simulating 500 sets of quality indices βj
from the HLM estimates of Table 3, column 6, holding the set of observational RAM predictions

fixed. I next draw estimation error components ιj among the hospitals with minimum distance

quality estimates, based on the empirical distribution of minimum distance estimation error, and

construct simulated estimates and posteriors as in the full sample. From these data, I compute the

average 30-day survival rates for a typical patient admitted to either a random hospital within her

HSA, the hospital in her HSA with the highest survival rate, the local hospital ranked best by one of

the RAM models summarized in Figure 2, or the hospital with the highest quality posterior. While

abstracting away from general equilibrium effects and capacity constraints, these estimates give an

expected public health value measure of using various supervisory quality rankings to redirect a

representative patient’s admissions.

As expected, each ranking-based admission policy increases expected survival relative to a bench-

mark of random admissions. An emergency patient sent to the lowest-mortality local hospital is on

average 2.1 percentage points more likely to survive her first 30 days after admission, while basing

admissions on even the most naive RAM1 model increases this to 3.1 percentage points. As we’ve

seen before in Figures 2, Table 3, and Appendix Table A2, adding patient demographics and comor-

bidities to the RAM specification only incrementally reduces bias, bringing the expected gain from

the richest RAM3 model to 3.2 percentage points. Incorporating quasi-experimental data improves

things further still, with a representative patient admitting according to the quality posteriors seeing

a 3.6 percentage point gain in expected survival, relative to random admissions. These gains are

on the order of the 30-year technological decline in pneumonia mortality rates estimated by Ruhnke

et al. (2011).

Nevertheless, Roy selection dominates many of these polices. In this sample of quasi-experimental

HSAs, the average gain in 30-day survival from prevailing selection patterns is 3.4 percentage points.

Admission policy effects net of this gain are plotted in Figure 8, revealing that all but the policies

based on quality posteriors lead on average to reduced expected survival rates. In particular, redi-

recting a random patient from her preferred hospital to the one with the highest RAM3 rank is found

to reduce survival by -0.2 percentage points. Quality posterior-based redirection still increases ex-

pected survival, though by a diminished 0.2 percentage points. For completeness, I also simulate

29



gains from an infeasible policy in which all of the quasi-experimental moments used to construct

minimum distance quality estimates are assumed to be known without error. Redirecting patients

based on true quality has significant expected survival effects of roughly 1.1 percentage points. Thus,

using less-biased hospital rankings to guide admissions may deliver meaningful partial-equilibrium

health benefits, particularly when rankings are estimated on larger administrative datasets or by

more efficient quasi-experimental methods. At the same time, policies that make patients or am-

bulance companies more likely to select high-ranked hospitals, as well as policies that close or limit

the growth of low-ranked providers, may also undermine the prevailing health benefits of hospital

selection-on-gains and have unintended negative consequences on patient mortality.

5 Conclusions

Policymakers in many settings increasingly rely on outcome-based quality measures to incentivize in-

stitutions and inform consumers, despite concerns that existing observational methods only partially

offset bias from non-random institutional choice. Instead, this paper develops a flexible framework

for measuring institutional productivity and selection bias with quasi-experimental data. Quality

can be non-parametrically estimated from rich instrument variation, while distributional restrictions

may substitute for traditional constant effects assumptions in order to extrapolate from narrower

quasi-experiments. Rather than relying on costly likelihood-based estimation, a tractable mini-

mum distance procedure implements this semi-parametric approach. I establish identification of a

large class of elliptical models for binary potential outcomes which flexibly allow for both institu-

tional comparative advantage and Roy-style selection-on-gains, features lacking in existing estimation

frameworks.

These features appear to be highly relevant in the application to hospital quality. I find a large de-

gree of hospital specialization and unobserved positive Roy selection-on-gains, with typical patients

in most markets benefiting from being admitted to more appropriate hospitals. This non-random

sorting across hospitals generates pervasive selection bias, though this bias tends to be negatively

correlated with true hospital quality. Higher spending, higher volume, and privately owned hospitals

appear to be of higher average quality, and only a small share of the Roy selection appears corre-

lated with observables such as differential hospital distance. Observational risk-adjustment methods

remove some selection bias, and policies based on less-biased quasi-experimental quality rankings

for regulatory policy may lead to modest survival gains for patients without significantly altering

the distribution of performance-linked Medicare reimbursements.

Ultimately, more work is needed to characterize the ways in which these policies may shape long-
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run hospital quality supply and demand. As long as biased quality measures are used to structure

the Value-Based Purchasing program, providers may find ways to “game the system,” boosting their

payments without improving actual performance. While the simulations in section 4 show that

most observable hospital characteristics are at best weakly correlated with bias in VBP rankings,

there may remain various hospital-controlled unobservables that correlate with rankings but not true

quality. Detecting VBP “gaming” may become easier as the scope of performance-linked healthcare

reimbursement and the strength of incentives grow, while basing quality on “upstream” instrumental

variable variation rather than admissions itself may reduce the ability of hospitals to game.

The policy simulations also raise new questions about the efficacy of demand-side quality in-

terventions, including the large and growing set of hospital report cards currently accessible to

patients. Without significant hospital specialization, the finding that higher-ranked hospitals tend

to attract more emergency patients in the future, as in Chandra et al. (2015), has unambiguously

positive implications for public health. Accounting for the significant extent of selection on match-

specific quality, however, requires a more nuanced approach. On one hand, report cards may cause

patients to update weak or incorrect priors on their most appropriate hospital and induce the selec-

tion of providers with high average quality, thus increasing patients’ chances of survival. However,

widely-known rankings may also disrupt prevailing beneficial selection patterns, to the extent they

also influence patients with better private information. Understanding the ways in which hospital

quality measures actually affect admission decisions and characterizing the optimal design of pub-

lic quality signals in settings with meaningful Roy selection are two important goals raised by the

heterogeneous-effects approach.
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Notes: This figure illustrates mean selected outcome and choice probability
estimates for a single institution across eight instrument values, simulated
from the two-institution multivariate normal model described in Section
2.4. The minimum distance curve of best fit intersects the institution's
quality at a choice probability of one.

