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Abstract

We build a structural model to explain corporate debt maturity dynamics over

the business cycle and their implications for the term structure of credit spreads.

Longer-term debt helps lower firms’ default risks while shorter-term debt reduces

investors’ exposures to liquidity shocks. The joint variations in default risks and

liquidity frictions over the business cycle cause debt maturity to lengthen in economic

expansions and shorten in recessions. The model predicts that firms with higher

systematic risk exposures will choose longer debt maturity, and that this cross-sectional

relation between systematic risk and debt maturity will be stronger when risk premium

is high. It also shows that the pro-cyclical maturity dynamics induced by liquidity

frictions can significantly amplify the impact of aggregate shocks on credit risk, with

different effects across the term structure, and that maturity management is especially

important in helping high-beta and high-leverage firms reduce the impact of a crisis

event that shuts down long-term refinancing. Finally, we provide empirical evidence for

the model predictions on both debt maturity and credit spreads.
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1 Introduction

The aggregate corporate debt maturity has a clear cyclical pattern: the average debt maturity

is longer in economic expansions than in recessions. Using data from the Flow of Funds

Accounts, we plot in Figure 1 the trend and cyclical components of the share of long-term

debt for nonfinancial firms from 1952 to 2010. The cyclical component falls in every recession

in the sample, with an average drop of 4% from peak to trough.1 For individual firms, the

maturity variation over time can be even stronger. For example, during the financial crisis of

2007-08, 26% of the non-financial public firms in the U.S. saw their long-term debt share

falling by 20% or more.

What explains the cyclical variations in corporate debt maturity? How do the maturity

dynamics affect the term structure of credit risk? And how effective is maturity management

in reducing firms’ credit risk exposures in a financial crisis? To address these questions, we

build a dynamic capital structure model that endogenizes firms’ maturity choices over the

business cycle, and examine the impact of the interactions between maturity dynamics and

macroeconomic conditions on credit risk.

In our model, firms face business cycle fluctuations in growth, economic uncertainty,

and risk premia. They choose how much debt to issue based on the tradeoff between the

tax benefits of debt and the costs of financial distress. Default occurs when equity holders

are no longer willing to service the debt. The need to roll over existing risky debt (by

redeeming them at par) leads to the classic debt overhang problem (Myers (1977)), which

makes default more likely. A longer debt maturity helps reduce this problem, thus lowering

the costs of financial distress. At the same time, investors are subject to idiosyncratic but

non-diversifiable liquidity shocks, which endogenously cause longer-term bonds to have larger

liquidity discounts and hence to be more costly to issue. The tradeoff between default risk

and liquidity determines the optimal maturity choice.

Systematic risk affects maturity choice through two channels. For firms with high

1We do not study the long-term trend in debt maturity in this paper. Greenwood, Hanson, and Stein
(2010) argue that this trend is consistent with firms acting as macro liquidity providers. Custodio, Ferreira,
and Laureano (2012) show that the secular decline in the maturity of public firms was generated by firms
with higher information asymmetry and by new public firms in the 1980s and 1990s.
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Figure 1: Long-term debt share for nonfinancial corporate business. The top panel
plots the trend component (via the Hodrick-Prescott filter) of aggregate long-term debt share.
The bottom panel plots the cyclical component. The shaded areas denote NBER-dated recessions.
Source: Flow of Funds Accounts (Table L.102).

systematic risk, default is more likely to occur in aggregate bad times. Since the risk premium

associated with the deadweight losses of default raises the expected bankruptcy costs, these

firms choose longer debt maturity during normal times to reduce their default risk. As the

economy moves into a recession, risk premium rises, and so do the frequency and severity

of liquidity shocks. On the one hand, firms with low systematic risk exposures respond to

the higher liquidity discounts of long-term bonds by replacing those matured bonds with

short-term bonds, which lowers their average debt maturity. On the other hand, firms with

high systematic risk become even more concerned about the default risk associated with

short maturity. In response, they continue rolling over the matured long-term bonds into

new long-term bonds despite the higher liquidity costs, and their maturity structures will be

more stable over the business cycle as a result.

Following Duffie, Garleanu, and Pedersen (2005, 2007) and He and Milbradt (2012), we

model the illiquidity of corporate bonds via search frictions. When an investor experiences a
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liquidity shock, she incurs a cost for holding any asset that cannot be liquidated immediately,

where the holding costs represent the costs of alternative sources of financing to meet the

liquidity needs (instead of using the proceeds from selling the asset). For a corporate bond,

this liquidity problem lasts until either the constrained investor finds someone to trade with

or until the maturity of the bond, at which point the principal is returned to the investor.

For this reason, long-term bonds will have a larger liquidity discount than short-term bonds.

Our calibrated model generates reasonable predictions for leverage, default probabilities,

credit spreads, and equity pricing. The model also allows us to analyze a series of questions

regarding the impact of debt maturity dynamics on the term structure of credit spreads.

First, like leverage, debt maturity has first order effects on both the level and shape of

the term structure of credit spreads. Everything else equal, a shorter maturity raises credit

spreads at all horizons and can potentially make the credit curve change from upward-sloping

to downward-sloping. For a low-leverage firm (with market leverage of 30%), cutting the

average maturity from 8 to 5 years raises the credit spreads by as much as 18 bps in good

times and 24 bps in bad times; for a high-leverage firm (with market leverage of 55%),

the same change in maturity raises spreads by up to 74 bps in good times and 135 bps in

bad times. The maturity effect is stronger at the medium-to-long horizon (8-12 years) for

low-leverage firms but at short horizons (2-5 years) for high leverage firms. Moreover, the

size of the maturity effect increases nonlinearly as maturity shortens.

Second, pro-cyclical maturity dynamics make a firm’s credit spreads higher and more

volatile over the business cycle. Thus, ignoring the maturity dynamics can lead one to

underestimate the credit risk. The amplification effect of maturity dynamics is nonlinear

in the size of maturity changes over the cycle. For firms with low leverage, the maturity

dynamics mainly affect credit spreads at the medium horizon and almost have no impact

on the short end of the credit curve. In contrast, for firms with high leverage, the effect of

pro-cyclical maturity on credit risk is not only much stronger, but is highly concentrated at

the short end of the credit curve, which reflects the fact that rollover-induced default risk is

imminent but temporary.

Third, our model quantifies the effectiveness of maturity management in helping a firm
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reduce the impact of rollover risk during a financial crisis. The inability to secure long-term

refinancing in a crisis means that a firm that enters into the crisis with a large amount of

debt coming due can only roll these debt over using short-term debt. The resulting maturity

reduction makes the firm more exposed to the crisis than a firm that manages to maintain a

long average maturity before the crisis arrives. Thus, firms anticipating a crisis should try to

lengthen their debt maturity, especially those with high leverage and high systematic risk

exposures. For example, we find that a high leverage firm that enters into a crisis with an

average maturity of 1 year experiences an increase in credit spreads of up to 660 bps. Had

the same firm chosen an average maturity of 8 years entering into the crisis, the increase in

spreads will only be up to 220 bps.

Fourth, our model shows that the endogenous link between systematic risk and debt

maturity should be a key consideration for empirical studies of rollover risk. Firms with

high systematic risk endogenously choose longer debt maturities and more stable maturity

structures. However, their credit spreads (as well as earnings and investment) will likely still

be more affected by aggregate shocks because of their fundamental risk exposures. Thus,

instead of identifying high-rollover risk firms by comparing the levels or changes in debt

maturity, one should also account for the heterogeneity in firms’ systematic risk exposures.

We test the model predictions using firm-level data. Consistent with the model, we find

that firms with high systematic risk choose longer debt maturity and maintain a more stable

maturity structure over the business cycle. After controlling for total asset volatility and

leverage, a one-standard deviation increase in asset market beta raises firm’s long-term debt

share (the percentage of total debt that matures in more than 3 years) by 6.6%. When

macroeconomic conditions worsen, for example, during recessions or times of high market

volatility, the average debt maturity falls while the sensitivity of debt maturity to systematic

risk exposure becomes higher. The long-term debt share is 3.9% lower in recessions than in

expansions for a firm with asset market beta at the 10th percentile, but almost unchanged for

a firm with asset beta at the 90th percentile. These findings are robust to different measures

of systematic risk and different proxies for debt maturity. Furthermore, using data from the

recent financial crisis, we find that the effects of rollover risk on credit spreads are significantly
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stronger for firms with high leverage or high cashflow beta, and they are stronger at shorter

horizons, which are again consistent with our model predictions.

The main contribution of our paper is two-fold. First, to our best knowledge, this paper

is the first to provide both a dynamic model and empirical evidence for the link between

systematic risk and firms’ maturity choices over the business cycle. It adds to the growing

body of research on how aggregate risk affects corporate financing decisions, which includes

Hackbarth, Miao, and Morellec (2006), Almeida and Philippon (2007), Acharya, Almeida, and

Campello (2012), Bhamra, Kuehn, and Strebulaev (2010a), Bhamra, Kuehn, and Strebulaev

(2010b), Chen (2010), Chen and Manso (2010), and Gomes and Schmid (2010), among others.

On the empirical side, Barclay and Smith (1995) find that firms with higher asset volatility

choose shorter debt maturity. They do not separately examine the effects of systematic

and idiosyncratic risk on debt maturity. Baker, Greenwood, and Wurgler (2003) argue that

firms choose debt maturity by looking at inflation, the short rate, and the term spread to

minimize the cost of capital. Two recent empirical studies have documented that firms’

debt maturity changes over the business cycle. Erel, Julio, Kim, and Weisbach (2012) show

that new debt issuances shift towards shorter maturity and more security during times

of poor macroeconomic conditions. Mian and Santos (2011) show that the maturity of

syndicated loans is pro-cyclical, especially for credit worthy firms. They also argue that firms

actively managed their loan maturity before the financial crisis through early refinancing of

outstanding loans. Our measures of systematic risk exposure are different from their measures

of credit quality.

Second, our paper contributes to the studies of the term structure of credit spreads.2

Structural models can endogenously link default risk to firms’ financing decisions, including

leverage and maturity structure. This is valuable for credit risk modeling because, while

intuitive, it is not obvious theoretically or empirically how to connect debt maturity choice

to credit risk at different horizons. For simplicity, earlier models mostly restrict the maturity

structure to be time-invariant. Our model allows the maturity structure to change over the

2Earlier contributions include structural models by Chen, Collin-Dufresne, and Goldstein (2009), Collin-
Dufresne and Goldstein (2001), Leland (1994), Leland and Toft (1996), and reduced-form models by Duffie
and Singleton (1999), Jarrow, Lando, and Turnbull (1997), Lando (1998), among others.
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business cycle and connects the maturity dynamics to the term structure of credit risk via

firms’ endogenous default decisions.

Our model builds on the dynamic capital structure models with optimal choices for

leverage, maturity, and default decisions. The disadvantage of short-term debt in our model

is that rolling over risky debt gives rise to the debt overhang problem, which increases the

risk of default. Importantly, the rollover risk of short-term debt crucially depends on the

downward rigidity in leverage, without which short-term debt can actually reduce credit

risk. The disadvantage of long-term debt is the illiquidity discount, which is endogenously

generated in the model via search frictions (following He and Milbradt (2012)).3 We focus on

the cost of illiquidity because it can be directly calibrated to the data on liquidity spreads for

corporate bonds. Bao, Pan, and Wang (2011), Chen, Lesmond, and Wei (2007), Edwards,

Harris, and Piwowar (2007), and Longstaff, Mithal, and Neis (2005) have all documented a

positive relation between maturity and various measures of corporate bond illiquidity.

2 Model

In this section, we present a dynamic capital structure model that allows for maturity

adjustments over the business cycle. We first introduce the macroeconomic environment and

then describe the firm’s problem.

2.1 The Economy

The aggregate state of the economy is described by a continuous-time Markov chain with

the state at time t denoted by st ∈ {G,B}. State G represents an expansion state, which is

characterized by high expected growth rates, low economic uncertainty, and low risk premium,

while the opposite is true in the recession state B. The physical transition intensities from

state G to B and from B to G are π̂G and π̂B, respectively. They imply that the probability

that the economy switches from state G to B (or from B to G) in a small time interval ∆ is

3Other possible costs for long-term debt include information asymmetry and adverse selection (Diamond
(1991), Flannery (1986)), debt overhang (Myers (1977)), or asset substitution (Leland and Toft (1996)).
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approximately π̂G∆ (or π̂B∆).

Firms generate cash flows that are subject to the large aggregate shocks that change the

state of the economy, small systematic shocks, as well as firm-specific diversifiable shocks.

Specifically, a firm’s cash flow yt follows the process

dyt
yt

= µ̂(st)dt+ σΛ(st)dZ
Λ
t + σf (st)dZ

f
t . (1)

The two independent standard Brownian motions ZΛ
t and Zf

t are the sources of systematic

and firm-specific cash-flow shocks, respectively. The expected growth rate of cash flows is

µ̂(st), while σΛ(st) and σf (st) denote the systematic and idiosyncratic conditional volatility

of cash flows. Although a change in the aggregate state st does not lead to any immediate

change in the level of cash flows, it changes the dynamics of yt by altering its conditional

growth rate and volatilities.

Investors in this economy are subject to idiosyncratic but uninsurable liquidity shocks.

An example of such liquidity shocks is a sudden and large redemption request for banks or

hedge funds. In the presence of financing frictions, a liquidity-constrained investor would

prefer to sell her assets to raise funds provided there is a liquid secondary market for the asset.

Otherwise, she will have to raise costly funding elsewhere or sell the asset at a discount. These

financing costs are a form of shadow costs for investing in illiquid assets. Duffie, Garleanu,

and Pedersen (2005, 2007) formalize this argument in a model of the over-the-counter markets

with search frictions. He and Milbradt (2012) extend the model to corporate bonds and

generate a liquidity spread that is increasing with bond maturity. We follow He and Milbradt

(2012) to endogenize the illiquidity of long-term bonds via search frictions.

