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Subtracting the Propensity Score in Linear Models

Often in quasi-experimental designs, a binary treatment or instrument is assumed to be as-good-
as-randomly assigned conditional on a set of observed controls. Since Rosenbaum and Rubin (1981)
researchers have leveraged this assumption by matching or weighting observations via the propensity
score, which gives the conditional probability of treatment assignment. This note motivates an
alternative use of the propensity score, as an additive correction term in ordinary least squares (OLS)
or instrumental variables (IV) regressions. In particular I show how subtracting the propensity score
off the treatment or instrument identifies a convex average of heterogeneous treatment effects, with
identified weights. This extends an earlier OLS result of Angrist (1998), in which one controls for a
set of mutually-exclusive group indicators and implicitly subtracts a linear propensity score estimate
off the treatment variable. Here the result is shown with no restrictions on the propensity score,
which may even be zero or one for some values of the controls.

Formally, consider the linear IV regression of

Yi = α+ βDi + εi (1)
Di = γ + π(Zi − P (Xi)) + ηi, (2)

for an outcome Yi, treatment Di, binary instrument Zi, vector of controls Xi, and propensity score
P (x) = Pr(Zi = 1 | Xi = x). For simplicity suppose Di is binary, though the result extends to
non-binary treatment by the results of Angrist, Imbens, and Rubin (1996) and Angrist, Graddy, and
Imbens (2000). Write Yi = Y0i(1−Di)+Y1iDi andDi = D0i(1−Zi)+D1iZi, where (Y0i, Y1i, D0i, D1i)
is a vector of potential outcomes and treatments.1 Furthermore assume:
A1 (Conditional independence): (Y0i, Y1i, D0i, D1i) ⊥⊥ Zi | Xi

A2 (Monotonicity): Pr(D1i ≥ D0i) = 1
Here A1 makes the instrument as-good-as-randomly assigned given the controls, while A2 imposes
a monotone effect of the instrument on treatment. Note that this setup accommodates the case of
conditional random assignment of a binary treatment, with Di = Zi and A2 satisfied trivially. In
this case π = 1 and β is equivalent to the coefficient from regressing Yi on Di − P (Xi).2

In the case of constant Xi (and thus constant P (Xi)), Imbens and Angrist (1994) show that
A1 and A2 ensure β captures the local average treatment effect (LATE), E[Y1i − Y0i | D1i > D0i].
Here I show that in general the regression identifies a weighted average of conditional LATEs,
β(x) = E[Y1i − Y0i | D1i > D0i, Xi = x], with identified weights. In the case of conditionally
random treatment, this shows the OLS regression of Yi on Di − P (Xi) recovers a weighted average
of conditional average treatment effects, E[Y1i − Y0i | Xi = x].

The proof starts from observing that β = ρ/π, where ρ comes from the reduced form regression

Yi = µ+ ρ(Zi − P (Xi)) + νi. (3)

Note that

ρ = Cov(Yi, Zi − P (Xi))
V ar(Zi − P (Xi))

= E[Cov(Yi, Zi | Xi)]
E[V ar(Zi | Xi)]

= E

[
σ2

Z(Xi)
E[σ2

Z(Xi)]
(E[Yi | Zi = 1, Xi]− E[Yi | Zi = 0, Xi])

]
, (4)

1As usual writing (Y0i, Y1i) without instrument subscripts imposes an exclusion restriction, that Zi only affects
outcomes through its effect on Di. I also implicitly assume the vectors (Y0i, Y1i, D0i, D1i, Zi, Xi) are independently
and identically distributed, satisfying a stable unit treatment value assumption. Finally, I assume a nonzero first
stage, π 6= 0, so that the regression is well-defined. Note that we do not require a bounded propensity score, unlike
with typical approaches. That is, P (Xi) may equal zero or one with positive probability.

2A straightforward extension shows that when a non-binary Di is as-good-as-randomly assigned given Xi, the
regression of Yi on Di −M(Xi) identifies a weighted average causal effect, where M(x) = E[Di | Xi = x] generalizes
the propensity score. Contrast this with the generalized propensity score of Hirano and Imbens (2004), which gives
the full conditional distribution of Di given Xi.
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where σ2
Z(Xi) = V ar(Zi | Xi) denotes the conditional instrument variance. Here the second equality

follows by the law of total covariance, and the third by the fact that Cov(Yi, Zi | Xi)/V ar(Zi | Xi) =
E[Yi | Zi = 1, Xi]− E[Yi | Zi = 0, Xi]. A similar derivation holds for π; thus

β = ρ/π

=
E

[
σ2

Z(Xi) (E[Yi | Zi = 1, Xi]− E[Yi | Zi = 0, Xi])
]

E [σ2
Z(Xi) (E[Di | Zi = 1, Xi]− E[Di | Zi = 0, Xi])]

= E

[
σ2

Z(Xi)π(Xi)
E [σ2

Z(Xi)π(Xi)]
E[Yi | Zi = 1, Xi]− E[Yi | Zi = 0, Xi]
E[Di | Zi = 1, Xi]− E[Di | Zi = 0, Xi]

]
= E

[
σ2

Z(Xi)π(Xi)
E [σ2

Z(Xi)π(Xi)]
β(Xi)

]
, (5)

where π(Xi) = E[Di | Zi = 1, Xi] − E[Di | Zi = 0, Xi] and the last line follows by A1 and A2 via
the Imbens and Angrist (1994) result.

Equation (5) shows that the IV coefficient in (1) captures a weighted average of conditional
local average treatment effects, with weights that are proportional to the conditional variance of the
instrument and the conditional first stage π(Xi). Under A1 and A2, π(Xi) captures the conditional
share of instrument compliers, Pr(D1i > D0i | Xi) ≥ 0, so the weighting scheme is convex. Note
that in the Di = Zi case, π(Xi) = 1 and the OLS coefficient β captures a variance-weighted average
of conditional average treatment effects, as in Angrist (1998). Alternatively when propensity scores
are constant σ2

Z(Xi) = E[σ2
Z(Xi)]; then the β(Xi) are weighted only by the conditional complier

shares, yielding the unconditional LATE.3
Rather than matching on or weighting by the propensity score, researchers may therefore wish

to subtract it off the treatment or instrument in OLS or IV regressions. In some cases the score may
be known, such as in a randomized control trial or when quasi-experimental variation is generated
from a random mechanism that can be simulated with arbitrary precision (Abdulkadiroğlu et al.,
2017; Aronow and Samii, 2017). While it is outside the scope of this note to study large-sample
properties of regressions that subtract the estimated propensity score, they may prove favorable
relative to some properties of matching or weighting estimators (King and Nielsen, 2016; Kahn and
Tamer, 2010).

A clear drawback to the propensity score adjustment approach is it does not, in general, produce
a population average causal effect but rather a convex average of conditional causal effects. An
exception is when the conditional LATEs and conditional complier shares are mean-independent
of Xi (or, more simply, when conditional LATEs are constant); in this case it can be shown from
equation (6) that β = E[Y1i − Y0i | D1i > D0i]. Consequently in the OLS case where Di = Zi,
mean-independence of treatment effects with respect to the controls ensures β = E[Y1i − Y0i].

3It is straightforward to verify that the auxiliary regression of Zi on P (Xi) produces a coefficient of one and
intercept of zero, and therefore a residual of Zi − P (Xi). By the Frisch-Waugh-Lovell theorem, (5) is thus also
identified by the regression of Yi on Di that instruments with Zi and controls for P (Xi).
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