Figure 1: Semi-parametric Quality Estimation
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Figure 2: Residual survival variance in observational RAMs

Notes: This figure plots the variance of risk-adjusted 30-day survival relative to the unadjusted
survival variance for three risk-adjustment models, estimated separately by condition. See Table 1 for
a description of each condition category, Table 2 for a list of included comorbidities, and the data
appendix for a description of the RAM estimation procedure.
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Figure 3: The joint distribution of quasi-experimental hospital moments

Notes: This figure plots a Gaussian kernel density estimate of the joint distribution of estimated mean selected
outcome differences and estimated choice probability differences for the 2,082 hospitals with minimum
distance quality estimates. Differences are taken across the two ambulance companies with the largest and
smallest estimated choice probability for each hospital. The vertical and horizontal bandwidths used to
estimate this distribution are 0.05 and 0.1, respectively. Dashed lines indicate sample means, and the solid
line indicates the regression of mean selected outcome differences on choice probability differences.
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Figure 4: The distribution of hospital quality index estimates and posteriors

Notes: This figure plots Gaussian kernel density estimates of the distribution of minimum distance hospital
quality index estimates and empirical Bayes posteriors, along with fitted values from the hierarchical linear
model's projection on conventional RAM predictions. The sample includes 2,082 hospitals with a first-step
quality estimate. The bandwidth used to estimate each distribution is 0.2.
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Figure 5: Within-HSA variation in hospital quality and 30-day survival

Notes: This figure plots posterior hospital 30-day survival rates against posterior
hospital quality, both net of their HSA means. The sample includes 2,357 hospitals
operating in 695 multi-hospital HSAs. 
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Figure 6: The distribution of HSA-level selection bias

Notes: This figure plots the distribution of volume-weighted average posterior selection bias across 695 multi-
hospital HSAs. HSAs with negative selection bias would see higher average 30-day survival if patients were
randomly allocated to hospitals, while a positively-selected HSA would have a lower survival rate under
random admissions.
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Figure 7: The distribution of Value-Based Purchasing repayment rate differences

Notes: This figure plots the distribution of the change in simulated VBP repayment rates when quality
posteriors replace benchmark hospital rankings. See the text and data appendix for details.
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Figure 8: Expected survival gains from redirecting patients to a top-ranked hospital

Notes: This figure plots simulated gains in average expected survival for a random patient sent to the highest-
ranked hospital in her HSA, relative to her current choice, according to either the hospital's 30-day survival
rate, observational RAM prediction, or quality posterior (with or without estimation error in the quasi-
experimental moments). See Table A2 for a description of the RAM specifications. Estimates are from 500
draws of the hierarchical model described in the text.
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Diagnoses Patients Ambulances Hospitals HSAs 30-day survival
(1) (2) (3) (4) (5) (6)

Full sample 29 405,172 9,590 4,821 3,159 0.833

Circulatory 5 89,076 7,576 3,879 2,777 0.807
Respiratory 4 81,021 7,434 4,224 2,980 0.781
Digestive 6 26,358 5,242 3,323 2,354 0.902
Injury 8 71,616 7,399 3,634 2,561 0.931
All other 6 137,101 8,063 4,441 2,997 0.815

One 29 151,071 6,760 2,464 2,464 0.831
Two 29 84,634 3,576 800 400 0.837
Three 29 44,399 2,303 396 132 0.835
Four 29 24,398 1,227 212 53 0.829
Five or more 29 100,670 3,781 949 110 0.832

Table 1: The analysis sample

Notes: This table summarizes the distribution of diagnoses, ambulances, hospitals, and 30-day survival in the
sample of Medicare FFS patients admitted for one of 29 nondeferrable diagnoses in 2010-2012. Circulatory
diagnoses include acute myocardial infarction, intracerebral hemorrhage, occlusion and stenosis of the
precerebral artery, occlusion of cerebral arteries, and transient cerebral ischemia. Respiratory diagnoses
include pneumonia due to solids and liquids, pneumonia (organism unspecified), other bacterial pneumonia,
and other diseases of the lung. Digestive diagnoses include diseases of the esophagus, gastric ulcer, duodenal
ulcers, vascular insufficiency of the intestine, intestinal obstruction without mention of hernia, and
other/unspecified noninfectious gastroenteritis and colitis. Injury diagnoses include fracture of the ribs,
sternum, larynx, and trachea; fracture of the pelvis; fracture of the neck or femur; fracture of the tibia and
fibula; fracture of the ankle; poisoning by angesicis; antipyretics, and antirheumatics; poisoning by
psychotropic agents; and other/unspecified injury. All other diagnoses include septicemia; malignant
neoplasm of the trachea, bronchus, and lung; secondary malignant neoplasm of respiratory and digestive
systems; other disorders of the urethra and urinary tract; disorders of muscle, ligament, and fascia; and
general symptoms.

A. By patient's condition

B. By patient's admitted HSA's hospital count

40



Low High p-value Coefficient p-value
(1) (2) (3) (4) (5)

RAM prediction -0.044 0.021 <0.001 0.101 <0.001

Age 81.59 81.52 0.726 0.144 0.591
Male 0.379 0.385 0.554 -0.002 0.914
White 0.863 0.852 0.157 -0.004 0.722
Black 0.091 0.099 0.276 0.004 0.683
Referred from home 0.635 0.621 0.189 -0.042 0.010
Referred from accident 0.125 0.128 0.636 -0.009 0.408
Circulatory condition 0.234 0.236 0.851 -0.014 0.314
Respiratory condition 0.188 0.189 0.955 0.008 0.516
Digestive condition 0.064 0.066 0.711 0.003 0.688
Injury condition 0.176 0.179 0.730 0.002 0.899