Specifically, we assume that an unconstrained investor (denoted as type U) can become

constrained (type C) when she receives an idiosyncratic liquidity shock, which occurs with

intensity λU(s) in state s. Being liquidity-constrained means that the investor will incur a

holding cost every period for holding onto an asset (as in Duffie, Garleanu, and Pedersen

(2005)). If the asset has a liquid secondary market, the investor will sell it immediately

to avoid the holding costs. If it is illiquid, the constrained investor will need to find an

unconstrained investor to trade with. The search succeeds with intensity λC(s), at which
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point the investor ceases to incur the holding costs.4 Alternatively, if the asset has finite

maturity, the return of principal at maturity will also resolve the liquidity problem. Thus,

the constrained investor incurs holding costs until she finds someone to trade with or until

the asset maturity, whichever comes first. The dependence of λi(s) (i = U,C) on the

aggregate state s allows both the frequency of liquidity shocks and the search frictions in the

over-the-counter markets to differ in good and bad times.

The presence of non-diversifiable liquidity shocks makes markets incomplete, and the

equilibrium can only be solved analytically in some special cases (see e.g., Duffie, Garleanu,

and Pedersen (2007)). For tractability, we assume that illiquid assets are a very small part of

individual investors’ portfolios. In the limit, these investors’ marginal utilities are unaffected

by the liquidity shocks, which means they will not demand any risk premium for the exposure

to liquidity shocks. As for those investors who only hold liquid assets, we assume they

effectively face complete markets because the liquidity shocks have no impact on their wealth.

It then follows that there is a unique stochastic discount factor (SDF) Λt that is only

driven by aggregate shocks. We assume Λt follows the process:5

dΛt

Λt−
= −r (st−) dt− η (st−) dZΛ

t + δG (st−) (eκ − 1) dMG
t − δB (st−)

(
1− e−κ

)
dMB

t , (2)

with

δG (G) = δB (B) = 1, δG (B) = δB (G) = 0,

where r(st) is the state-dependent risk free rate, and η(st) is the market price of risk for the

aggregate Brownian shocks dZΛ
t . The compensated Poisson processes dM s

t ≡ dN s
t − π̂sdt

reflect the changes of the aggregate state (away from state s), while κ determines the size of

the jump in the discount factor when the aggregate state changes. To capture the notion

that state B is a time with high marginal utilities and high risk prices, we set η(B) > η(G)

and κ > 0 so that Λt jumps up going into a recession and down coming out of a recession.

4For simplicity, we abstract away from considering dealers in the over-the-counter market, and we assume
the seller has all the bargaining power when trading takes places. Reducing the bargaining power of the seller
has similar effects on the model as a higher holding cost.

5See Chen (2010) for a general equilibrium model based on the long-run risk model of Bansal and Yaron
(2004) that generates the stochastic discount factor of this form.
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The SDF Λt in (2) implies a unique risk-neutral probability measure for all the aggregate

shocks. Standard risk-neutral pricing techniques apply to the pricing of any liquid asset in

the economy. The valuation of an illiquid asset will depend on the type of its investor and

the liquidity shocks. Because there is no risk premium associated with the liquidity shocks,

their probability distribution remains the same under the risk-neutral measure. This feature

significantly simplifies the pricing of illiquid assets.

2.2 The Firm’s Problem

A firm chooses the optimal leverage and debt maturity jointly. The total face value of the

firm’s debt is P , with corresponding coupon rate b chosen such that the debt is priced at par

upon issuance at t = 0. The optimal leverage is primarily determined by the tradeoff between

the tax benefits (interest expenses are tax-deductible) and the costs of financial distress. The

effective tax rate on corporate income is τ . In bankruptcy, the absolute priority rule applies,

with debt-holders recovering a fraction α(s) of the firm’s unlevered assets and equity-holders

receiving nothing. For the maturity choice, firms trade off the default risk induced by the

need to roll over short-term debt against the illiquidity of long-term debt.

To fully specify a maturity structure, one needs to specify the amount of debt maturing at

different horizons as well as the rollover policy for matured debt. For tractability, the existing

literature mostly focuses on the time-invariant maturity structure introduced by Leland and

Toft (1996) and Leland (1998). For example, Leland (1998) assumes that debt has no stated

maturity but is continuously retired at face value at a constant rate m, and that all the

retired debt is immediately replaced by new debt with identical face value and seniority. This

implies that the average maturity of debt outstanding today is
∫∞

0
tme−mtdt = 1/m.

Such a maturity structure has several important implications. First, the maturity structure

is time-invariant, which is at odds with the empirical evidence (see e.g., Figure 1). Second,

it also rules out “lumpiness” in the maturity structure so that the same amount of debt is

retired at different horizons. Choi, Hackbarth, and Zechner (2012) find that lumpiness in

debt maturity is common in the data, possibly for the purpose of lowering floatation costs,

improving liquidity, or market timing. Third, the setting introduces downward rigidity in
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leverage because firms are always immediately rolling over all the retired debt.

We extend the maturity modeling in Leland (1998) by allowing a firm to roll over its

retired debt into new debt of different maturity when the state of the economy changes.

While this setting is still restrictive – firms should in principle be able to adjust their debt

maturity at any time, it allows us to capture the business-cycle dynamics of debt maturity,

which is the focus of this paper.6

To understand how debt maturity can change in the model, consider the following setting.

The maturity structure in state G (good times) is the same as in Leland (1998): debt is

retired at a constant rate mG and is replaced by new debt with the same principal and

seniority. When state B (recession) arrives, the firm can choose to replace the retired debt

with new debt of a different maturity (the same seniority). This new maturity is determined

by the rate mB at which the new debt is retired. Thus, the firm will have two types of debt

outstanding in state B. After t years in state B, the instantaneous rate of debt retirement is

RB(t) = mGe
−mGt +mB(1− e−mGt). Finally, when the economy moves from state B back to

state G, the firm swaps all the type-mB debt into type-mG debt.

The rate of debt retirement RB(t) is time dependent, which complicates this problem. To

keep the problem analytically tractable, we approximate the above dynamics by assuming

that all the debt will be retired at a constant rate mB in state B, where mB is the average

rate at which debt is retired in state B:

mB =

∫ ∞
0

π̂Be
−π̂Bt

(
1

t

∫ t

0

RB(u)du

)
dt . (3)

Thus, choosing mB will be similar to choosing mB, provided the value of mB implied by (3)

is nonnegative. Since debt will be retired at a constant rate in both states based on this

approximation, we define the firm’s average debt maturity conditional on being in state s as

Ms = 1/ms (s = G,B).

There is a liquid secondary market for the firm’s equity, but the corporate bonds are

traded in the over-the-counter market. As a result, equity prices are not affected by liquidity

6We examine the assumption of downward rigidity in leverage extensively in Section 2.3. Chen, Xu, and
Yang (2012) present an extension of this model that captures lumpiness in the maturity structure.
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shocks, while the corporate bond prices will reflect the risk of liquidity shocks and the holding

costs that liquidity-constrained investors incur. We assume the holding cost per unit of time

is proportional to the face value of the bond and takes the following functional form:

h(m, s) = h0(s)
(
eh1(s)/m − 1

)
. (4)

Two key properties of the holding cost are: it is higher in bad times (h(·, G) < h(·, B)), and

it is increasing with maturity (decreasing in m) (h0(s), h1(s) > 0).7 The first property is

quite intuitive. The second property is not necessary for the qualitative results in the model

(a constant holding cost can already make the liquidity spread increase with maturity), but it

helps with matching the model-implied term structure of liquidity spreads to the data.

The assumption that h(m, s) increases with bond maturity is consistent with the notion

that the holding cost rises with the amount of time the investor remains constrained. This is

implied by dynamic models of financing constraints (e.g., Bolton, Chen, and Wang (2011))

where the marginal value of liquidity rises as the amount of financial slack dwindles over time.

To see the intuition, consider the special case where the aggregate state does not change. The

actual holding cost for the constrained investor is f(τ), with τ being the time the investor

has spent in the constrained state, where f(0) = 0, f ′(τ) > 0. The average expected holding

cost per unit of time for a constrained investor holding a bond with maturity 1/m is:

h(m) =

∫ ∞
0

(λC +m)e−(λC+m)t

(
1

t

∫ t

0

f(u)du

)
dt .

It follows that h(m) will be decreasing in m (increasing in maturity) given that f ′ > 0, and

limm→∞ h(m) = 0, both of which are captured by (4).

Another implication of the specification for holding cost in (4) is that the holding cost as

a fraction of the market value of the bond is increasing as the firm approaches default. This

feature is consistent with Longstaff, Mithal, and Neis (2005), Bao, Pan, and Wang (2011),

and others that find that bonds with higher default risk are more illiquid.

7Strictly speaking, the holding costs should also be bounded above so that the bond price is never negative.
Otherwise the investor can simply abandon the bond. This will never be the case for the parameters and
range of maturity considered in our quantitative exercises.
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Finally, the firm’s problem is to choose the optimal amount of debt to issue at time 0

(with face value P ) and the optimal maturity structure for state G and B (mG and mB) to

maximize the equity-holder value at time t = 0.8 Ex post, the firm also chooses the optimal

default policy in the two states. The default policy is characterized by a pair of default

boundaries {yD(G), yD(B)}. In a given state, the firm defaults if its cash flow is below the

default boundary for that state. In summary, the firm’s policy for capital structure and

default is characterized by the 5-tuple (P,mG,mB, yD(G), yD(B)).

In the remainder of this section, we first solve for the value of debt and equity given the

firm policy for capital structure and default. Then we characterize the optimal firm policy.

2.2.1 Valuation of Debt and Equity

Due to the presence of uninsurable liquidity shocks, the pricing of illiquid assets such as

corporate bonds differs from that of liquid assets such as stocks. We first discuss the pricing

of liquid assets, and then present the analytical results for pricing debt and equity.

Risk-neutral pricing for liquid assets Under the risk-neutral probability measure im-

plied by the SDF in (2), the firm’s cash flow process has expected growth rate µ(st) =

µ̂(st)−σΛ(st)η(st) and total volatility σ(st) =
√
σ2

Λ(st) + σ2
f (st). In addition, the risk-neutral

transition intensities between the aggregate states are given by πG = eκπ̂G and πB = e−κπ̂B.

Because κ > 0, the risk-neutral transition intensity from state G to B is higher than the

physical intensity, while the risk-neutral intensity from state B to G is lower than the physical

intensity. Jointly, they imply that the bad state is both more likely to occur and tends to

last longer under the risk-neutral measure than under the physical measure.

The value of a liquid claim on an unlevered firm, V (y, s), which pays out a perpetual

stream of cash flows y specified in (1) (without adjusting for taxes), satisfies a system of

ordinary differential equations (ODE):

r(s)V (y, s) = y + µ(s)yVy(y, s) +
1

2
σ2(s)y2Vyy(y, s) + πs (V (y, sc)− V (y, s)) , (5)

8This is based on the assumption that the firm can commit to the maturity policy (mG,mB) chosen at
time t = 0. Letting equity holders choose the debt maturity ex post when the aggregate state changes will
generate similar results.
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where sc denotes the complement state to state s. Its solution is V (y, s) = v(s)y, where the

state-dependent price-dividend ratio v ≡ (v(G), v(B)) is given by

v =

 r(G)− µ(G) + πG −πG
−πB r(B)− µ(B) + πB

−1 1

1

 . (6)

This is a generalized Gordon growth formula, which takes into account the state-dependent

riskfree rates r(s) and risk-neutral expected growth rates µ(s), as well as possible future

transitions between the states. In the special case with no transition between the states

(πG = πB = 0), equation (6) reduces to the standard Gordon growth formula.

Debt pricing As in Leland (1998), it is convenient to directly compute the value of all the

debt outstanding at time t. Its value to a type-i investor, D(yt, st, i) with i ∈ {U,C}, will be

independent of t. The total debt value satisfies a system of ODEs:

r(s)D(y, s, i) = b− h(ms, s)P1{i=C} + µ(s)yDy(y, s, i) +
1

2
σ2(s)y2Dyy(y, s, i) (7)

+ms (P −D(y, s, i)) + πs (D(y, sc, i)−D(y, s, i)) + λi(s) (D(y, s, ic)−D(y, s, i)) ,

with boundary conditions at default:

D(yD(s), s, i) = α(s)v(s)yD(s) , (8)

where v(s) is the price-dividend ratio in (6), and α(s) is the asset recovery rate in state s.

Proposition 1 in Appendix A gives the analytical solution for D(y, s, i).

By collecting the terms related to liquidity shocks and holding costs, we can rewrite (7) as

(r(s) + `(y,ms, s, i)))D(y, s, i) = b+ µ(s)yDy(y, s, i) +
1

2
σ2(s)y2Dyy(y, s, i)

+ms (P −D(y, s, i)) + πs (D(y, sc, i)−D(y, s, i)) , (9)
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where

`(y,ms, s, i) ≡
h(ms, s)P1{i=C} + λi(s) (D(y, s, i)−D(y, s, ic))

D(y, s, i)
(10)

can be viewed as the instantaneous liquidity spread that type-i investor applies to pricing

the bond in state s. This liquidity spread is nonnegative for both types of investors (since

h(m, s) ≥ 0). It shows that the holding costs for constrained investors lower the market value

of debt ex ante, which is a form of financing costs for corporate debt.

A shorter maturity (higher m) effectively reduces the duration of liquidity shocks: a

constrained investor no longer incurs the holding costs once she receives the principal back

at the maturity date. As a result, a bond with shorter maturity will have a lower liquidity

discount, which is an important factor for firms’ maturity choices.

Equity pricing Since equity is traded in a liquid secondary market, its value E(y, s) will

be not be affected by liquidity shocks. The payout for equity holders includes the cash flow

net of interest expenses and taxes, as well as any costs associated with issuing new debt to

replace retired debt. Whenever the firm issues new debt, unconstrained investors are the

natural buyers with the highest valuation. Therefore, the value at which new debt is issued

is the value to a type-U investor, D(y, s, U). Thus, E(y, s) satisfies the following ODEs:

r(s)E(y, s) = (1− τ) (y − b)−ms (P −D(y, s, U))

+ µ(s)yEy(y, s) +
1

2
σ(s)2y2Eyy(y, s) + πs (E(y, sc)− E(y, s)) . (11)

Because equity holders recover nothing at default, the equity value upon default is:

E(yD(s), s) = 0. (12)

Proposition 1 in Appendix A gives the analytical solution for E(y, s).

