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Interpreting Instrumented Difference-in-Differences

In an instrumented difference-in-differences design (what we refer to as a DDIV), a re-
searcher scales a difference-in-differences (DD) effect on an outcome by a DD effect on a
mediating treatment variable. A canonical example is Duflo (2001), who measures the im-
pact of Indonesian school construction on both adult labor market outcomes and educational
attainment. Despite DDIV’s widespread use, and in contrast to the vast literatures on both
DD and instrumental variable (IV) techniques, however, DDIV identification has received
little formal attention.1 In this note, we show that DDIV estimates a convex combination
of average causal effects, as in Angrist and Imbens (1995), given a set of exclusion, parallel
trends, and monotonicity assumptions familiar from both DD and IV designs. By clarifying
these assumptions, we hope to provide researchers with more precise justification for DDIV
estimation and to highlight some potential pitfalls of causal DDIV inference.

Suppose we observe a time-varying outcome Yit, a discretely- and positively-valued treat-
ment Sit, and a binary instrument Zit for a set of individuals i in each time period t ∈ {0, 1}.2
Individuals are not exposed to the instrument until period 1, so Zi0 = 0 for all i, and we can
write Zi = Zi1. We also let Tt = 1{t = 1} denote a period indicator. The DDIV coefficient
β comes from the following IV system,

Yit = αi + τTt + βSit + εit (1)
and Sit = γi + δTt + πZiTt + ηit. (2)

As with all just-identified IV, β here can be expressed as the ratio of reduced form and first
stage coefficients. The first stage parameter, π, comes from equation (2) above, and the
reduced form regression is

Yit = µi + θTt + ρZiTt + νit. (3)

The reduced form and first stage coefficients can, in turn, be obtained by first-differenced
regressions of Yi1 − Yi0 and Si1 − Si0 on Zi. The DDIV estimand can therefore be written:

β = E[Yi1 − Yi0 | Zi = 1]− E[Yi1 − Yi0 | Zi = 0]
E[Si1 − Si0 | Zi = 1]− E[Si1 − Si0 | Zi = 0] . (4)

Let Y s
it denote the potential outcome of individual i in time t if she were exposed to

treatment level s. Likewise, let Sz
it denote an individual’s potential treatment level if she

were exposed to instrument value z in time t. This notation embodies two implicit exclusion
restrictions. First, by omitting instrument superscripts from Y s

it, we assume that the only
way the instrument affects outcomes is through the treatment – a standard restriction in IV
estimation. Second, by writing the Sz

it only in terms of the contemporaneous value of Zi,
we restrict attention to DDIV experiments in which the period-1 instrument doesn’t affect
period-0 outcomes or treatment. This restriction may rule out experiments in which the
instrument is simply the interaction of time and a fixed group trait, rather than an actual

1A recent exception is de Chaisemartin and D’Haultfoeuille (forthcoming), which we discuss below.
2As with DD, it is straightforward to extend the panel data case to settings with repeated cross sections

and multiple periods (see, e.g., Abadie (2005)). It is also straightforward to extend the discrete treat-
ment case to settings with continuous treatments, as with IV (Angrist, Graddy, and Imbens, 2000). The
assumption that Sit is positive is without loss for any lower- or upper-bounded treatment.
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period-specific shock as in Duflo (2001). In the former setting, manipulating Zi would
require changing group membership, which would likely affect outcomes in both periods.3

In addition to the two exclusion restrictions, we make the following two assumptions:

A1 (Parallel trends): Sz
i1−S0

i0 and Y Sz
i1

i1 −Y
S0

i0
i0 are mean-independent of Zi, for each z = 0, 1

A2 (Monotonicity): P (S1
i1 ≥ S0

i1) = 1

Parallel trends is a familiar condition from the DD literature. It requires that the potential
growth paths of both treatment and outcomes are independent from actual instrument
assignment. The second assumption further constrains the effect of the instrument on
period-1 treatment to be monotone, as in the literature on IV identification of local average
treatment effects (Imbens and Angrist, 1994).