Joint p-value 0.875 0.221

Hypertension 0.263 0.267 0.670 0.009 0.559
Stroke 0.012 0.012 0.913 0.002 0.650
Cerebrovascular disease 0.032 0.034 0.729 0.003 0.640
Renal failure 0.118 0.118 0.988 0.009 0.411
Dialysis 0.012 0.011 0.894 0.001 0.862
COPD 0.108 0.108 0.925 0.004 0.671
Pneumonia 0.053 0.054 0.868 0.003 0.655
Diabetes 0.121 0.129 0.311 0.011 0.294
Protein-calorie malnutrition 0.035 0.037 0.734 0.003 0.585
Dementia 0.085 0.087 0.698 0.009 0.327
Paralysis 0.033 0.035 0.662 0.005 0.354
Peripheral vascular disease 0.073 0.076 0.618 0.001 0.873
Metastic cancer 0.020 0.021 0.720 0.001 0.846
Trauma 0.057 0.057 0.946 0.003 0.678
Substance abuse 0.039 0.038 0.840 0.000 0.939
Major psychological disorder 0.030 0.030 0.953 0.000 0.967
Chronic liver disease 0.007 0.007 0.871 0.002 0.580

Joint p-value 0.922 0.893

Excess miles transported -0.041 0.034 0.987 0.070 0.991
Emergency transport 0.954 0.954 0.972 0.012 0.063
Advanced life support 0.720 0.746 0.010 0.001 0.955
Intravenous fluids administered 0.008 0.007 0.644 -0.004 0.133
Intubation performed <0.001 <0.001 0.270 -0.000 0.174

Joint p-value 0.141 0.205

Overall joint p-value 0.976 0.876

Table 2: Ambulance company assignment balance

Notes: This table compares the characteristics of patients referred by ambulance companies that are located
close to hospitals with high and low RAM predictions, controlling for patient ZIP code fixed effects. The
sample in columns 1-3 includes 175,485 patients by companies that are closest (in terms of ZIP code
centroid distance) to a hospital in either the first ("low") or fourth ("high") quartile of RAM predictions in
their hospital service area. Columns 4-5 regress characteristics on the company's closest-hospital RAM in
the full patient sample. Reported p-values are for the null of no difference across patients, and are based on
robust standard errors. The "overall" p-values jointly test across panels A, B, and C. Excess miles
transported is computed as a patient's transported miles minus the ZIP code centroid distance to a patient's
hospital.

Comparison by RAM of assigned 
company's closest hospital

Regression on closest-
hospital RAM

A. Demographics

B. Comorbidities

C. Ambulance services
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OLS MLE OLS MLE OLS MLE MLE
(1) (2) (3) (4) (5) (6) (7) (8) (9)

RAM1 0.123 0.121 0.023
(0.116) (0.011) (0.038)

RAM2 0.123 0.125 0.015
(0.117) (0.011) (0.086)

RAM3 0.127 0.127 0.119 0.145 0.157
(0.117) (0.011) (0.059) (0.016) (0.027)

(RAM3)² -0.003
(0.008)

(RAM3)³ -0.005
(0.003)

(RAM3)×J -0.021
(0.019)

Residual std. dev.:
  Within-HSA 0.096 0.096 0.099 0.099 0.099 0.099 0.098 0.098 0.118

(0.099) (0.098) (0.104) (0.102) (0.102) (0.102) (0.101) (0.104) (0.077)
  Between-HSA 0.165 0.165 0.162 0.162 0.162 0.162 0.163 0.162 0.147

(0.064) (0.064) (0.070) (0.069) (0.069) (0.069) (0.067) (0.070) (0.066)

Table 3: Hierarchical linear model estimates

Notes: This table reports estimated parameters of the hierarchical linear model outlined in the text. The sample
consists of 2,082 minimum distance quality index estimates and RAM predictions. Columns 1, 3, and 5 report OLS
coefficients and variance component estimates from a regression of quality index estimates on RAM predictions.
Columns 2, 4, and 6 report corresponding maximum likelihood estimates. See the text for details of this model and a
description of the three RAM specifications. Columns 7-9 report MLE estimates of multivariate models; in column 9
the the main effect of J , the total number of hospitals in each HSA, is estimated to be -0.038 (0.016). Standard
errors, clustered by HSA, are reported in parentheses.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

For-profit -0.019 -0.036 -0.065 -0.080 0.097 0.086 -0.063 -0.081
(0.082) (0.081) (0.083) (0.081) (0.196) (0.197) (0.080) (0.078)

Government -0.072 -0.072 -0.178 -0.177 -0.325 -0.312 -0.154 -0.153
(0.083) (0.083) (0.077) (0.076) (0.226) (0.231) (0.075) (0.075)

Teaching -0.103 -0.104 -0.092 -0.096 -0.121 -0.065 -0.108 -0.112
(0.077) (0.077) (0.084) (0.084) (0.185) (0.190) (0.081) (0.080)

Log(spending) 0.011 0.017 0.025 0.003 0.002 -0.007 0.027 0.005
(0.012) (0.013) (0.013) (0.013) (0.336) (0.335) (0.013) (0.013)

Log(volume) -0.005 -0.011 0.039 0.038 0.068 0.068 0.032 0.030
(0.013) (0.014) (0.017) (0.018) (0.107) (0.108) (0.016) (0.017)

Table 4: Within-HSA correlates of hospital quality measures

Notes: This table reports coefficients from regressions of the hospital quality measure in each column on the row characteristics, controlling for HSA fixed effects.
All quality measures are normalized to standard deviation units; see Table A2 for a description of the RAM prediction specification (RAM3). Observed survival
posteriors shrink observed rates towards the grand mean in proportion to one minus the signal-to-noise ratio. The sample in columns (1)-(6) and (10)-(12) is 2,357
hospitals operating in 695 multi-hospital HSAs, while the sample in columns (7)-(9) include 1,145 with minimum distance quality estimates. Standard errors,
clustered by HSA, are reported in parentheses.

Observed survival RAM prediction Quality index estimate Quality posterior

A. Ownership structure

B. Average spending and patient volume
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(1) (2) (3)

Avg. selection bias (pp) 3.60
(0.12)

HSAs: 695

Avg. selection bias (pp) 3.51 3.48 3.43
(0.13) (0.14) (0.14)

Marginal distance bias "effect" -0.10 -0.15 -0.25
(0.04) (0.07) (0.10)

Polynomial: Linear Quadratic Cubic
HSAs:

Avg. selection bias (pp) 3.23 3.14 3.01
(0.26) (0.34) (0.45)

Bandwidth: 1 mile 0.1 miles 0.01 miles
HSAs: 142 66 39

Table 5: Average HSA-level selection bias, adjusting for selection-on-distance

Notes: This table summarizes average HSA-level selection bias posteriors, expressed in percentage
points of 30-day survival. Panel A reports the average across all 695 multi-hospital HSAs, while
Panel B reports the constant from regressions of HSA-level bias posteriors on polynomials in HSA-
average distance bias. A hospital's distance bias is the difference between its average ZIP code
centroid distance to its admitted patients and its average distance to all potential patients in the
HSA. Panel C reports average HSA-level selection bias posteriors for HSAs with an average
distance bias that falls within the indicated bandwidth of zero. Robust standard errors are reported
in parentheses.