The first term on the right-hand side of equation (11), (1− τ)(y − b), is the cash flow net

of interest expenses and taxes. The second term, ms (P −D(y, s, U)), is the instantaneous

rollover costs to equity holders. If old debt matures and is replaced by new debt issued under
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par value (D(y, s, U) < P ), equity holders will have to incur extra costs for rolling over the

debt. These rollover costs are a transfer from equity holders to debt holders, which can lead

equity holders to default earlier. This is a classic debt overhang problem as described by

Myers (1977). He and Xiong (2012) use this channel to show how debt market liquidity

problems affect credit risk.

In our model, the size of rollover costs depends on firm-specific conditions, macroeconomic

conditions, and debt maturity. Under poor macroeconomic conditions, low expected growth

rates of cash flows, high systematic volatility, and high liquidity spreads will all drive the

market value of debt lower, which raises the rollover costs. Moreover, a shorter debt maturity

means that debt is retiring at a higher rate (m is large), which will amplify the rollover costs

whenever debt is priced below par. Thus, if debt maturity is pro-cyclical as shown in Figure 1,

the combination of short maturity, high aggregate risk premium, low cash flows, and high

volatility can generate particularly high rollover costs and high default risk in bad times.

2.2.2 Optimal default and capital structure decisions

So far we have discussed the pricing of debt and equity for a given set of choices on debt

level, maturity, and default boundaries (P,mG,mB, yD(G), yD(B)). We now characterize the

optimal firm policies.

First, for a given choice of debt level and maturity, standard results imply that the ex-post

optimal default boundaries for equity holders satisfy the smooth-pasting conditions:

Ey(yD(s), s) = 0, s ∈ {G,B}. (13)

Next, at time t = 0, the firm chooses its capital structure (P,mG,mB) to maximize the

initial value of the firm, which is the sum of the value of equity after debt issuance and the

proceeds from debt issuance. Thus, the firm’s objective function is:

max
P,mG,mB

E(y0, s0;P,mG,mB) +D(y0, s0, U ;P,mG,mB) . (14)

Our solution strategy is as follows. For any given capital structure and default policy
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summarized by (P,mG,mB, yD(G), yD(B)), we obtain closed-form solutions for the value of

debt and equity. We then solve for the optimal default boundaries {yD(G), yD(B)} for given

(P,mG,mB) via a system of non-linear equations implied by (13). Finally, we solve for the

optimal capital structure via (14).

The analysis of debt and equity pricing in Section 2.2.1 provides the key intuition for

the maturity tradeoff. Shorter debt maturity leads to more frequent rollover and higher

default risk, whereas longer debt maturity leads to higher liquidity discounts. This tradeoff

is influenced by firms’ systematic risk exposures and macroeconomic conditions. All else

equal, firms with low exposures to systematic risk are less concerned about debt rollover

raising default risk, because default is less costly for them. They will choose shorter maturity

debt to reduce the financing costs. The opposite is true for firms with high systematic risk

exposures. Thus, the model predicts that in the cross section, debt maturity increases with a

firm’s systematic risk exposure.

The maturity tradeoff also varies over the business cycle. On the one hand, debt rollover

has a bigger impact on firm value in recessions due to higher default probabilities, higher costs

of bankruptcy, and higher risk premium. These factors tend to cause all firms to lengthen

their debt maturities in recessions. On the other hand, liquidity risk can rise in recessions as

well (due to more frequent liquidity shocks and higher holding costs), which causes firms to

shorten debt maturity. The net result on whether maturity will become longer or shorter

in recessions is ambiguous. Moreover, since firms with high systematic risk exposures are

affected more by higher systematic risk and risk premium, the cross-sectional relation between

debt maturity and systematic risk exposure will become stronger in bad times. In Section 3,

we analyze the quantitative predictions of the calibrated model.

2.3 Downward rigidity in leverage

Our model of debt maturity dynamics is an extension of Leland and Toft (1996) and Leland

(1998), where firms are assumed to always roll over all the retired debt immediately. The

direct implication is that the face value of debt outstanding is constant over time. More

importantly, this assumption introduces downward rigidity in leverage, a key feature that
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enables structural credit risk models to generate significant default risk.9

The intuition is as follows. In the absence of other frictions, a firm that can freely adjust

its debt level will reduce debt following negative shocks to cash flows. Then, as long as cash

flows do not drop too quickly, the firm will be able to lower its leverage sufficiently to avoid

default. By doing so, the firm can lower the costs of financial distress and still enjoy a large

tax shield in good times. As Dangl and Zechner (2007) show, issuing short-term debt enables

equity holders to commit to this type of downward debt adjustment. This is why it is difficult

to generate significant default risk in models with one-period debt, which is well documented

in models of corporate and sovereign default. Besides low default risk, models that allow

downward adjustment in leverage also predict that firms with higher costs of financial distress

will choose shorter debt maturity, which is opposite to what our model predicts.

The drastically different implications from the models with and without downward

rigidity in leverage highlight the importance in demonstrating the validity of this assumption.

Empirically, several studies have shown the difficulty for firms to adjust leverage downward.

Asquith, Gertner, and Scharfstein (1994) find that factors including debt overhang, asymmetric

information, and free-rider problems present strong impediments to out-of-court restructuring

to reduce leverage. Gilson (1997) also shows that leverage of financially distressed firms

remains high before Chapter 11. Welch (2004) finds that firms respond to poor performance

with more debt issuing activity and to good performance with more equity issuing activity.

There is also evidence of downward rigidity in leverage that is directly related to debt

maturity. Mian and Santos (2011) show that instead of rolling over long-term debt in bad

times, credit-worthy firms draw down their credit line commitment. Effectively, these firms

replace matured long-term debt with short-term debt instead of equity. We also show (see

the Internet Appendix) that the speed of leverage adjustment is slow for both firms with

long and short maturity. Moreover, the negative correlation between changes in cash flows

and changes in book leverage (as in Welch (2004)) is even stronger for firms with shorter

maturity, suggesting that firms with shorter maturity do not reduce leverage in bad times.

Theoretically, we can provide micro-foundation for the downward rigidity in leverage

9It is straightforward to allow firms to restructure their debt upward in this model.
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by introducing frictions that make it difficult for firms to reduce leverage following poor

performances. In Appendix B, we present a model that builds on Dangl and Zechner (2007)

by adding equity issuance costs.10 In the model, firms are not required to roll over the retired

debt immediately, yet the downward rigidity in leverage arises endogenously. The intuition

is as follows. If a firm does not roll over the retired debt, it has to pay back the existing

debt holders using either internal funds or external equity. Thus, the firm will need to raise

large amounts of equity precisely when the cash flows are low. A shorter debt maturity

means that the firm needs to issue equity more frequently and at a faster rate. As a result, a

convex equity issuance cost not only discourages firms from reducing leverage following poor

performances, but also discourages the issuance of short-term debt.

As the results in Appendix B show, without equity issuance costs, this model generates

very low credit spreads and a negative relation between systematic risk and debt maturity.

After adding a convex equity issuance cost, the model is able to generate more realistic credit

spreads and a positive relation between systematic risk and debt maturity.

Adding equity issuance costs is the first step towards explaining the downward rigidity in

leverage. It is also important to understand what makes equity issuance difficult following

poor performance. One possible reason is that uncertainty rises following poor performance,

which makes the information asymmetry more severe and raises the costs of issuing equity

(Myers and Majluf (1984)). We leave this question to future research.

3 Quantitative Analysis

In this section, we examine the quantitative implications of the model. We first describe the

calibration procedure. Then we examine the optimal maturity choice in the cross section and

over the business cycle. Finally, we examine the impact of maturity dynamics on the term

structure of credit spreads.

10We thank an anonymous referee for suggesting this model.

19



3.1 Calibration

We set the transition intensities for the aggregate states of the economy to π̂G = 0.1 and

π̂B = 0.5, which imply that an expansion is expected to last for 10 years, while a recession

is expected to last for 2 years. To calibrate the stochastic discount factor, we choose the

riskfree rate r(s), the market prices of risk for Brownian shocks η(s), and the market price of

risk for state transition κ to match the first two moments of their counterparts in the SDF in

Chen (2010).

Similarly, we calibrate the expected growth rate µ̂(s) and systematic volatility σΛ(s) for

the benchmark firm based on Chen (2010), which in turn are calibrated to the corporate

profit data from the National Income and Product Accounts. The annualized idiosyncratic

cash flow volatility of the benchmark firm is fixed at σf = 23%. The bankruptcy recovery

rates in the two states are α(G) = 0.72 and α(B) = 0.59. The cyclical variation in the

recovery rate has important effects on the ex ante bankruptcy costs. The effective tax rate is

set to τ = 0.2. To define model-implied market betas and use them as a measure of firms’

systematic risk exposures, we specify the dividend process for the market portfolio to be a

levered-up version of the cash-flow process (1) absent idiosyncratic shocks. We choose the

leverage factor so that the unlevered market beta for the benchmark firm is 0.8, the medium

asset beta for U.S. public firms.

In our model, transactions in the secondary bond market occur when a liquidity-constrained

investor meets with an unconstrained investor. Conditional on the aggregate state s, a fraction

λU (s)/(λU (s)+λC(s)) of the investors are constrained on average, so that λC(s)λU (s)/(λU (s)+

λC(s)) is the model-implied bond turnover rate. For calibration, we pick λU(s) so that the

idiosyncratic liquidity shock arrives 1.5 times per year during expansions and 3 times per

year in recessions, and choose the intermediation intensity λC(s) such that the bond turnover

rate is 10% (5%) per month during expansions (recessions) based on the findings from Bao,

Pan, and Wang (2011).11

11It is possible that a large part of the bond trading in good times is not due to liquidity shocks, in which
case our calibration procedure would overstate λC(G). However, since we calibrate the holding costs for
constrained investors to match the observed liquidity spreads for corporate bonds, the impact of less frequency
liquidity shocks will be largely offset by higher holding costs. See Appendix C for details.
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Finally, we calibrate the four holding cost parameters h0(s), h1(s) in equation (4) by

matching the term structure of model-implied bond liquidity spreads with the data. We follow

the procedure of Longstaff, Mithal, and Neis (2005) to estimate the non-default components

in corporate bond spreads at different maturities, which are shown to be largely related to

liquidity. We use bond price data from the Mergent Fixed Income Securities Database and

CDS data from Markit for the period from 2004 to 2010. To address the possible selection

bias that firms facing higher long-term non-default spreads might only issue short-term debt,

we restrict the sample to firms that issue both short-term (less than 3 years) and long-term

(longer than 7 years) straight corporate bonds. Details of the procedure are in Appendix C.

The short sample period (due to the availability of CDS data) makes it difficult to identify

different holding cost parameters for state G and B. There is only one NBER recession in our

sample (from December 2007 to June 2009), which is also the period of a major financial crisis.

The average liquidity spreads for bonds with maturities of 1, 5, and 10 years are 0, 4, and 12

bps during normal times and rise to 1, 65, and 145 bps respectively during the crisis. Since

state B in our model represents a typical recession rather than a financial crisis, we calibrate

the baseline holding cost parameters to match the full liquidity spreads in normal times and

one third of the liquidity spreads in the financial crisis. Since this choice of calibration target

for recessions is admittedly ad hoc, we have also conducted sensitivity analysis to show the

robustness of our results to the holding cost parameters (see the Internet Appendix).

A firm’s choice of leverage and maturity structure implies a particular term structure of

credit spreads. To compute the term structure of credit spreads, we take the firm’s optimal

default policy (default boundaries) as given and price fictitious bonds with a range of different

maturities. These bonds are assumed to default at the same time as the firm, and their

recovery rate is set to 44% in state G and 20% in state B, which is consistent with the

business-cycle variation in bond recovery rates in the data (see Chen (2010)).

Panel A of Table 1 summarizes the parameter values for our baseline model.
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3.2 Maturity Choice

The main results for the capital structure and default risk of the benchmark firm are

summarized in Panel B of Table 1. We assume that the firm makes its optimal capital

structure decision in state G with initial cash flow normalized to 1. The initial market

leverage is 28.5% in state G. Fixing the level of cash flow, the same amount of debt will imply

a market leverage of 31.6% in state B due to the fact that equity value drops more than

debt value in recessions. The initial interest coverage (y0/b) is 2.68. The optimal maturity

is 5.5 years for state G and 5.0 years for state B. Based on our interpretation of maturity

adjustment in equation (3), mB = 1/5 corresponds to mB = 0.31. That means the firm will

be replacing its 5.5-year debt that retires in state B with new 3.3-year debt.

The model-implied 10-year default probability is 4.2% in state G conditional on the initial

cash flow and leverage choice. Fixing the cash flow and leverage but changing the aggregate

state from G to B raises the 10-year default probability to 5.6%. The 10-year total credit

spread is 115.2 bps in state G and 166.2 bps in state B (again based on initial cash flow and

leverage). The default components of the 10-year spreads, which are computed by pricing

the bonds using the same default boundaries and removing the liquidity shocks and holding

costs, are 97.7 bps in state G and 135.2 bps in state B. These values are consistent with the

historical average default rate and credit spread for Baa-rated firms. Finally, the conditional

equity Sharpe ratio is 0.12 in state G and 0.22 in state B.

Next, we study how systematic risk affects firms’ maturity structures. As discussed at

the end of Section 2.2, the tradeoff for debt maturity is as follows. On the one hand, shorter

debt maturity generates higher default risk and hence higher expected costs of default. On

the other hand, long-term debt has higher liquidity spreads, which raises the cost of debt

financing. Since an analytical characterization of the optimal maturity choice is not feasible

in this model, we provide the intuition using a numerical example from the calibrated model.