Under A1, the DDIV first stage coefficient identifies

E[Si1 − Si0 | Zi = 1]− E[Si1 − Si0 | Zi = 0]
= E[S1

i1 − S0
i0 | Zi = 1]− E[S0

i1 − S0
i0 | Zi = 0]

= E[S1
i1 − S0

i1] (5)

noting again that Zi0 = 0 for all i. Similarly, the reduced form identifies

E[Yi1 − Yi0 | Zi = 1]− E[Yi1 − Yi0 | Zi = 0]

= E[Y S1
i1

i1 − Y S0
i0

i0 | Zi = 1]− E[Y S0
i1

i1 − Y S0
i0

i0 | Zi = 0]

= E[Y S1
i1

i1 − Y S0
i1

i1 ], (6)

so that

β = E[Y S1
i1

i1 − Y S0
i1

i1 ]
E[S1

i1 − S0
i1] , (7)

assuming the denominator is nonzero (a further first stage condition). By A2 and Theorem
1 in Angrist and Imbens (1995), DDIV thus identifies

β =
∑
s>0

ωsE[Y s
i1 − Y s−1

i1 | S1
i1 ≥ s > S0

i1] (8)

where

ωs = P (S1
i1 ≥ s > S0

i1)∑
r>0 P (S1

i1 ≥ r > S0
i1) (9)

are a set of weights with 0 ≤ ωs ≤ 1 and
∑

s>0 ωs = 1. Thus, under the assumptions,
the DDIV estimator captures a proper weighted average of period-1 causal responses to a
unit change in treatment, for those whose treatment status is affected by the instrument.
Angrist and Imbens (1995) refer to this object as an average causal response.

The parallel trends assumption, assumed to hold for both the outcome and the treatment,
is critical for this result. Parallel trends will clearly be satisfied under the usual independence
assumption for IV, but it also holds under certain violations. For example, researchers may

3Abdulkadiroğlu et al. (2016) consider causal inference in DDIV-like experiments when the first exclusion
restriction is violated, while the approach in de Chaisemartin and D’Haultfoeuille (forthcoming) may be more
appropriate for “time and group” designs in which the second exclusion restriction fails.
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employ DDIV techniques if they believe potential outcomes and treatments have an additive
structure where the instrument is correlated with time-invariant individual characteristics
but independent from time-varying shocks, e.g.

Y s
it = αi + τt + βs

it (10)

with βs
i1 − βr

i0 ⊥⊥ Zi for all s and r but αi not necessarily independent from the instrument.
In practice, researchers employing DD methods often provide evidence to support parallel
trends, through pre-trend or other placebo tests. A1 may be similarly supported in DDIV
applications by applying these tests to both the outcome and endogenous variable.

Although not shown here, it is straightforward to verify that the basic DDIV logic carries
through when the parallel trends assumption is weakened to hold conditionally on covari-
ates. As in Angrist (1998), DDIV regressions that control for a saturated model of individual
controls Xi and time effects identify a variance-weighted average of conditional-on-Xi av-
erage causal response functions. Two-step weighting procedures, in the spirit of Abadie
(2003, 2005) may moreover be developed to non-parametrically recover the unconditional
average causal response function under a conditional version of A1. We leave the formal
characterization of these estimators to future work.

References

Abadie, A. “Semiparametric Instrumental Variables Estimation of Treatment Response
Functions,” Journal of Econometrics, 113 (2003), 231-263.

Abadie, A. “Semiparametric Difference-in-Difference Estimators,” Review of Economic Stud-
ies, 72 (2005), 1-19.

Abdulkadiroğlu, A., J. D. Angrist, P. D. Hull, and P. A. Pathak. “Charters Without
Lotteries: Testing Takeovers in New Orleans and Boston,” American Economic Review, 106
(2016), 1878-1920.

Angrist, J. D. “Estimating the Labor Market Impact of Voluntary Military Service Using
Social Security Data on Military Applicants,” Econometrica, 66 (1998), 249-288.

Angrist, J. D., K. Graddy., and G. W. Imbens. “The Interpretation of Instrumental Vari-
ables Estimators in Simultaneous Equations Models with an Application to the Demand for
Fish,” Review of Economic Studies, 67 (2000), 499-527.

Angrist, J. and G. W. Imbens. “Two-stage Least Squares Estimation of Average Causal
Effects in Models with Variable Treatment Intensity,” Journal of the American Statistical
Association, 90 (1995), 431-442.

de Chaisemartin, C. and X. D’Haultfoeuille. “Fuzzy Differences-in-Differences,” Review of
Economic Studies, forthcoming.

Duflo, E. “Schooling and Labor Market Consequences of School Construction in Indonesia:
Evidence from an Unusual Policy Experiment,” American Economic Review, 91 (2001),
795-813.

Imbens, G. W. and J. D. Angrist. “Identification and Estimation of Local Average Treatment
Effects,” Econometrica, 62 (1994), 467-475.

3