695

B. Parametric adjustment

C. Non-parametric adjustment

A. No adjustment
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Using benchmark 
scores

Using quality 
posteriors

Difference

(1) (2) (3)

For-profit -0.013 -0.046 -0.033
(0.028) (0.043) (0.046)

Government -0.069 -0.066 0.003
(0.028) (0.039) (0.042)

Teaching 0.018 -0.098 -0.116
(0.028) (0.045) (0.044)

Log(spending) -0.222 0.180 0.402
(0.048) (0.060) (0.074)

Log(volume) 0.173 0.195 0.022
(0.012) (0.017) (0.019)

Log(bed capacity) -0.022 -0.015 0.007
(0.020) (0.030) (0.031)

Table 6: Correlates of value-based purchasing repayment rates

Notes: Columns 1 and 2 report coefficients from regressing the share of total value-
based purchasing withholdings that is repaid to the hospital given its benchmark VBP
score and its quality posterior, respectively. Column 3 reports the difference in these
coefficients. VBP simulations use FY2014 balance sheet information and non-quality
domain scores; see the data appendix for a description of the repayment rate
construction. The sample is 2,565 hospitals with balance sheet information and
quality posteriors from both the 2007-2009 and 2010-2012 periods. Robust standard
errors, clustered by HSA, are reported in parentheses.
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Data Appendix

I follow Doyle et al. (2015) in constructing an analysis sample from 2010-2012 CMS claims data. I

first link a 20% random sample of Medicare beneficiaries originating an ambulance company claim

in the CMS Carrier file to their resulting inpatient claims, which indicate admitting hospitals and

diagnoses. The claims data include basic patient demographic information, including birth date,

sex, race, and the ZIP code where official correspondence is sent. These data are also linked to vital

statistics that record when a patient dies, allowing me to construct the primary 30-day survival

outcome. Ambulance company data, including the company’s registered ZIP code, information

on miles traveled, the mode and method of transport, and any pre-hospital interventions are also

retained from the Carrier file. Hospital ZIP codes provided by inpatient claims are linked to the

2010 Dartmouth Atlas hospital service area definitions. Data on hospital ownership structure (non-

profit private, for-profit private, and government owned) come from the 2010-2012 CMS Provider of

Service files, while teaching status and total FY2014 diagnosis-related group payments come from

hospital Cost Report data. Hospital volume is computed as the total number of admitted patients

observed in the analysis sample, while average spending includes all Medicare reimbursement paid to

the hospital from the first 30 days following a patient’s admission, excluding those for drugs covered

under Medicare Part D due to data limitations.

Following Card et al. (2009) and others, I limit the analysis sample to patients who were admitted

by ambulance through a hospital’s emergency room for one of 29 “nondeferrable” conditions, wherein

selection into inpatient care is unlikely to be discretionary. These are the same conditions Doyle et al.

(2015) identify as having weekend admissions rates close to the 2/7ths, which would be expected

given no discretion, and are listed in the note below Table 1. As with the CMS risk-adjustment

methodology established by YNHHSC/CORE (2013), I keep only a patient’s first hospital admission

in 2010-2012. Unlike Doyle et al. (2015), I do not drop small ZIP codes, ambulances, or hospitals,

nor do I limit the sample to hospitals within 50 miles of the patient’s ZIP code centroid in order to

minimize endogenous sample selection.

Appendix Table A1 summarizes patient demographics in the analysis sample. Around 41% of

beneficiaries admitted for a nondeferrable condition in 2010-2012 (column 1) were referred via an

emergency room by an ambulance (column 2); this subsample is slightly older and more female, with

somewhat higher average Medicare spending and 30-day mortality. The hospitals represented in this

emergency sample are somewhat more likely to be privately owned, non-profit, and higher-volume,

and more than twice as likely to be a teaching hospital. Column 3 further report characteristics for

patients and hospitals in HSAs with first-step minimum distance quality estimates, which constitutes

roughly 85% of the analysis sample. These subsamples appear quite representative.
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Observational RAMs are estimated in this sample via hierarchical logit regressions with condi-

tionally normal random hospital effects, separately by each of the five condition categories listed in

Table 1. RAM predictions α̂j are the volume-weighted average posterior means of the hospital effects

across conditions. The benchmark RAM3 specification includes condition and year fixed effects, pa-

tient age and sex, and indicators for the 17 comorbidities listed in Panel B of Table 2. The RAM2

specification omits comorbidity dummies, while the most basic RAM1 model includes only condition

and year effects. Appendix Table A2 also uses estimates from a replicated CMS-RAM model. For

these I follow YNHHSC/CORE (2013) as closely as possible in constructing an auxiliary 20% sample

from 2010-2012 inpatient claims and defining diagnosis and procedure comorbidities specific to each

of their AMI, heart failure, and pneumonia risk-adjustment models. The AMI model is estimated

using a sample of 107,916 patients and includes indicators for the comorbidities listed in Table 2 of

YNHHSC/CORE (2013). The heart failure model uses a sample of 206,363 patients and includes the

comorbidity controls listed in their Table 6. Lastly, the pneumonia specification is estimated using

a sample of 205,980 patients and includes comorbidity indicators that YNHHSC/CORE (2013) list

in their Table 12. Regressions of reported CMS hospital scores on those generated in my samples

produce coefficients of 0.93 (AMI), 1.05 (heart failure), and 1.03 (pneumonia) with standard errors

on the order of 0.04.