Consider two firms with identical leverage but different levels of systematic volatility of

cash flows. In Panels A and B of Figure 2, we plot the annualized liquidity spreads associated

with different debt maturity in the two aggregate states. In Panels C and D, we plot the

annualized default rates over a 10-year horizon. Within each aggregate state, the liquidity
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Figure 2: Debt maturity tradeoff. Panels A and B plot the model implied liq-
uidity spreads in state G and B. For each state s, the liquidity spreads are defined as
λU (s) [D(y0, s, U)−D(y0, s, C)] /D(y0, s, U) and computed at the initial cash flow level. Panels C
and D plots the annual default rate in the next 10 years conditional on the initial aggregate state G
and B. The low beta firm is the benchmark firm with asset beta of 0.8. The high beta firm has an
asset beta of 1.08 by rescaling the systematic cash flow volatilities of the benchmark firm.

spread increases with debt maturity while the default rate decreases with maturity. Holding

the maturity fixed and increasing the systematic risk exposure has negligible effect on the

liquidity spreads (see Panels A and B), but it significantly raises the default risk, especially

for short-term debt and especially in state B (see Panels C and D). These results imply that

as a firm’s systematic risk exposure rises, concern about default risk will cause it to choose

longer debt maturity. Moreover, debt maturity will be more sensitive to systematic risk

exposure in state B because default risk rises faster with asset beta in that state. Finally,

because both the liquidity spread and default risk rise in state B, the net effect of a change

of aggregate state on debt maturity is ambiguous.

We now examine the quantitative predictions of the model. To generate firms with
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Figure 3: Optimal debt maturity. In Panel A, we hold fixed the idiosyncratic volatility
of cash flow while letting the systematic volatility vary and then plot the resulting choices of the
optimal average maturity in the two states under optimal leverage. In Panel B, we repeat the
exercise but hold leverage fixed at the level of the benchmark firm. The benchmark firm has an
average systematic volatility of 0.139 and asset beta of 0.8.

different cash flow betas, we rescale the systematic volatility of cash flows (σΛ(G), σΛ(B))

for the benchmark firm while keeping the idiosyncratic volatility of cash flows σf unchanged.

We first examine the case where leverage is chosen optimally for each firm, and then the case

where leverage is held constant across firms.

Figure 3 shows the results. Indeed, as Panel A shows, controlling for the idiosyncratic

cash-flow volatility, the optimal debt maturity increases for firms with higher systematic

volatility, and the relationship is stronger in state B than in state G. As the average systematic

volatility rises from 0.07 to 0.21, the optimal maturity in state G rises from 5.1 to 6.1 years,

whereas the maturity in state B rises from 4.1 to 6.0 years.

The graph also shows that the optimal debt maturity drops from state G to state B for

the same firm. This result does depend on the differences of liquidity frictions in the two

states. Because firms are more concerned with rollover risk in bad times, they will only reduce

debt maturity if the liquidity frictions become sufficiently more severe in state B. However,

the result of pro-cyclical maturity choice appears robust quantitatively. Even though we have

chosen a relatively conservative target for the liquidity spread in state B (one third of the
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liquidity spreads in the financial crisis), it is enough to make maturity drop in recessions.

The combined effect of (1) pro-cyclical maturity choice and (2) higher sensitivity of debt

maturity to systematic volatility in recessions is that the debt maturity for firms with high

systematic risk will be relatively stable over the business cycle, while the maturity for firms

with low systematic risk will be more volatile.

Next, instead of allowing firms with different systematic risk to choose leverage optimally,

we fix the leverage for all firms at the same level as the benchmark firm and re-examine

the maturity choice. The results, shown in Panel B of Figure 3, are qualitatively similar.

However, debt maturity in this case increases faster with systematic volatility in both state

G and B. For firms with sufficiently high systematic risk exposures, the debt maturity in

state B can become even higher than the maturity in state G, indicating that these firms roll

their maturing debt into longer maturity in recessions.

Why does the optimal debt maturity become more sensitive to systematic risk after

controlling for leverage? Because of higher expected costs of financial distress, firms with

high systematic risk exposures will optimally choose lower leverage. By fixing their leverage

at the level of the benchmark firm, firms with high systematic volatility end up with higher

leverage than the optimal amount. As a result, it becomes more important for these firms to

use long-term debt to reduce rollover risk, especially in bad times.

3.3 Maturity Dynamics and Credit Risk

So far we have analyzed how systematic risk and liquidity frictions affect the maturity

dynamics over the business cycle. Existing structural credit risk models mostly consider the

setting of time-invariant maturity structures (many of them only consider perpetual debt),

yet it is quite intuitive that these maturity dynamics can have significant impact on credit

risk at different horizons and over the business cycle. The way maturity dynamics affect

default risk hinges on the endogenous responses of the firms, which are difficult to capture

using reduced-form models. Our structural model provides a tractable framework to analyze

these effects. We focus the analysis on the following questions.
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Figure 4: Maturity choice and the term structure of credit spreads. This figure
plots the term structure of credit spreads as debt maturity choice varies. Debt maturity choice is
fixed across states so that MG = MB = M . In Panels A and B, the firm’s initial interest coverage is
fixed at 2.68. In Panels C and D, the firm’s initial interest coverage is fixed at 1.34.

(i) How sensitive is the term structure of credit spreads to the level of debt

maturity? We fix the maturity to be the same in the two aggregate states (MG = MB) so

that we can separate the effect of maturity dynamics from that of maturity level. We then

compute the term structure of credit spreads in state G and B for a range of maturity choices.

We are also interested in how maturity effect differs for firms with different leverage.12 Thus,

we first set the firm’s interest coverage (y/b) at the optimal leverage of the benchmark firm

(low leverage firm), and then repeat the exercise for a firm with half the interest coverage

(high leverage firm), which can result from the original low leverage firm experiencing a

sequence of negative cash flow shocks.

The results are shown in Figure 4. Panels A and B show the term structure of credit

12Our model can be used to study the credit risk of firms under a range of different capital structure choices,
not just the optimal capital structure implied by the tradeoff we consider. Firms in practice have significant
heterogeneity. Their capital structures can vary substantially due to transaction costs and other frictions.
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spreads for the low leverage firm in state G and B. The credit curve is mostly upward sloping.

Shortening the maturity increases the level of credit spreads at all horizons, but the effect

is rather small at the 1 to 2 year horizon13 and bigger at medium-to-long horizons (8 to 12

years). Moreover, the incremental effect of shorter maturity on credit spreads is nonlinear.

By cutting maturity from 8 to 5 years, credit spreads rise by up to 18 bps in state G and 24

bps in state B; from 5 to 2 years, the increases in spreads are up to 41 bps and 55 bps; from

2 to 1 years, the increase in spreads are up to 31 bps and 46 bps.

For the firm with higher leverage, its credit curve will still be largely upward-sloping

(except at the long horizons) if its average maturity is 8 years. The downward-sloping feature

becomes more prominent as the maturity shortens. Unlike the low-leverage firm where

shortening the maturity mostly affects credit spreads at the medium to long horizons, here

the effect is the largest at short horizons (2 to 5 years), especially when the macroeconomic

conditions are poor (in state B). Moreover, the size of the impact of debt maturity on credit

spreads is larger for the high-leverage firm. Cutting the maturity from 5 to 2 years raises the

credit spreads by up to 195 bps in state G and up to 400 bps in state B.

It is well known that structural models can generate an upward-sloping term structure of

credit spreads for low-leverage firms and downward-sloping term structure for high-leverage

firms. The new finding in our model is that maturity choice also has first order effect on the

shape of the credit curve. Moreover, the maturity effect is nonlinear and is magnified by poor

macroeconomic conditions and high leverage.

The previous analysis shows that credit spreads are counter-cyclical (i.e., higher in

recessions) with constant maturity across states G and B. As equation (11) shows, if debt is

already priced below par in recessions (D(y,B, U) < P ), the fact that maturity is shorter at

such times (mB is larger) will make the rollover costs higher for equity holders, which makes

default more likely and further increases the credit spreads in state B.

(ii) How much can the pro-cyclical variation in debt maturity amplify the fluctu-

ations in credit spreads over the business cycle? To answer this question, we conduct

13Part of the reason is that the diffusion assumption for cash flows mechanically implies very little default
risk at the shortest horizons (see Duffie and Lando (2001)). The fact that our model has additional shocks to
the aggregate state alleviates this problem to some extent, especially for firms with high leverage.
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Figure 5: The amplification effect of pro-cyclical maturity on credit spreads. This
figure plots the differences in the term structure of credit spreads between firm X with constant
debt maturity MG = MB = 5.5 years and firm Y with MG = 5.5 years but MB ≤MG. In Panels A
and B, the initial interest coverage is 2.68. In Panels C and D, the initial interest coverage is 1.34.

the following difference-in-difference analysis. Let CSi(τ, s) be the credit spread in state s at

horizon τ for firm i. Now consider two firms: firm X has constant maturity MG = MB = 5.5;

firm Y has the same maturity as X in state G, but shorter maturity in state B. As we

lower MB for firm Y , not only will its credit spreads rise in state B, they will also rise in

state G due to the anticipation effect. Thus, the pro-cyclical maturity variation amplifies

the fluctuations in credit spreads over the business cycle if the differences in credit spreads

between the two firms are larger in state B than in state G,

CSY (τ,G)− CSX(τ,G) < CSY (τ, B)− CSX(τ, B). (15)

Figure 5 shows the results of this analysis. In Panels A and B, we plot the differences

in credit spreads between the two firms X, Y in the two aggregate states (i.e., the left and
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right-hand side of inequality (15)), where MB for firm Y ranges from 5.5 years to 1 year. In

Panels C and D, we do the same calculations for the two firms with higher leverage.

For any MB < 5.5, firm Y has higher credit spreads than firm X at all horizons. Comparing

Panel A vs. B, we do see larger differences in credit spreads between the two firms in state B,

suggesting that pro-cyclical maturity dynamics indeed amplify the variation in credit spreads

over the business cycle. For example, with MB = 2, the credit spread of firm Y is as much as

39 bps higher than firm X in state G, and 52 bps higher in state B. With higher leverage,

the amplification effect can become much stronger (see Panels C and D). When firm Y ’s

maturity drops from 5.5 years to 5.0 years, the credit spread can rise by up to 12 bps in state

G and 25 bps in state B. If firm Y ’s average maturity in state B drops to 1 year, credit

spreads rise by up to 283 bps in state G, and by up to 782 bps in state B.

Given that the magnitude of the amplification effect is sensitive to the size of the drop

in maturity, it is important to understand the mechanisms that lead to large changes in

maturity from state G to B. Revisiting the mechanics for how debt maturity is adjusted in

Section 2.2, we see that the average maturity will become shorter in state B if the firm rolls

the retired debt into new debt with shorter maturity, and if the bad state is more persistent.

For example, consider the cases where the average debt maturity falls from 5.5 years to 3

years or 1 year in state B. Based on the interpretation of maturity adjustment in equation

(3) and our calibration of the transition intensities, mB = 1/3 corresponds to mB = 1.2,

meaning the retired bonds are rolled into new bonds with maturity of 10 months, while

mB = 1 corresponds to mB = 5.7 or approximately a maturity of 2 months. Alternatively,

lumpy maturity structures can also lead to big maturity adjustments over the business cycle

(see Choi, Hackbarth, and Zechner (2012) and Chen, Xu, and Yang (2012)).

Another interesting observation is that while the amplification effect of pro-cyclical

maturity dynamics is the largest at the medium horizon (5-7 years) for the low leverage firm,

it becomes the largest at the short end of the credit curve (1-3 years) for the high leverage

firm. The intuition is as follows. With low leverage, the firm faces low default risk. In this

case, especially in the near future, newly issued debt will be priced close to par value. Thus,

there is no debt overhang problem, and more frequent rollover will not raise the burden for
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equity holders. As a result, the increase in credit spreads due to shorter maturity is negligible

at the short end of the credit curve. In contrast, the impact of shorter maturity on default

risk immediately shows up in the case of high leverage, because the newly issued bonds are

priced under par already.

(iii) How much can maturity management help firms reduce the impact of a

crisis episode on credit risk? Almeida, Campello, Laranjeira, and Weisbenner (2011)

find that those firms with more long-term debt coming due in the 2008 financial crisis suffered

deeper cuts in investment during the crisis because of the difficulty in rolling over their debt.

Hu (2010) uses the same empirical strategy to identify firms facing higher rollover risk and

finds that these firms experienced larger increases in credit spreads.

Our model can capture such maturity dynamics in a “crisis” episode. Suppose a financial

crisis completely shuts down the demand for long-term debt and firms can only roll over

matured debt into one year debt (i.e., mB = 1). Then, a firm’s average debt maturity in

state B will be fully determined by the average maturity in state G and the average duration

of the crisis (see equation (3)). In particular, if a firm chooses a longer average maturity

(smaller mG) before entering the crisis, it will have a smaller fraction of total debt maturing

during the crisis, which implies a smaller reduction in the average maturity.

To quantify this effect, we conduct another difference-in-difference analysis. Again consider

two firms X and Y . Suppose firm X has a longer average maturity in state G than firm Y ,

MX
G > MY

G . The impact of the “crisis” on credit spreads can be measured as the change in

credit spreads from state G to state B, everything else equal. A longer maturity before the

crisis reduces the impact of the rollover risk on credit risk if

CSY (τ, B)− CSY (τ,G) > CSX(τ, B)− CSX(τ,G). (16)

We present the results of this analysis in Figure 6. Panels A and B consider the cases

of low leverage and high leverage, respectively. In each panel, we consider 4 firms with

different average maturity in state G, with MG = 1, 2, 5, 8 years and plot the changes in credit

spreads for each of them when the aggregate state changes from G to B. Indeed, maturity
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Figure 6: Maturity and rollover risk. This figure plots the changes in credit spreads when
the aggregate state switches from G to B for an initial debt maturity ranging between MG = 1 and
MG = 8 in state G. For each choice of MG, the effective average maturity in state B is calculated
using expression (3) with newly issued debt in state B maturing at rate mB = 1. The initial interest
coverage is 2.68 for the low leverage firms, 1.34 for the high leverage firms.

management in state G matters for firms’ credit risk exposure to the crisis. In the case of

a low leverage firm, having an average maturity of 8 years before the crisis helps cap the

impact of the crisis on credit spreads at 38 bps, while an otherwise identical firm with an

average maturity of 1 year will experience an increase in the credit spreads that is almost

twice as large (up to 67 bps).

In the case of the high leverage firm, maturity management becomes even more important.

With an average maturity of 8 years before the crisis, the firm’s credit spreads rise by as much

as 220 bps entering the crisis state. An otherwise identical firm with an average maturity of

1 year will experience three times as large an increase in its credit spreads (up to 660 bps).

Moreover, maturity management is particularly effective in reducing the credit risk at short

horizons for a high leverage firm. Besides for firms with high leverage, we also find a stronger

effect of maturity management for firms with high cash flow betas.

How can a firm avoid being caught with short average maturity entering into a crisis? The

answer is not only to issue longer-term debt, but also to maintain a long average maturity

over time. The latter requires the firm to evenly spread out the timing of maturity of its
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Figure 7: Credit spread changes under exogenous vs. endogenous maturity
choice. This figure plots the increase in credit spreads at various horizons when the aggre-
gate state switches from G to B for different firms. In Panel A, the two firms have the same
systematic risk exposures but are given different debt maturity choice exogenously. In Panel B, the
two firms endogenously choose different maturity structure due to differences in systematic risk.

debt rather than having a lumpy maturity structure.

(iv) How does the endogenous maturity choice affect the cross-sectional relation

between debt maturity and rollover risk? The results from the previous exercise are

consistent with the standard intuition that shorter maturity makes the impact of aggregate

shocks on credit spreads stronger. However, this is under the condition that the firms have

identical systematic risk exposures. In reality, the impact of aggregate shocks on credit risk

will also depend on firms’ systematic risk exposures, which as we have shown in Section 3.2,

endogenously influence the firms’ maturity choices in the first place.

We illustrate this point using a simple example in Figure 7. In Panel A, we take two

firms with identical asset beta (the same as the benchmark firm), but fix their debt maturity

exogenously at 6.8 years and 3.2 years, respectively. In Panel B, we identify two firms with

different systematic volatility (but the same average total volatility), which leads them to

choose different debt maturities endogenously. One firm has an average systematic volatility

of 18.9% (asset beta of 1.08) and sets its debt maturity in state B optimally at 6.8 years. The

other has an average systematic volatility of 8.9% (asset beta of 0.52) and sets its maturity

in state B at 3.2 years. The leverage for all the firms are fixed at the same level as the
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benchmark firm. The figure plots the change in credit spreads from state G to B, which

measures the response of the credit spreads to the aggregate shock. Panel A shows that, with

exogenous maturity, the credit spread rises more for the firm with shorter maturity, which is

consistent with the standard intuition of rollover risk. In Panel B, however, the firm with

longer maturity actually has a bigger increase in credit spreads than the one with shorter

maturity because of its larger exposure to systematic risk.

4 Empirical Evidence

In this section, we test the following predictions that the model generates about the relations

between firms’ systematic risk, debt maturity, and credit risk:

1. Firms with higher systematic risk exposures will choose longer debt maturity.

2. The sensitivity of debt maturity to systematic risk exposure becomes stronger after

controlling for leverage.

3. The sensitivity of debt maturity to systematic risk exposure rises in times of higher

risk premium.

4. A longer average maturity before entering into a crisis helps reduce the impact of the

crisis on credit spreads. This effect of maturity management is stronger for firms with

higher leverage or high systematic risk.

4.1 Data

We merge the data from COMPUSTAT annual industrial files and the CRSP files for the

period 1974 to 2010.14 We exclude financial firms (SIC codes 6000-6999), utilities (SIC codes

4900-4999), and quasi-public firms (SIC codes greater than 8999), whose capital structure

decisions can be subject to regulation. In addition, we require firms in our sample to have

total debt that represents at least 5% of their assets.15 All the variables are winsorized at

14COMPUSTAT first begins to report balance sheet information used to construct our proxies for debt
maturity in 1974.

15Lowering the threshold to 3% generates very similar results.
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the 1% and 99% level. Finally, we remove firm-year observations with extreme year-to-year

changes in the capital structure, defined as having changes in book leverage or long-term

debt share in the lowest or highest 1%, which are likely due to major corporate events such

as mergers, acquisitions, and spin-offs.

For each firm, COMPUSTAT provides information on the amount of debt in 6 maturity

categories: debt due in less than 1 year (dlc), in years two to five (dd2, dd3, dd4, and dd5),

and in more than 5 years. Following existing studies (see e.g., Barclay and Smith (1995),

Guedes and Opler (1996), and Stohs and Mauer (1996)), we construct the benchmark measure

of debt maturity using the long-term debt share, which is the percentage of total debt that

are due in more than 3 years (ldebt3y). For robustness, we also construct several alternative

measures of debt maturity, including the percentage of total debt due in more than n years

(ldebtny), with n = 1, 2, 4, 5, and a book-value weighted numerical estimate of debt maturity

(debtmat), based on the assumption that the average maturities of the 6 COMPUSTAT

maturity categories are 0.5 year, 1.5 years, 2.5 years, 3.5 years, 4.5 years, and 10 years.

Our primary measure of firms’ exposure to systematic risk is the asset market beta. Since

firm asset values are not directly observable, we follow Bharath and Shumway (2008) and

back out asset betas from equity betas based on the Merton (1974) model. Equity betas are

computed using past 36 months of equity returns and value-weighted market returns.16 In

this process, we also obtain the systematic and idiosyncratic asset volatilities (sys assetvol

and id assetvol). Following Acharya, Almeida, and Campello (2012), we also compute the

“asset bank beta,” which measures a firm’s exposure to a banking portfolio, and the “asset

tail beta,” which captures a firm’s exposure to large negative shocks to the market portfolio.

The various asset betas constructed above could be mechanically related to firms’ leverage,

which might affect firms’ maturity choices. We address this concern by using two additional

measures of systematic risk exposure. First, we compute firm-level cash flow betas using

rolling 20-year windows. The cash flow beta is defined as the covariance between firm-level

and aggregate cash flow changes (normalized by total assets from the previous year) divided

by the variance of aggregate cash flow changes. Second, Gomes, Kogan, and Yogo (2009)

16Computing equity betas with past 12 or 24 months of equity returns generates similar results.
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show that demand for durable goods is more cyclical than for nondurable goods and services.

Thus, durable-good producers are exposed to higher systematic risk than non-durables and

service producers. They classify industries into three groups according to the durability of a

firm’s output. We use their classification as another measure of systematic risk exposure.

Previous empirical studies find that debt maturity decisions are related to several firm char-

acteristics, including firm size (log market assets, or mkat), abnormal earnings (abnearn),17

book leverage (bklev), market-to-book ratio (mk2bk), asset maturity (assetmat), and profit

volatility (profitvol). We control for these firm characteristics in our main regressions.

Table 2 provides the summary statistics for the variables used in our paper. The detailed

descriptions of these variables are in the Internet Appendix. The median firm has 85% of

the debt due in more than 1 year, 58% due in more than 3 years, and 32% due in more

than 5 years. There is also considerable cross-sectional variation in debt maturity. The

standard deviation of the long-term debt share ldebt3y (the percentage of debt due in more

than 3 years) is 32%, and the interquartile range of ldebt3y is from 27% to 79%. Based on

our numerical measure of debt maturity, the median debt maturity is 4.7 years, with an

interquartile range from 2.5 years to 6.8 years. The median book leverage in our sample is

27%. The median asset market beta is 0.80, whereas the median equity beta is 1.07. The

median systematic and idiosyncratic asset volatilities are 12% and 30%, respectively. The

correlations among the different risk measures are reported in Panel B of Table 2.

4.2 Debt Maturity

4.2.1 Debt maturity in the cross section

To test the model’s prediction on a positive relation between debt maturity and systematic

risk exposures across firms, we run Fama-MacBeth regressions with the following general

specification:

ldebt3yi,t = α + β1riski,t + β2Xi,t−1 + εi,t, (17)

17Following Barclay and Smith (1995), we define “abnormal earnings” as the change in earnings from year
t to t+ 1 normalized by market equity at the end of year t.
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where ldebt3y is the long-term debt share; riski,t represents various measures of firms’

systematic risk exposures; Xi,t represents firm-specific controls, including total asset volatility

(assetvol), market assets (mkat), abnormal earnings (abnearn), book leverage (bklev), market-

to-book ratio (mk2bk), asset maturity (assetmat), and profit volatility (profitvol).

The results are presented in Table 3. We compute robust t-statistics using Newey-West

standard errors with 2 lags, except in the case of cash flow beta, where we use 20 lags. The

coefficient of the asset market beta in column (1) is positive but insignificant in the univariate

regression. After controlling for asset volatility, asset market beta becomes significantly

positively correlated with debt maturity (column (2)). The coefficient estimate of 0.084

implies that a one-standard deviation increase in asset beta, keeping total asset volatility

constant, is associated with a 5.4% increase in the long-term debt share. Consistent with our

model prediction, the effect of asset beta on debt maturity further strengthens to 0.104 after

controlling for book leverage (column (3)), implying that a one-standard deviation increase in

asset beta raises the long-term debt share by 6.6%. The coefficient estimate on asset volatility

is negative and statistically significant, which is consistent with Barclay and Smith (1995),

Guedes and Opler (1996), and Stohs and Mauer (1996).

In the cross section, holding asset beta fixed while changing total asset volatility is

equivalent to holding systematic volatility fixed while changing idiosyncratic volatility. Our

results show that the negative effect of asset volatility on debt maturity as documented by

the earlier studies is driven by the negative relation between idiosyncratic volatility and

maturity (see column (4)). This result is consistent with the theory of debt maturity based on

information asymmetries (see Diamond (1991), Flannery (1986)). Asymmetric information is

more naturally associated with firm-specific uncertainty than aggregate uncertainty (managers

are unlikely to know more about the market than outside investors), and firms with higher

idiosyncratic risk choose shorter debt maturity to signal their quality. It is also intuitive that

controlling for asset volatility is key to finding a significant effect for asset beta. Firms with

high asset beta will tend to have higher idiosyncratic volatility, which offsets the effect of

systematic volatility on debt maturity.

In column (5), we introduce other firm controls into the regression. The coefficient
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estimate of the asset market beta is 0.052, smaller than the previous specifications but still

highly significant. The smaller coefficient could be due to the fact that firm characteristics

such as size and book-to-market ratio are also related to systematic risk. The coefficient on

asset volatility becomes much smaller than before, which is because firm controls such as size

and profit volatility are highly correlated with idiosyncratic asset volatility.

Columns (6) - (8) report regression results when we replace asset market beta with asset

bank beta, asset tail beta, and cash flow beta, respectively. The coefficient estimates on these

alternative systematic risk measures are all positive and statistically significant. They imply

that a one-standard deviation increase in a firm’s corresponding beta measure lengthens its

long-term debt share by 2.4%, 2.7%, and 1.0%. Column (9) reports the results when we use

the industry classification for producers of durable goods, nondurable goods, and services

as proxy for systematic risk exposure. Since this classification is fixed over time, we run a

single cross-sectional regression in this case. The results show that the long-term debt share

of durable good producers, which have more cyclical cash flows, is 2.3% larger than that of

non-durable good producers, and 3.2% larger than that of service producers.

Table 4 reports the results for pooled regressions, where we add year dummies to absorb

time-specific effects, and industry dummies (3-digit SIC code) to control for industry fixed-

effects. We compute the standard errors by clustering the observations at the industry

level.18 The results for the pooled regressions are quantitatively similar to the Fama-MacBeth

regressions and are in support of the model prediction that debt maturity is increasing in

firms’ systematic risk exposures.

Besides systematic risk measures, the effects of various other firm characteristics on

maturity are consistent with earlier studies. Everything else equal, firms with low total asset

volatility, large size, high leverage, low market-to-book ratio, long asset maturity, and low

profit volatility are more likely to have longer debt maturity.

To further investigate how the cross-sectional relation between debt maturity and sys-

tematic risk changes over time, we plot in Figure 8 the time series of the coefficients on the

systematic and idiosyncratic volatilities from specification (4) in Table 3. The 95% confidence

18We obtain very similar results adjusting standard errors by clustering the observations in the same
industry and in the same year.
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Figure 8: Time series of Fama-MacBeth coefficients for systematic and idiosyn-
cratic volatility. This graph plots time series of coefficient estimates in a cross-sectional regression
of long-term debt shares on systematic and idiosyncratic asset volatility. The confidence intervals
are at 95% level. The shaded areas denote NBER-dated recessions.

intervals are computed using heteroscedasticity consistent standard errors. Panel B shows

that the coefficient on the idiosyncratic asset volatility is significantly negative throughout the

sample. Panel A shows that the coefficient for the systematic asset volatility is significantly

positive for the majority of the sample years. The coefficient tends to rise in recessions,

and it becomes insignificant in 1976-77, 1995, and 2005-06, all of which are in an economic

expansion. This result is consistent with our model’s prediction that the cross-sectional

relation between systematic risk and debt maturity is stronger in bad times, which we test

formally in the following section.

4.2.2 Impact of macroeconomic conditions

As a proxy for macroeconomic conditions, we obtain recession/expansion dates from the

National Bureau of Economic Research (NBER). Since firms have different fiscal year-ends,

we construct for each firm a yearly recession dummy which equals one if the fiscal year-end
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month for the firm is in a recession, and zero otherwise.19 Then, we examine the impact

of business cycles on debt maturity by adding a recession dummy and the interaction term

between the recession dummy and the systematic risk measure to equation (17).

To measure the changes in debt maturity over the business cycle, we need to remove the

time variation in maturity due to secular trends. As shown in Figure 1, the trend component

of aggregate debt maturity is U-shaped over the sample period. We use either a quadratic

time trend or the trend component from the Hodrick-Prescott filter to control for this effect,

where we assume that the loadings on the time trend are the same for all firms. The results

are presented in Table 5.

In column (1), the long-term debt share is regressed on the recession dummy, asset market

beta, and their interaction term after controlling for asset volatility, book leverage, and other

firm characteristics. The coefficient estimate of the recession dummy is -0.043, while the

coefficient of the interaction term between asset market beta and the recession dummy is

0.025. Taken together, these values imply that (a) the long-term debt share of an average

firm drops by about 2.1% from expansions to recessions (based on the average market beta

of 0.879); (b) for a firm with an asset market beta at the 10th percentile, its long-term debt

share is 3.9% lower from expansions to recessions, whereas the long-term debt share of a firm

with asset market beta at the 90th percentile is essentially unchanged from expansions to

recessions. In column (2), replacing the quadratic time trend with the trend component from

the Hodrick-Prescott filter generates almost identical results.