To simulate counterfactual reimbursements from the CMS Value-Based Purchasing program, I

replicate the methodology outlined in DHHS/CMS (2015). FY2014 non-outcome domain scores are

drawn for each hospital in my sample from the VBP website, while achievement and improvement

scores for the outcome domain are obtained from estimated risk-standardized survival rates, as

described in the text. Achievement scores based on quality posteriors come from the main 2010-2012

analysis sample, while improvement scores come from changes in posteriors between 2007-2009 and

2010-2012. Achievement points are awarded on a linear 0-9 scale, with zero points given to hospitals

that score below the median achievement score and 9 points awarded to those scoring above the

mean of hospitals in the top tenth percentile. No improvement points are assigned to hospitals with

negative improvement scores but are assigned linearly from positive improvement, with 8 points

awarded to hospitals above the mean of the top tenth percentile of improvement. A hospital’s Total

Performance Score is the maximum of achievement and improvement points multiplied by 10, which

for the benchmark simulations are then combined with the non-outcome domains with a weight

of 25%. Total VBP withholdings equal 1.25% of total hospital DRG payments in FY2014 and

are fully redistributed to hospitals by a linear schedule, with hospitals scoring zero on their Total

Performance Score earning back zero withholdings. VBP repayment rates are given by the share of

these payments divided by a hospital’s total withholdings.
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Econometric Appendix

Proof of Lemma 1

Consider the choice probability for institution j and instrument value `:

Pr(Uij(z`) ≥ Uik(z`),∀k) = E[E[1[Uij(z`) ≥ Uik(z`),∀k]|Xi]]

= E[E[1[Uij(Zi) ≥ Uik(Zi),∀k]|Zi` = 1, Xi]]

= E[E[Dij |Zi` = 1, Xi]]

= E

[
E

[
DijZi`
p`(Xi)

|Xi

]]
= E

[
DijZi`
p`(Xi)

]
. (29)

The first and fifth equalities follow from the Law of Iterated Expectations, the second holds under

Assumption 1, and the third and fourth use the model for Dij and definition of p`(Xi) = E[Zi`|Xi].

Similar logic yields equation (4), as each mean selected outcomes can be written

E[f(Yij)|Uij(z`) ≥ Uik(z`),∀k] = E[f(Yi)1[Uij(z`) ≥ Uik(z`),∀k]]
Pr(Uij(z`) ≥ Uik(z`),∀k) , (30)

and, following the same steps as above,

E[f(Yi)1[Uij(z`) ≥ Uik(z`),∀k]] = E

[
f(Yi)DijZi`
p`(Xi)

]
. (31)

Combining equations (29)-(31) completes the proof. �

Proof of Proposition 2

Let P J−1 denote the standard J−1 probability simplex and define for j = 1, . . . , J−1 the functions

Gj(·) : RJ−1 → P J−1 as

Gj(π) = Kg

∫ πj−π−j

−∞
|Σj |−1/2g((t− µj)′Σ−1

j (t− µj))dt

= Kg

∫ Σ−1/2
j

(πj−π−j−µj)

−∞
g(t′t)dt, (32)

where π−j = [π1, . . . , πj−1, πj+1, . . . , πJ−1, 0]′, the vector µj and positive-definite matrix Σj are

the location and shape parameters, respectively, of [ηi1, . . . , ηi,j−1, ηi,j+1, . . . , ηiJ ]′ − ηij , which is

elliptically distributed with generating function g(·) and integration constant Kg under Assumption

3. By inspection, G(·) = [G1(·), . . . , GJ−1(·)]′ is a proper mapping, in that for any sequence {πn}

that escapes to infinity in RJ−1 we have {G(πn)} escaping to infinity in P J−1 with an appropriately-
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defined metric. Moreover, the Jacobian

JG(π) =


∂G1(π)
∂π1

. . . ∂G1(π)
∂πJ−1

...
. . .

...
∂GJ−1(π)

∂π1
. . . ∂GJ−1(π)

∂πJ−1

 (33)

is evidently a strictly-diagonally dominant L-matrix everywhere in RJ−1, so that by the Lévy-

Desplanques theorem it is everywhere invertible. Thus, by Hadamard’s theorem there exists a

global inverse function G−1(·) : P J−1 → RJ−1. By construction this function maps each of the `

vectors of choice probabilities identified by Lemma 1 to a unique-up-to-a-constant vector of utility

shifters π∗j` given any g(·), s, and S from Assumption 3.

Next, for j = 1, . . . , J , ` = 1, . . . , L = J , and CJ−1 = {ρ ∈ (0, 1)J−1 :
∑
ρ2
j < 1}, let Hj`(·) :

R× CJ−1 → (0, 1) be given by

Hj`(β, ρ) = Kg

Gj`

∫ β/σj

−∞

∫ Σ−1/2
j

(π∗j`−π
∗
−j,`−µj)

−∞

∣∣∣∣∣∣1 ρ′

ρ IJ−1

∣∣∣∣∣∣
−1/2

g


s
t

′ 1 ρ′

ρ IJ−1

−1 s
t


 dtds (34)

= Kg

Gj`

∫ β/σj−ρ
′Σ−1/2
j

(π∗
j`
−π∗−j,`−µj)√

1−
∑

p2
m

−∞

∫ Σ−1/2
j

(π∗j`−π
∗
−j,`−µj)

−∞
g

s
t

′ s
t

 dtds, (35)

where σ2
j is the shape parameters associated with hij and Gj` is the choice probability for institution

j and instrument value `. Note that each function Hj`(β, ρ) is invariant to the location and shape

parameters of ηi, and that Hj(·) = [Hj1(·), . . . ,HjL(·)]′ is a proper mapping. Moreover, the Jacobian

JHj(β, ρ) =


∂Hj1(β,ρ)

∂β
∂Hj1(β,ρ)

∂ρ1
. . .

∂Hj1(β,ρ)
∂ρJ−1

...
...

. . .
...

∂H
jL

(β,ρ)
∂β

∂H
jL

(β,ρ)
∂ρ1

. . .
∂H

jL
(β,ρ)

∂ρJ−1

 (36)

has elements

∂Hj`

∂β
(β, ρ) = Kg

σGj`

∫ Σ−1/2
j

(π∗j`−π
∗
−j,`−µj)

−∞

∣∣∣∣∣∣1 ρ′

ρ IJ−1

∣∣∣∣∣∣
−1/2

g


 β
σj

t

′ 1 ρ′

ρ IJ−1

−1  β
σj

t


 dt (37)

and

∂Hj`

∂ρk
(β, ρ) =−

(
ρk
σρ′Σ−1/2

j

1−
∑
ρ2
m

+ σΣ−1/2
jk

)
(π∗j` − π∗−j,` − µj)

∂Hj`

∂β
(β, ρ), (38)

where Σ−1/2
jk is the kth row of Σ−1/2

j . Thus, given sufficient variation in the choice probabilities

JHj(·) is everywhere invertible, and again by Hadamard’s theorem there exists a global inverse

H−1(·) : (0, 1)L → R×CJ−1. By construction this function yields a unique β∗j /σj satisfying the set
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of the first J population mean selected outcomes for institution j, given the set of the first J choice

probabilities for all k and g(·). Thus qj = Kg

∫ β∗j /σj
−∞ g(s2)ds is identified given consistent estimates

of these moments. �

Testing Hospital RAMs

For the general quality model given by equations (1)-(2), consider the null hypothesis

H0 (RAM Validity): Yij = 1[aj + γ′Wi ≥ νi], where νi |
(

(Zi`, (Uij(z`))j=1,...,J)`=1,...,L ,Wi

)
∼ Fν

for some known distribution Fν . In the health context, H0 rules out hospital comparative advantage

and says that the patient sorting mechanism is independent of potential survival, conditional on the

controls in Wi. In particular, H0 implies νi ⊥⊥ Di,Wi, the usual basis for consistent estimation of

equation (21), and is equivalent when ignoring knife-edge cases of perfectly-offsetting dependencies

between health, utility, and ambulance company assignment.

By the Law of Iterated Expectations, we have under H0 that for any `, j, and w,

E[Yi|Zi` = 1, Dij = 1,Wi = w] = Pr(αj + γ′w ≥ νi|Zi` = 1, Uij(z`) ≥ Uik(z`),∀k,Wi = w)

= Fν(αj + γ′w)

= E[Yi|Dij = 1,Wi = w], (39)

That us, under selection-on-observables a patient’s expected 30-day survival does not depend on

the identity of her ambulance company, conditional on her admission and observables. Defining the

propensity score p`(Di,Wi) = E[Zi`|Di,Wi] and iterating expectations, we thus have under H0

E

[
Yi

(
Zi` − p`(Di,Wi)

p`(Di,Wi)(1− p`(Di,Wi)

)]
= E

[
E

[
YiZi`

p`(Di,Wi)
− Yi(1− Zi`)

1− p`(Di,Wi)
|Di,Wi

]]
= E[E[Yi|Zi` = 1, Di,Wi]− E[Yi|Zi` = 0, Di,Wi]

= 0 (40)

Given a consistent estimate of p`(Di,Wi) and under appropriate regularity conditions, we may thus

use the sample analogue of the left-hand side of (39) to test H0, across each instrument value `.

An alternative test leverages knowledge of the error distribution Fν , noting that under H0,

E[Yi|Zi] = E[E[Yi|Zi, Di,Wi]|Zi]

= E[Fν(α′Di + γ′Wi)|Zi], (41)

so that E[Yi|Zi] − E[Fν(α′Di + γ′Wi)|Zi] = 0. Given first-step coefficient estimates of the RAM

parameters α and γ, this equality can be verified by a Lagrange Multiplier test statistic that checks
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orthogonality of the RAM’s residuals Yi−Fν(α′Di+γ′Wi) with the instrument. As when validating

linear VAMs (Angrist et al., 2016), a first-order equivalent Wald test statistic uses the fact that

equation (41) implies vector-equality of the coefficients µY and µF in the regressions:

Yi = µ′Y Zi + eY (42)

Fν(α′Di + γ′Wi)) = µ′FZi + eF . (43)

A final approach notes that equations (42) and (43) are the reduced form and first stage equations of

a two-stage least squares (2SLS) procedure that uses Zi to instrument for RAM-predicted survival

Fν(α′Di + γ′Wi) in a regression of realized survival Yi. Since µY = µF under H0, this procedure

should produce a 2SLS coefficient of one when the RAM is valid. As in the education setting, testing

the L restrictions of the Lagrange Multiplier and Wald statistic can be viewed as combining a single

degree-of-freedom test for “forecast bias,” or that the 2SLS coefficient equals one (Kane and Staiger,

2008), with the 2SLS model’s L− 1 overidentifying restrictions.

Panel A of Appendix Table A2 reports chi-squared statistics and associated p-values for the

propensity score-based tests, using 100 randomly-selected ambulance companies admitting at least

100 patients in the main analysis sample to simplify computation. For each observational RAM spec-

ification, I approximate the propensity scores p`(Di,Wi) with a probit and jointly test significance

of the 100 sample analogues of the left-hand side of equation (40), correcting inference for first-step

estimation error. Adding patient demographics and comorbidity controls to Wi in the RAM2 and

RAM3 model reduces the resulting chi-squared test statistic somewhat from 295 in column 1 to 238

in column 3. Nevertheless, with 100 degrees of freedom, all three RAM specifications reject the null

hypothesis of RAM validity (p < 0.001). This is similar to the rejection in column 4, which tests

AMI, heart failure, and pneumonia RAMs replicating as closely as possibly the official 2013 CMS

methodology (see the data appendix for details of this replication).