The regression results using asset bank betas and tail betas are in columns (3) - (4). The

coefficient estimates of the interaction term between the asset bank beta and the recession

dummy and the interaction term between the asset tail beta and the recession dummy

are both positive and statistically significant. The economic significance of the coefficient

estimates are comparable to those obtained for the asset market beta.

More broadly, our model predicts that the relation between systematic risk and debt

maturity is stronger in times of high aggregate risk premium. Besides recessions, another

commonly used proxy of the aggregate risk premium is the market volatility index. We use

19The results are quantitatively similar if we categorize a fiscal year as in recession when at least three
months of the fiscal year are in recession.
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VXO, the implied volatility of the S&P 100 options (a close cousin to the better-known VIX

index for S&P 500 options, but VXO has a longer sample), as an alternative measure of

macroeconomic conditions. Columns (5) - (7) of Table 5 show that debt maturity indeed

becomes more sensitive to systematic risk during times of high risk premium.

In the analysis presented so far, we allow the impact of business cycles on debt maturity

to depend only on firms’ exposure to systematic risk. However, changes in macroeconomic

conditions could also affect the relation between debt maturity and other firm characteristics.

We find that, in addition to low beta firms, firms with large size and low default probability

reduce their debt maturity more from expansions to recessions. 20 This is consistent with the

finding of Mian and Santos (2011) that credit worthy firms are more likely not to rollover

their long-term debt in bad times. These characteristics are different from our systematic

risk measures. We also find that firms with high book leverage reduce maturity more in

recessions. This is consistent with Diamond (1991) in that firms with very low credit quality

might only be able to issue short-term debt in bad times.

4.2.3 Robustness checks

We have conducted a series of robustness checks for the empirical tests presented above,

which we summarize below.

First, in our model, firms are not allowed to hold cash. In practice, firms with high

systematic risk exposures not only can choose longer debt maturity, but also maintain a larger

cash reserve to reduce the rollover risks. For example, Harford, Klasa, and Maxwell (2013)

show that firms increase their cash holdings and save more cash to mitigate the refinancing

risk caused by shorter debt maturity. Thus, we expect the impact of firms’ systematic risk

exposure on debt maturity (cash holdings) to become stronger after controlling for cash

holdings (debt maturity). To test this hypothesis, we estimate a system of simultaneous

equations in which both debt maturity and cash holdings are endogenously determined. In

the debt maturity equation, we follow Acharya, Davydenko, and Strebulaev (2012) and use

the 2SLS method with the following two instrumental variales for cash holdings, the ratio of

20The regression results are presented in the Internet Appendix.
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intangible to book assets and the median ratio of R&D expenditures to book assets in the

firm’s three-digit SIC industry.

Table 6 reports the estimation results for the structural equation on debt maturity.21

Panel A shows that controlling for cash holdings indeed strengthens the effect of firms betas

on debt maturity. This is especially true in the case of cash flow beta, where the coefficient

nearly doubles (from 0.004 in Table 4 to 0.007) after controlling for cash holdings. Panel B

shows that the result that the relation between systematic risk and debt maturity is stronger

in bad times continues to hold after controlling for cash holdings.

Next, we have computed our asset beta measures by unlevering the equity betas according

to the Merton model. This procedure ignores the heterogeneity in debt maturity across firms,

which could mechanically generate a relation between the unlevered asset beta and debt

maturity even if the true asset beta is unrelated to debt maturity. Our model shows in which

direction this bias goes. For the same asset beta, a longer debt maturity lowers the firm’s

equity beta. This is especially true for high leverage firms. That means if we do not take

into account the heterogeneity in debt maturity when unlevering the equity beta, we would

understate the asset beta for those firms with long maturity, which biases us against finding

a positive relationship between asset beta and debt maturity. Moreover, our results hold in

the sub-sample of firms with below-median leverage, where the effects of debt maturity on

the unlevering procedure is negligible.

Do high-beta firms end up with longer debt maturity by issuing longer-maturity debt

in the first place? The answer is yes. Using the FISD issuance data of public bonds, we

find that firms with high systematic risk are indeed more likely to issue long-term bonds in

normal times. The relation between bond issuance and systematic risk is not significant in

economic downturns, which could be due to firms switching from public bond issuance to

bank loans and lines of credit in recessions.

Other robustness checks we have performed include the following. We show that the

results on the positive relation between beta and debt maturity hold for alternative measures

of debt maturity, and they hold in the sample period excluding the recent financial crisis. We

21The estimation results of the cash holding equation are in the Internet Appendix.
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also show that the results are not affected by the callability of debt: high-beta firms do not

tend to issue more callable debt than low-beta firms, which could have lowered their effective

debt maturity. The details of these analyses are in the Internet Appendix.

4.3 Term Structure of Credit Spreads

In this section, we test our model’s predictions of the effect of debt maturity dynamics on the

term structure of credit spreads. Specifically, we treat the 2008 financial crisis/recession as a

significant change in macroeconomic conditions and examine the resulting changes in credit

spreads for firms with different maturity structures, leverage, and systematic risk exposures.

We obtain firm-level credit default swap (CDS) spreads with maturity 1 year, 5 years,

and 10 years from Markit, and match the data with the COMPUSTAT information. Changes

in the CDS spreads during the crisis are measured as the differences in the averages of daily

CDS spreads between fiscal year 2007 and 2008. We use the fiscal year 2007 balance sheet

information to compute the fraction of long-term debt that matures in 2008 (ldebt08 =

dd1/(dd1 + dltt)). The larger this measure, the more the debt maturity could be reduced

in the crisis, the higher the rollover risk. Following Almeida, Campello, Laranjeira, and

Weisbenner (2011), we treat August 2007 as the onset of the financial crisis, and focus on

firms that have the 2007 fiscal year-end month in between September 2007 and January 2008.

About 87% of the 375 firms with CDS data in fiscal year 2007 and 2008 meet this criterion.

We then examine the cross-sectional relation between the changes in the CDS spreads from

2007 to 2008 (based on 1 year, 5 year, and 10 year CDS spreads) and firms’ maturity structures

in 2007. The financial crisis could exacerbate default risk through other firm characteristics

besides maturity. Consequently, we also control for firm characteristics including market

leverage, asset volatility, firm size, market-to-book ratio, profitability, tangibility, equity

return (past 12 months), credit rating (from the Standard & Poor’s, converted to a numerical

scale), and industry dummies (1-digit SIC code) in the regression.

Our model predicts that a bigger drop in debt maturity leads to larger increases in

credit spreads in the crisis. Moreover, the maturity effect on credit spreads should be more

pronounced for firms with high leverage or high systematic risk. To test these predictions, we
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Figure 9: Impact of long-term debt structure on credit spreads. This graph shows
the impact of a one-standard deviation increase in the proportion of long-term debt that matures in
2008 on the changes in the CDS spreads between 2007 and 2008. Panels A and B display the result
for firms sorted on book leverage and cash-flow beta, respectively.

split the sample into two halves based on the pre-crisis book leverage, market leverage, and

cash flow beta, respectively. We then run cross-sectional regressions of changes in the CDS

spreads on the fraction of long-term debt that matures in 2008 (ldebt08) for firms in each

group separately. The regression results are presented in Table 7. We also use the regression

coefficients to compute the implied impact of a one-standard deviation increase in ldebt08 on

changes in the CDS spreads and present the results in Figure 9.

The results show that a firm that has a larger portion of its long-term debt maturing in

2008 would experience a more significant increase in CDS spreads. A one-standard deviation

increase in ldebt08 corresponds to a 50 bps, 40 bps and 32 bps increase in the CDS spreads

with maturity of 1 year, 5 years, and 10 years respectively in 2008. These results are consistent

with the empirical findings in Hu (2010).

We also find evidence that the maturity drop amplifies the impact of aggregate shocks

on the credit spreads more for firms with higher leverage and higher beta before the crisis.
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Panel A of Figure 9 shows that a one-standard deviation increase in ldebt08 raises the 1-year,

5-year, and 10-year CDS spreads by 84 bps, 77 bps, and 55 bps respectively for firms with

above-median book leverage, while the corresponding increase in the CDS spreads is 31 bps,

22 bps, and 21 bps respectively for firms with below-median book leverage. The results are

similar if we sort firms based on market leverage. Panel B shows that a one-standard deviation

increase in ldebt08 raises 1-year, 5-year, and 10-year the CDS spreads by 70 bps, 63 bps,

and 46 bps respectively for firms with above-median cash flow beta, while the corresponding

increase in the CDS spreads is negligible for firms with below-median cash flow beta.

One might be concerned that the long-term debt structure in 2007 is endogenous. Mian

and Santos (2011) show that firms with good credit quality did actively manage the maturity

of syndicated loans before the financial crisis through early refinancing of outstanding loans.

This would imply that those firms with high rollover risk according to ldebt08 could be the

firms with low quality (which are not captured by the controls), which would explain the

larger increase in their credit spreads during the crisis. To address this concern, we compute

̂ldebt08 based on balance sheet information from fiscal years 2004 (dd4/(dd1 + dltt)), 2005

(dd3/(dd1 + dltt)), and 2006 (dd2/(dd1 + dltt)). We then run cross-sectional regression of

changes in the CDS spreads from 2007 to 2008 on ̂ldebt08, industry dummies, and other firm

controls measured at the end of the fiscal years 2004-2006, respectively. We obtain almost

identical results based on the fiscal year 2006 information (see the Internet Appendix). The

results are slightly weaker for 2005 and no longer significant for 2004.

5 Concluding Remarks

Firms’ maturity choices are closely linked to their systematic risk exposures and macroeco-

nomic conditions. We build a model to explain the maturity dynamics over the business

cycle, as well as their implications for the term structure of credit risk. We also provide

empirical evidence for the model predictions.

While we have focused on debt maturity in this paper, there are many dimensions in

which firms can manage their exposures to macroeconomic risks, including other financing
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decisions such as cash holding, lines of credit, payout, and real decisions such investments

and mergers and acquisitions (see e.g., Acharya, Almeida, and Campello (2012), Hugonnier,

Malamud, and Morellec (2011), Bolton, Chen, and Wang (2012)). To understand the data,

ultimately we need to jointly study the firms’ decisions in all these dimensions. Moreover,

as a starting point, our modeling of the maturity structure dynamics is still quite stylized,

especially for the purpose of pricing credit-risky securities. It would be useful to extend the

model to capture more realistic maturity structures.
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Table 1: Baseline model parameters and results. Panel A contains the parameters used in
the baseline model and the results on capital structure and credit spreads. Parameters that do not vary
across the states include: κ = ln 2.5, σf = 0.23, τ = 0.2. All parameters are annualized if applicable. The
asset beta for the unlevered firm is 0.8 and is calculated based on a market dividend process with a with a
leverage ratio of φ = 1.25 relative to the cashflows of the baseline firm. The initial capital structure choices
are determined in state G. Panel B summarizes results from the baseline calibration.

A. Baseline parameters

state G state B

Aggregate state transition intensities: π̂s 0.1 0.5
Riskfree rate: r(s) 0.0558 0.0261
Market price of Brownian risk: η(s) 0.156 0.24
Cash flow expected growth rate: µ̂(s) 0.0617 0.0162
Cash flow systematic volatility: σΛ(s) 0.1361 0.1555
Recovery rate: α(s) 0.72 0.59
Liquidity shock intensity: λU (s) 1.5 3
Intermediation intensity: λC(s): 6 0.75
Holding cost parameter: h0(s) 0.9884× 10−4 0.1774
Holding cost parameter: h1(s) 0.4179 0.0043

B. Baseline model results

state G state B

Initial market leverage: D/V 28.5% 31.6%
Initial interest coverage: y0/b 2.68 2.68
Debt maturity: 1/ms 5.5 5.0
5 year default rate 0.6% 1.1%
10 year default rate 4.2% 5.6%
5 year credit spread (default component) 29.2 bps 55.1 bps
5 year credit spread (total) 33.6 bps 67.5 bps
10 year credit spread (default component) 97.7 bps 135.2 bps
10 year credit spread (total) 115.2 bps 166.2 bps
Conditional equity Sharpe ratio 0.12 0.22
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Table 2: Summary Statistics and Correlations. This table presents descriptive statistics
(Panel A) of firm-level variables (definitions see Internet Appendix) and Pearson correlations (Panel B) among
risk measures.

A. Summary statistics

mean std median 25% 75% obs

ldebt1y 0.737 0.287 0.852 0.612 0.954 94,204
ldebt2y 0.631 0.306 0.723 0.436 0.878 71,406
ldebt3y 0.525 0.315 0.580 0.265 0.786 71,406
ldebt4y 0.434 0.310 0.450 0.138 0.687 71,406
ldebt5y 0.349 0.295 0.324 0.046 0.582 71,406
debtmat 4.763 2.593 4.733 2.548 6.836 71,406

lncash -3.137 1.506 -3.011 -3.987 -2.089 94,199
mkat 5.583 2.054 5.402 4.034 7.008 92,619
abnearn 0.014 0.259 0.009 -0.038 0.049 83,649
bklev 0.298 0.171 0.271 0.165 0.398 94,204
mk2bk 1.582 1.157 1.217 0.953 1.734 92,619
assetmat 8.137 6.154 6.649 3.907 10.450 90,628
profitvol 0.062 0.063 0.042 0.024 0.075 67,423

asset market beta 0.879 0.637 0.798 0.454 1.201 64,496
asset bank beta 0.507 0.450 0.472 0.230 0.746 64,496
asset tail beta 0.669 0.607 0.618 0.270 1.009 64,191
equity market beta 1.127 0.745 1.068 0.659 1.518 64,496
cash flow beta 1.770 2.575 1.410 0.113 3.252 21,331

assetvol 0.386 0.198 0.338 0.255 0.462 64,496
sys assetvol 0.138 0.095 0.121 0.068 0.187 64,496
id assetvol 0.347 0.180 0.301 0.221 0.423 64,496

B. Correlations

market beta bank beta tail beta equity beta cf beta
bank beta 0.690
tail beta 0.468 0.321
equity beta 0.913 0.639 0.371
cf beta 0.097 0.064 0.027 0.117
asset vol 0.353 0.187 0.134 0.327 0.045
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Table 4: Panel Regressions of Debt Maturity. This table presents panel regressions of the
fraction of debt that matures in more than 3 years on firm-specific variables: asset beta, asset volatility, firm
size, abnormal earning, book leverage, market-to-book ratio, asset maturity, and profit volatility. Industry-
fixed effects and year-fixed effects are also included in the regression. We adjust standard errors by clustering
the observations at the industry level. Robust t-statistics are presented in parentheses below parameter
estimates. Significance at the 10%, 5%, and 1% levels is indicated by *, **, ***, respectively.