Panel B of Table A2 reports chi-squared statistics and associated p-values for tests of forecast bias,

overidentification, and the full set of parametric restrictions given by equation (41), for the same set

of 100 randomly-chosen ambulance companies. Adding demographic and comorbidity controls to the

RAM brings the forecast coefficient from 1.30 to 1.09, and the latter is not statistically distinguishable

from one. Nevertheless, p-values for tests of the 2SLS model’s overidentifying restrictions (with 99

degrees of freedom) are all less than 0.001. As with the non-parametric test in panel A, joint

test statistics for all forecast restrictions (again with 100 degrees of freedom) are all around 200

and produce correspondingly small p-values. Although the forecast coefficient is not statistically

distinguishable from one in the CMS-RAM subsample of AMI, pneumonia, and heart attack patients,

the model’s overidentifying restrictions continue to drive rejections of RAM validity.
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Figure A1: The distribution of first-stage F -statistics and quality estimate standard errors

Notes: The solid blue line in this figure plots a Gaussian kernel density estimate of the distribution of log first-
stage F -statistics for the 2,082 minimum distance hospital quality estimates. Here F -statistics test the equality
of estimated choice probabilities across all ambulance company instruments for each hospital. The bandwidth
used to estimate this distribution is 1. The dashed red line plots average log quality estimate standard errors for
each estimate, smoothed by a quartic polynomial.
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Figure A2: The distributions of hospital quality posteriors and 30-day survival rates

Notes: This figure plots Gaussian kernel density estimates of the distribution of empirical Bayes posteriors of
hospital quality and hospital survival rates. The sample includes all 4,817 hospitals; the bandwidth used to
estimate each distribution is 0.02.
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All HSAs
HSAs with min. 

distance estimates

(1) (2) (3)

30-day survival 0.875 0.833 0.834
Age 80.22 81.76 81.76
Male 0.410 0.379 0.379
White 0.873 0.875 0.881
Black 0.082 0.082 0.079
Circulatory condition 0.233 0.220 0.223
Respiratory condition 0.208 0.200 0.195
Digestive condition 0.101 0.065 0.066
Injury condition 0.118 0.177 0.178

RAM prediction --- 0.000 0.071
For-profit 0.200 0.155 0.179
Government 0.231 0.232 0.212
Teaching 0.216 0.223 0.215
Log(spending) 9.441 9.273 9.266
Log(volume) 4.350 3.349 3.493

Patients 998,489 405,172 346,011
Hospitals 5,162 4,817 2,839
HSAs 3,257 3,155 1,500

Table A1: Patient and hospital characteristics

Notes: This table reports average patient and hospital characteristics across three samples of
Medicare inpatient claims. Column 1 reflects a 20% random sample of patients admitted to a
hospital in 2010-2012 for one of the 29 nondeferrable conditions listed in the notes to Table 1.
Column 2 summarizes the analysis sample, described in more detail in the data appendix.
Finally, column 3 reports characteristics of HSAs in the analysis sample with enough quasi-
experimental data to construct minimum distance quality estimates.

Analysis sample
All nondeferrable 

Medicare admissions

A. Patients

B. Hospitals
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RAM1 RAM2 RAM3 CMS-RAM
(1) (2) (3) (4)

Test statistic (100 d.f.) 295.37 287.78 237.52 186.42
[<0.001] [<0.001] [<0.001] [<0.001]

Forecast coefficient 1.301 1.187 1.086 1.294
(0.123) (0.106) (0.095) (0.262)

Test statistics (d.f.):
   Forecast bias (1) 6.04 3.12 0.82 1.26

[0.014] [0.077] [0.365] [0.262]
   Over-identification (99)

189.98 184.71 183.67 149.94
[<0.001] [<0.001] [<0.001] [<0.001]

   All restrictions (100) 201.56 192.80 189.43 171.02
[<0.001] [<0.001] [<0.001] [<0.001]

Risk-adjusters:
  Year/condition FEs Y Y Y Y
   Patient age/sex Y Y Y
   Comorbidities Y Y

Patients: 82,815

Notes: This table summarizes ambulance-based tests for bias in hospital risk-adjustment models.
All RAMs are hierarchical logit models of 30-day survival, estimated separately for each
condition category in Table 1. Columns 1-3 estimate RAMs in the full analysis sample, while the
model in column 4 uses a nationally-representative sample of AMI, heart failure, and pneumonia
Medicare patients admitted in 2010-2012. The RAM1 model controls for year and diagnosis fixed
effects, while the RAM2 specification includes patient age and sex and RAM3 adds all
comorbidity indicators listed in Table 2. The specification in column 4 replicates the 2013 CMS
30-day risk-standardized mortality models for AMI, heart failure, and pneumonia. Tests use 100
randomly-selected ambulance companies referring at least 100 patients in the sample. Panel A
reports test statistics for the joint significance of each company in the propensity score weighting
scheme outlined in the appendix. Panel B reports forecast coefficients from 2SLS regressions of
realized survival on RAM-predicted survival, instrumented by ambulance company indicators.
The forecast bias test statistic is for the null hypothesis that the forecast coefficient equals 1. The
full test combines forecast bias and overidentifying restrictions and is implemented by regressing
RAM residuals on ambulance indicators and testing their joint significance. Propensity scores for
panel A are estimated by company-specific probit models. Test statistics are robust to
heteroskedasticity and account for first-step propensity score estimation error. Robust standard
errors are reported in parentheses; test p -values are reported in brackets.

Table A2: Hospital RAM bias tests

B. Forecast tests

A. Propensity score test

405,172
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2010-12 2007-09 2004-06 Circulatory Respiratory Digestive Injury
(1) (2) (3) (4) (5) (6) (7)

2007-09 0.444 Respiratory 0.232
2004-06 0.297 0.440 Digestive 0.271 0.254
2001-03 0.240 0.327 0.463 Injury 0.252 0.147 0.252

All other 0.153 0.319 0.130 0.134

2007-09 0.351 Respiratory 0.261
2004-06 0.298 0.344 Digestive 0.184 0.237
2001-03 0.221 0.247 0.296 Injury 0.208 0.163 0.152

All other 0.211 0.319 0.185 0.160

2007-09 0.669 Respiratory 0.642
2004-06 0.598 0.669 Digestive 0.365 0.477
2001-03 0.536 0.603 0.622 Injury 0.546 0.511 0.399

All other 0.641 0.763 0.306 0.476

C. Hospital quality indices

Notes: This table reports estimated correlation coefficients for a hospital's 30-day survival rate, RAM prediction,
and quality index, accounting for first-step estimation error. Columns 1-3 correlates data from the benchmark
2010-2012 analysis sample with corresponding data from 2007-2009, 2004-2006, and 2001-2003, while columns
4-7 report correlations across five patient diagnosis categories over the entire 2001-2012 period.

Table A3: Correlation structure of 30-day survival, RAM predictions, and quality indices
Across conditions

A. Observed survival rates

B. RAM predictions

Over time
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(1) (2) (3) (4) (5) (6) (7)

Log(staff salary) 0.375 0.264 0.232
(0.068) (0.071) (0.071)

Uses electronic records 0.150 0.079 0.064
(0.062) (0.063) (0.064)

Uses case management 0.109 -0.036 -0.073
(0.043) (0.047) (0.047)

# of accreditations 0.061 0.022 0.002
(0.015) (0.018) (0.021)

# of imaging technologies 0.041 0.025 0.009
(0.007) (0.009) (0.011)

Log(volume) 0.056
(0.022)

Table A4: Regressions of hospital quality posteriors on measured hospital inputs

Notes: This table reports coefficients from regressions of hospital quality posteriors on measures of
hospital input quality. The regressors are measured in the first year in which data are available in 2010-
2012; the sample includes 3,198 hospitals with input data from the American Hospital Association.
Average staff salary is computed by dividing total facility payroll by full-time equivalent total personnel.
Accreditations include those by The Joint Commission, recognition for one or more Accreditation
Council for Graduate Medical Education accredited programs, medical school affiliation with the
American Medical Association, affiliation with the National League for Nursing, accreditation by the
Commission on Accreditation of Rehabilitation Facilities, membership in the Council of Teaching
Hospitals of the Association of American Medical Colleges, Blue Cross contracting or participating,
Medicare certification by the U.S. Department of Health and Human Services, accreditation by the
Healthcare Facilities Accreditation program of the American Osteopathic Association, approval of an
internship by the American Osteopathic Association, approval of a residency by the American
Osteopathic Association, and DNV Healthcare accreditation. Imaging technologies include CT scanners,
diagnostic radioisotope facilities, EBCT systems, full-field digital mammography, MRI machines, IMRI
machines, magnetoencephalography machines, multislice spiral computed tomography scanners, PET
scanners, PET/CT scanners, SPECT scanners, and ultrasounds. Standard errors, clustered by HSA, are
reported in parentheses.
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(1) (2) (3) (4) (5) (6)

Avg. selection bias (pp) 3.60 3.43 3.20 3.46 3.48 3.13
(0.12) (0.14) (0.16) (0.16) (0.16) (0.20)

Selection adjustment:
   Distance X X
   Condition X X
   Demographics X X
   Comorbidities X X

Table A5: Average HSA-level selection bias, adjusting for selection-on-observables

Notes: This table reports the constant, expressed in percentage points of 30-day survival, from
regressions of HSA-level bias posteriors on cubic polynomials of HSA-level observable
selection terms. The sample is 695 multi-hospital HSAs. A hospital's distiance selection term
is the difference between its average ZIP code centroid distance to its admitted patients and its
average distance to all potential patients in the HSA. Selection terms for each of the other
covariate groups are calculated as the difference between a hospital's average Mahalanobis
distance to its admitted patients and its average Mahalnobis distance to all potential patients,
for observables in the group. Condition observables include a full set of indicators for the 29
diagnoses listed in the notes to Table 1. Demographic observables include patient age, sex,
race, and indicators for whether a patient was referred from home or an accident. Comorbidity
observables include a full set of indicators for the 17 conditions listed in Table 2. Robust
standard errors are reported in parentheses.
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(1) (2) (3) (4)

1.000 0.989 0.960 0.665

0.127 0.131 0.130 0.157
(0.011) (0.011) (0.015) (0.027)

-0.810 -0.818 -0.825 -0.429

Government -0.154 -0.157 -0.146 -0.059
(0.075) (0.075) (0.076) (0.049)

Log(spending) 0.027 0.021 0.032 0.011
(0.013) (0.013) (0.013) (0.006)

Log(volume) 0.032 0.031 0.050 0.012
(0.016) (0.016) (0.016) (0.008)

0.883 0.882 0.843 0.963

Average 3.60 3.68 3.34 4.15
(0.12) (0.12) (0.13) (0.21)

Distance-adjusted avg. 3.01 2.90 2.96 3.23
(0.45) (0.49) (0.47) (0.18)

Teaching -0.111 -0.124 -0.159 -0.210
(0.040) (0.043) (0.044) (0.052)

Log(spending) 0.407 0.415 0.382 0.361
(0.070) (0.074) (0.074) (0.078)

Max. RAM3 prediction -0.20 -0.19 -0.21 -0.90
Max. quality posterior 1.01 0.94 1.58 1.21

Propensity 
scores omit 

RAM controls

Health/utility 
follows t (2) 
distribution

HLM includes    
 (RAM3)×J
interaction

Notes: Column 1 of this table summarizes key results from the preferred analytic specification, while columns 2-4 report
corresponding results from three alternative specifications. Specifically, column 2 excludes patient age, sex, and RAM
comorbidities from the estimated ambulance company propensity scores, column 3 assumes patient health and utility indices 
are distributed by a multivariate Student's t distribution with two degrees of freedom instead of a multivariate normal, and
column 4 adds the total number of hospitals in a hospital's HSA and the interaction of this number with a hospital's RAM3
prediction to the hierarchical linear model. The first row reports rank correlations of quality posteriors from each alternative
specification with that of the preferred specification. The next sets of rows reports maximum likelihood estimates of the
coefficient on RAM3 in the HLM as in Table 3, within-HSA rank correlations of posterior quality and bias reflected in
Figure 5, within-HSA regression estimates of quality posteriors on hospital characteristics as in Table 4, the share of HSAs
with positive average selection bias as in Figure 6, the average amount of HSA-level selection bias as in Table 5, the
correlates of differences in VBP reimbursement rates as in Table 6, and simulated gains from rank-based admissions
policies as in Figure 8. Standard errors, clustered by HSA, are reported in parentheses.

Table A6: Robustness of the main results to alternative specifications
Robustness checks

RAM3 coefficient in HLM

Within-HSA quality-bias rank correlation

Expected survival gain 
from redirection (pp)

Correlates of VBP 
repayment rate change

Within-HSA quality 
posterior correlates

HSA-level selection 
bias (pp)

Quality index posterior rank correlation

Share of positively-selected HSAs

Preferred 
specification
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