(1) (2) (3) (4) (5) (6)

market beta 0.074*** 0.088*** 0.041***
(18.88) (21.15) (8.97)

bank beta 0.037***
(5.74)

tail beta 0.037***
(10.03)

cf beta 0.004**
(2.29)

assetvol -0.428*** -0.420*** -0.047*** -0.003 -0.011
(-22.87) (-23.78) (-2.70) (-0.18) (-0.57)

mkat 0.047*** 0.049*** 0.047*** 0.043***
(17.07) (17.53) (17.11) (10.92)

abnearn -0.016*** -0.017*** -0.015*** -0.035***
(-3.63) (-3.74) (-3.32) (-3.44)

bklev 0.216*** 0.253*** 0.244*** 0.248*** 0.275***
(8.48) (9.32) (9.11) (9.23) (7.36)

mk2bk -0.017*** -0.015*** -0.018*** -0.035***
(-3.92) (-3.56) (-4.24) (-4.24)

assetmat 0.005*** 0.005*** 0.005*** 0.002**
(8.61) (8.39) (8.62) (2.10)

profitvol -0.361*** -0.368*** -0.373*** -0.325**
(-5.27) (-5.36) (-5.35) (-2.18)

Observations 51,832 47,808 42,570 42,570 42,437 13,869
R2 0.070 0.079 0.162 0.159 0.161 0.115
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Table 5: Debt Maturity: Impact of Macroeconomic Conditions. This table presents
regression results of the fraction of debt that matures in more than 3 years on a macroeconomic variable, asset
beta, an interaction between the macroeconomic variable and asset beta, firm controls (total asset volatility,
firm size, abnormal earning, book leverage, market-to-book ratio, asset maturity, and profit volatility) and
industry dummies. We measure macroeconomic conditions using either a recession dummy dated by NBER
or the S&P 100 volatility index (VXO). We also include either a quadratic time trend or an aggregate trend
generated by the H-P filter on the aggregate long-term debt share. We adjust standard errors by clustering
the observations at the industry level. Robust t-statistics are presented in parentheses below parameter
estimates. Significance at the 10%, 5%, and 1% levels is indicated by *, **, ***, respectively.

Recession VXO

(1) (2) (3) (4) (5) (6) (7)

macro -0.043*** -0.044*** -0.039*** -0.037*** -0.001*** -0.001*** -0.001***
(-5.65) (-5.85) (-5.76) (-6.52) (-2.67) (-4.10) (-2.66)

market beta 0.047*** 0.044*** 0.024***
(10.13) (9.25) (2.61)

market beta × macro 0.025*** 0.023*** 0.001*
(2.85) (2.64) (1.91)

bank beta 0.041*** -0.000
(6.47) (-0.02)

bank beta × macro 0.037*** 0.001**
(2.98) (2.51)

tail beta 0.041*** 0.025**
(11.10) (2.59)

tail beta × macro 0.020*** 0.001*
(2.80) (1.85)

assetvol -0.090*** -0.093*** -0.047*** -0.048*** -0.069*** -0.027 -0.040**
(-5.61) (-5.55) (-2.76) (-2.92) (-3.69) (-1.39) (-2.03)

mkat 0.046*** 0.044*** 0.048*** 0.045*** 0.054*** 0.055*** 0.052***
(17.14) (17.46) (17.27) (16.93) (17.12) (17.41) (17.21)

abnearn -0.017*** -0.017*** -0.018*** -0.016*** -0.022*** -0.022*** -0.020***
(-3.65) (-3.70) (-3.84) (-3.37) (-3.39) (-3.42) (-3.02)

bklev 0.246*** 0.247*** 0.232*** 0.237*** 0.335*** 0.322*** 0.334***
(8.90) (8.93) (8.47) (8.65) (10.76) (10.56) (11.01)

mk2bk -0.016*** -0.016*** -0.013*** -0.017*** -0.015*** -0.013*** -0.017***
(-3.89) (-3.78) (-3.23) (-4.13) (-3.56) (-3.09) (-3.88)

asset mat 0.005*** 0.005*** 0.005*** 0.005*** 0.005*** 0.005*** 0.005***
(8.67) (8.70) (8.38) (8.66) (5.98) (5.76) (5.94)

profitvol -0.335*** -0.349*** -0.342*** -0.348*** -0.301*** -0.308*** -0.312***
(-5.17) (-5.63) (-5.25) (-5.34) (-4.15) (-4.20) (-4.40)

Quadratic Trend Yes No Yes Yes Yes Yes Yes
HP Trend No Yes No No No No No
Observations 42,570 42,570 42,570 42,437 26,489 26,489 26,408
R2 0.154 0.155 0.150 0.153 0.172 0.170 0.173
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Table 6: The Effect of Cash Holdings on Debt Maturity. This table presents the second-
stage regression results for the structural equation that explain debt maturity using the 2SLS methodology.
The second-stage structural equation that explains debt maturity has the fraction of total debt maturing in
more than 3 years as the dependent variable and the independent variables are the predicted value of the
natural logarithm of cash holdings, asset beta, and firm controls (total asset volatility, firm size, abnormal
earning, book leverage, market-to-book ratio, asset maturity, and profit volatility) and industry dummies. In
Panel A, we include year dummies to control for year-fixed effects. In Panel B, we include a recession dummy
dated by NBER, an interaction term of beta and the recession dummy, and either a quadratic time trend or
an aggregate trend generated by the H-P filter on the aggregate long-term debt share. We adjust standard
errors by clustering the observations at the industry level. Robust z-statistics are presented in parentheses
below parameter estimates. Significance at the 10%, 5%, and 1% levels is indicated by *, **, ***, respectively.

A. Year-Fixed Effects

(1) (2) (3) (4)

cash holdings -0.035 -0.027 -0.031 -0.094**
(-1.03) (-0.83) (-0.91) (-2.13)

market beta 0.045***
(6.96)

bank beta 0.038***
(4.63)

tail beta 0.040***
(7.96)

cf beta 0.007**
(2.56)

Observations 37,304 37,304 37,184 13,367

B. Macroeconomic Condition

(1) (2) (3) (4)

cash holdings -0.035 -0.015 -0.026 -0.030
(-0.97) (-0.60) (-0.75) (-0.84)

rec -0.044*** -0.044*** -0.042*** -0.042***
(-5.45) (-5.69) (-5.26) (-5.53)

market beta 0.053*** 0.046***
(6.90) (7.97)

market beta × rec 0.019* 0.019**
(1.86) (2.00)

bank beta 0.044***
(4.82)

bank beta × rec 0.032**
(2.36)

tail beta 0.045***
(7.59)

tail beta × rec 0.018**
(2.14)

Quadratic Trend Yes No Yes Yes
HP Trend No Yes No No
Observations 37,304 37,304 37,304 37,184
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Table 7: Long-Term Debt Structure and Credit Spreads. This table presents cross-
sectional regression results of yearly changes in CDS spreads from fiscal year 2007 to 2008 on the proportion
of long-term debt maturing in 2008, firm controls (market leverage, total asset volatility, firm size, market-
to-book ratio, profitability, tangible, equity return, and credit rating), and industry dummies based on the
1-digit SIC code. The regressions are estimated for the entire sample and separately for sub-samples of firms
formed on the basis of firm characteristics at the end of fiscal year 2007. For three firm characteristics, the
sub-samples comprise firms with market leverage, book leverage, and cash flow beta above and below the
sample median, respectively. Robust t-statistics are presented in parentheses below parameter estimates.
Significance at the 10%, 5%, and 1% levels is indicated by *, **, ***, respectively.

All Book leverage Market leverage Cash flow beta

High Low High Low High Low

A. Changes in 1-year CDS spreads

ldebt08 0.045*** 0.072** 0.029** 0.109** 0.012 0.070*** 0.006
(2.71) (2.00) (1.98) (2.17) (1.38) (3.35) (0.28)

Observations 261 124 137 124 137 86 94
R2 0.497 0.563 0.411 0.551 0.360 0.671 0.567

B. Changes in 5-year CDS spreads

ldebt08 0.036*** 0.066** 0.021 0.098** 0.009 0.063*** 0.001
(2.67) (2.37) (1.48) (2.37) (0.97) (3.02) (0.04)

Observations 272 133 139 131 141 91 95
R2 0.468 0.526 0.375 0.509 0.357 0.653 0.581

C. Changes in 10-year CDS spreads

ldebt08 0.029** 0.047** 0.020 0.072* 0.009 0.046*** 0.002
(2.57) (2.06) (1.64) (1.98) (1.21) (2.87) (0.14)

Observations 263 126 137 124 139 88 92
R2 0.489 0.560 0.345 0.531 0.363 0.672 0.580
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Appendix

A Model Solution

We first state a general result that will be the basis for analytically pricing both equity and debt.

Proposition 1. Let f : R → Rn be a vector-valued function satisfying the following system of
ordinary differential equations:

Af(x) = a0 +
∑̀
i=1

gi

(
aie

bix
)

+ Bf ′(x) + Cf ′′(x) (A.1)

where A,B ∈ Rn×n are real-valued matrices, C ∈ Rn×n is a real and non-singular matrix, ` ∈ N,
a0 ∈ Rn, ai ∈ Cn, bi ∈ C, and gi is either the operator Re(·) (the real part of a complex number) or
Im(·) (the imaginary part). Then f(x) takes the following form:

f(x) = f0 +
∑̀
i=1

gi

(
fie

bix
)

+

nR∑
j=1

ωR
j v

R
j e

λRj x +

nC/2∑
k=1

(
ωC,Re
k Re

(
vC
k e

λCkx
)

+ ωC,Im
k Im

(
vC
k e

λCkx
))
(A.2)

with fi (i = 0, ..., `) defined by

Af0 = a0 (A.3)(
A− biB− b2iC

)
fi = ai, i = 1, ..., ` (A.4)

and ωR
j , ω

C,Re
k , ωC,Im

k ∈ R are real-valued coefficients.

The pairs
(
λRj ,v

R
j

)
are the real solutions to the following Quadratic Eigenvalue Problem (QEP):

Av = λBv + λ2Cv. (A.5)

while the pairs
(
λCk ,v

C
k

)
are the complex solutions to the QEP with Im

(
λCk
)
> 0. In total, there are

2n = nR + nC pairs of such solutions (unique up to scaling) with nC being even. Furthermore, in
the special case where A = (aij) satisfies

aij ≥ 0, (i 6= j) (A.6)∑
k

aik < 0, ∀ i (A.7)

exactly half of the eigenvalues for the QEP will be located in the left (complex) half plane with the
other half in the right half plane.

Proof. The conditions (A.3), (A.4) and (A.5) are obtained after substituting (A.2) into (A.1). Next,
the assumptions for A, B, and C imply that there are 2n finite eigenvalues to the QEP (A.5), with
eigenvalue-eigenvector pairs either being real or in conjugate pairs (see Tisseur and Meerbergen
(2001)). Since the weights ωC,Re

k and ωC,Im
k can be freely chosen, for each conjugate pair of solutions

to (A.5), we may keep the solution with Im
(
λCk
)
> 0 w.l.o.g. Finally, the result for the location of
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the eigenvalues when conditions (A.6)-(A.7) are satisfied is shown in Barlow, Rogers, and Williams
(1980).

Next, we derive the analytical solutions to debt and equity. The solution forms are similar to
those obtained in Jobert and Rogers (2006) and Chen (2010), but our characterization is more
general in that it allows for complex eigenvalue-eigenvector solutions to the QEP.

A.1 Debt Valuation

We now characterize the solution for debt taking the default boundaries {yD(G), yD(B)} as given.
We will work in terms of log cash flows, which we denote by x = log(y). Given a pair of (log)
default boundaries xD(G) and xD(B), we first reorder the macroeconomic states so that the default
boundaries are increasing:

xD(s) ≤ xD(s) (A.8)

with s (s) being the macroeconomic state with the lower (higher) default boundary.

The default boundaries define three regions:

R1 = (−∞, xD(s)) (A.9)

R2 = [xD(s), xD(s)] (A.10)

R3 = (xD(s),∞) (A.11)

We will successively characterize debt values D[i] for each region Ri.
Equity holders will always default when cash flows fall within region R1. Therefore debt value

will be given by the bankruptcy recovery value in equation (8):

D[1](x, s, i) = α(s)v(s)ex (A.12)

In region R2, equity holders will default whenever the state is s. This gives

D[2](x, s, i) = α(s)v(s)ex, i = U,C. (A.13)

When the state is s, debt value in region R2, D[2](x, s) = (D(x, s, U), D(x, s, C))′, is characterized
by the following system:

WD[2]D[2](x, s) = d0[2] + d1[2]e
x + U[2]D

′
[2](x, s) + V[2]D

′′
[2](x, s). (A.14)

The coefficients in (A.14) are obtained in a straightforward manner from stacking (7) in vector form,
and so we do not state them explicitly. The solution is characterized by Proposition 1 and takes the
following form:

D[2](x, s) = D0[2] + D1[0]e
x +

∑
j

ωR
D[2],jv

R
D[2],je

λR
D[2],j

x
(A.15)

+
∑
k

(
ωC,Re
D[2],kRe

(
vC
D[2],ke

λC
D[2],k

x
)

+ ωC,Im
D[2],kIm

(
vC
D[2],ke

λC
D[2],k

x
))

.

Debt value in region R3, D[3](x) = (D(x, s, U), D(x, s, C), D(x, s, U), D(x, s, C))′, is character-
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ized by the system

WD[3]D[3](x) = d0[3] + U[3]D
′
[3](x) + V[3]D

′′
[3](x). (A.16)

The solution here is similar to (A.15) and takes the following form:

D(x) = D0[3] +
∑
j

ωR
D[3],jv

R
D[3],je

λR
D[3],j

x
(A.17)

+
∑
k

(
ωC,Re
D[3],kRe

(
vC
D[3],ke

λC
D[3],k

x
)

+ ωC,Im
D[3],kIm

(
vC
D[3],ke

λC
D[3],k

x
))

.

Debt value needs to be bounded as x goes to infinity (where debt becomes risk-free). This
condition means that those coefficients ωD[3] in (A.17) corresponding to the eigenvalues that lie
in the right half plane will all be equal to zero. According to Proposition 1, there are four such
eigenvalues.

Finally, we are left with eight weights, four from region R2 and four from region R3:

ωD ≡
3⋃
i=2

{
ωR
j[i]

}
∪
{
ωC,Re
k[i]

}
∪
{
ωC,Im
k[i]

}
. (A.18)

These coefficients are exactly identified from eight value matching and smoothness conditions at
xD(s) and xD(s):

D(xD(s), s, i) = α(s)v(s)exD(s), for s ∈ {s, s} and i ∈ {U,C} . (A.19)

D[2](xD(s), s, i) = D[3](xD(s), s, i), for i ∈ {U,C} . (A.20)

D′[2](xD(s), s, i) = D′[3](xD(s), s, i), for i ∈ {U,C} . (A.21)

These boundary conditions give a system of linear equations for the weights ωD that can be solved
analytically.

A.2 Equity Valuation

Similar to debt, we can analytically characterize the equity value taking the default boundaries as
given. In region R1, equity holders will always default, and so equity will always have zero value:

E(x, s) = 0 for x ∈ R1 (A.22)

Similarly, equity holders default on region R2 whenever the state is s so that

E(x, s) = 0 for x ∈ R2. (A.23)

In order to solve for the remaining equity values, notice that when we plug in our solution for
debt into (11), the resulting ODE for equity satisfies the assumptions of Proposition 1. Thus, equity
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value takes the form

E[i](x) = E0[i] + E1[i]e
x (A.24)

+
∑
j

ωR
D[i],jE

R
D[i],je

λR
D[i],j

x
+
∑
j

ωC,Re
D[i],jRe

(
EC
D[i],je

λR
D[i],j

x
)

+
∑
j

ωC,Im
D[i],jIm

(
EC
D[i],je

λR
D[i],j

x
)

+
∑
k

ωR
E[i],kv

R
E[i],ke

λR
E[i],k

x
+
∑
k

ωC,Re
E[i],kRe

(
vC
E[i],ke

λR
E[i],j

x
)

+
∑
k

ωC,Im
E[i],kIm

(
vC
E[i],ke

λR
E[i],k

x
)
.

The second line in (A.24) is deduced by matching terms involving the debt coefficients from (11)
with the weights and exponents coming from the debt solution given in the previous section. Similar
to the case of debt, asymptotic growth conditions will rule out half the eigenvalue-eigenvector pairs
from region R3.

There remains four weights for equity, two from regionR2 and two fromR3, which are determined
by the following value matching and smoothness conditions:

E(xD(s), s) = 0, for s ∈ {s, s} . (A.25)

E[2](xD(s), s) = E[3](xD(s), s). (A.26)

E′[2](xD(s), s) = E′[3](xD(s), s). (A.27)

These conditions give a set of four linear equations for the equity weights which can be solved
analytically.

Finally, the optimal default boundaries xD(G) and xD(B) are solutions to the two smooth-
pasting conditions (13). This allow us to characterize the default boundaries as the solution to the
following system of non-linear equations:

E′[2](xD(s), s) = 0 (A.28)

E′[3](xD(s), s) = 0 (A.29)

where the derivatives are again sums of exponential functions following from (A.24).

B Endogenizing downward rigidity in leverage

In this section, we analyze a model with endogenous rollover decisions. The model builds on Dangl
and Zechner (2007), but adds equity issuance costs and liquidity spreads for corporate bonds. The
key feature of the model is that the firm does not have to roll over the matured debt immediately.
Instead, it can choose when to reissue the debt and how much to issue. However, the presence of
convex equity issuance costs helps the model endogenously generate downward rigidity in leverage.

For simplicity, we consider a special case of the benchmark model in our paper with a single
macro state. In that case, the aggregate stochastic discount factor simplifies to

dΛt
Λt

= −rdt− ηdZΛ
t , (A.30)

and the firm’s cash flows yt follow the process

dyt
yt

= µ̂dt+ σdZt, (A.31)
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B. Exogenous rollover

Figure A.1: Credit spreads in models with endogenous vs. exogenous rollover. Equity
issuance costs are set to be zero. We fix P0 = 7.7, implying an initial coverage ratio
y0/b0 = 2.6.

where cov(dZΛ
t , dZt) = ρdt. Then, the systematic volatility of the firm’s cash flows is ρσ, which is

our measure of a firm’s systematic risk exposure in this model. The growth rate of cash flow under
the risk-neutral measure is µ = µ̂− ρση. The tax rate on corporate income is still τ .

The initial face value of debt is P0, with coupon b0. Debt is retired at a constant rate m, so that
the remaining face value and coupon rate at time t are Pt = P0e

−mt and bt = b0e
−mt, respectively.

The firm can lever up at any time by buying back all the existing debt at face value and then issuing
new debt with a new maturity. Debt issuance has a proportional cost q. Upon default, the asset
recovery rate is α. Finally, the initial debt maturity rate m and face value P0 are optimally chosen
at t = 0.

Rather than endogenizing the liquidity discount via search frictions, here we take a reduced
form approach and directly specify a liquidity spread that investors demand for holding a corporate
bond with maturity rate m:

`(m) = `0/m. (A.32)

Next, we assume the proportional cost for issuing x dollars of equity is ξ(x), where

ξ (x) =
θx

y0e−mt
× 1{x>0}. (A.33)

This specification of equity issuance costs follows Hennessy, Levy, and Whited (2007). It implies
that the total dollar equity issuance cost is quadratic in the amount of issuance. We normalize
the cost with y0, the cash flow from the previous point of upward restructuring, to ensure that
the marginal equity issuance cost is stationarity as the firm grows. The additional scaling factor
e−mt is added for analytical tractability.22 Because the amount of equity issuance in this model is

22It allows for a convenient change of variable to remove the time dependence of the solution.
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B. Exogenous Rollover

Figure A.2: Maturity choices in models with endogenous vs. exogenous rollover. Leverage
is also optimally chosen.

decreasing in the firm’s cash flows, equation (A.33) implies that the costs of equity injection will
rise in a convex fashion as the firm moves closer to default.

The details of the solution are in the Internet Appendix. In short, after applying the scaling
property as in Goldstein, Ju, and Leland (2001) and a change of variable as in Dangl and Zechner
(2007), the problem becomes time-independent, and we are able to characterize the solution to debt,
equity, and the default and restructuring boundaries analytically.

Before examining the results from the full model, we first consider the special case without equity
issuance costs, i.e., ξ(x) = 0. We compare this model to a model where 100% of the retired debt are
rolled over immediately, which highlights the importance of the downward rigidity in leverage to
default risk and maturity choice.

In Figure A.1, we plot the 5-year credit spreads for a firm with different average debt maturity
(ranging from 1 to 10 years). In the model with endogenous rollover, credit spreads are very low.
They also increase with maturity, contrary to the notion of rollover risk. The spreads are only about
15 bps when the average maturity is 10 years, and fall to essentially zero when the average maturity
is under 3 years. This is because leverage declines quickly with a short debt maturity, and the firm
will only reissue debt if its cash flows are sufficiently high. In contrast, in the model with exogenous
rollover, credit spreads are significantly higher, and they are decreasing with debt maturity.

The fact that shorter maturity helps decrease default risk in the endogenous rollover model
without equity issuance costs directly affects the maturity choice. Even though issuing short-term
debt increases the debt floatation costs, it is outweighed by the benefit of reducing bankruptcy costs.
As a result, in the cross section, firms with higher systematic risk exposures choose shorter maturity
in the model with endogenous rollover (Panel A of Figure A.2), opposite to the results in the model
with exogenous rollover (Panel B).

The contrast between the results from the two models of rollover in Figure A.1 and Figure A.2
shows that (1) downward rigidity in leverage is crucial for a model to generate meaningful default
risk, and (2) the channel through which default risk arises is tightly connected to the tradeoff for
debt maturity. The difficulty to reduce leverage following negative cashflow shocks is why firms
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Figure A.3: Maturity choice in the model with endogenous rollover and costly equity
injection. Initial interest rate coverage is fixed at 6 for all firms; this corresponds to the
optimal leverage choice for the baseline firm which has a systematic volatility of 0.14. Equity
issuances costs are specified with θ = 2/3.

choose to default ex post. It is also why short term debt will increase default risk, as in the model
of exogenous rollover, rather than decrease it, as in the model of endogenous rollover.

Finally, we study the case with equity issuance costs. In this case, after choosing short debt
maturity, reducing leverage when cash flows are low will be prohibitively expensive because it
requires a large amount of equity injection in a short period of time. Figure A.3 shows the result of
optimal maturity choice in the endogenous rollover model with equity issuance costs. By making
equity issuance more costly for firms with low cash flows, credit spreads are significantly higher,
especially for firms with shorter debt maturity, and firms with higher systematic risk exposures will
optimally choose longer maturity, as in our benchmark model.

C Calibrating the liquidity friction parameters

We compute the empirical targets for the liquidity spreads at different maturities as follows. First,
we compute the bond-CDS spread as the difference between the bond spread and the CDS spread
for the same company at the same maturity. Bond transaction data and characteristic information
such as coupon rates, issue dates, maturity dates, and issue amounts are obtained from the Mergent
Fixed Income Securities Database for the period between 2004 and 2010. To compute the bond-CDS
spread, we focus on senior-unsecured fixed-rate straight corporate bonds with semi-annual coupon
payments. We keep bonds with investment grade ratings as Mergent’s coverage of transactions on
speculative grade bonds is small. We delete bonds with embedded options such as callable, puttable,
and convertible. We also delete bonds with credit enhancement and less than one year to maturity.
The corporate spread is computed as a parallel shift of the riskless zero curve, constructed from
the libor-swap rates with maturity of 3 months to 10 years, such that the present value of future
cash flows equals to the current bond price under the assumption of no default. The corresponding
CDS spread with the same maturity is computed by interpolating CDS spreads with maturity of 6
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months, 1 year, 2years, 3 years, 4 years, 5 years, 7 years and 10 years.

Before running regressions to investigate the relation between the bond-CDS spread and bond
maturity, we need to address a possible sample selection bias: firms facing higher long-term liquidity
spreads will likely choose to issue short-term bonds. Following Helwege and Turner (1999), we
restrict the data to firms issuing both short-term bonds (maturity less than 3 years) and long-term
bonds (maturity longer than 7 years) during the sample period.23 We then run a regression of the
bond-CDS spread on bond maturity, bond characteristics (bond age, issuing amount, and coupon
rate), and firm characteristics (systematic beta, size, book leverage, market-to-book ratio, and profit
volatility). To identify the effects of the business cycles, we separately run the regression using the
pre-crisis sample (January 2004 to June 2007) and the crisis sample (August 2007 - June 2009).
The regression results are presented in Table A.1. Based on the coefficient estimates, we compute
average bond-cds spreads for maturity of 1 year, 5 years and 10 years respectively in both the
pre-crisis period and crisis period.

We have calibrated the intensity of liquidity shocks λU (s) and the matching intensity λC(s) to
fit the bond turnover rate in the data. It is possible that a large part of the bond trading in good
times is not due to liquidity shocks, in which case our calibration procedure would overstate λC(G).
However, a change in λU (G) would also affect the holding cost parameters, because we calibrate the
holding costs for constrained investors to match the observed liquidity spreads in the data while
taking λU (s) and λC(s) as given. If we lower the intensity of liquidity shocks, the holding cost will
have to become higher in order to keep the bond liquidity spreads unchanged. This adjustment in
holding cost will largely offset the impact of lower frequency of liquidity shocks on bond pricing and
maturity choices.

As a robustness check, we set λU (G) to 0.15, which is one-tenth of the baseline value, while
keeping λC(G) unchanged. Then, we examine the following two cases: (A) leaving the holding cost
parameters unchanged from the baseline case; (B) recalibrating the holding cost parameters to
match the bond liquidity spreads.

Figure A.4 shows the optimal maturity choices for firms with different systematic risk exposures
under these alternative calibrations. In Panel A, we see that by reducing the frequency of liquidity
shocks and keeping the rest of the parameters fixed, long-term debt becomes more attractive. As a
result, all firms raise their debt maturity in state G, while the maturity choice in state B remains
approximately the same as before. Notice that it is still true that the sensitivity of debt maturity to
systematic risk is stronger in state B than in state G. Next, if we recalibrate the holding costs so
that the model-implied liquidity spreads still match the data, then the optimal maturity choices
across firms become essentially identical to those in the benchmark case (Figure 3, Panel A).

23However, restricting the sample to firms that have issued both short-term and long-term bonds introduces
another selection bias in that it rules out firms with really high liquidity spreads for long-term bonds. Our
estimate can be biased downward.
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Figure A.4: Sensitivity analysis on the holding costs in state G.
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Table A.1: Liquidity Spread and Bond Maturity. This table presents regression results of
the bond-CDS spread on bond maturity, asset beta, bond characteristics (rating, bond age, issuing amount,
and coupon rate), and firm controls (firm size, book leverage, market-to-book ratio, and profit volatility)
in two sample periods: before the crisis (January 2004 - July 2007) and during the crisis (August 2007 -
June 2009). We restrict the sample to firms that have issued both short-term bonds (maturity less than 3
years) and long-term bonds (maturity longer than 7 years) straight corporate bonds in the period of 2004 -
2010. We adjust standard errors by clustering the observations at the bond issue level. Robust t-statistics are
presented in parentheses below parameter estimates. Significance at the 10%, 5%, and 1% levels is indicated
by *, **, ***, respectively.

Jan 04 - Jul 07 Aug 07 - Jun 09

bndmat 0.012** 0.161*
(2.67) (2.13)

beta 0.022 3.197***
(0.33) (12.28)

spltratg 0.052** -2.245***
(2.11) (-12.80)

bndage -0.001 0.370**
(-0.33) (3.14)

offamt -0.015** 0.827**
(-2.25) (2.70)

coupon 0.037*** -1.218**
(3.59) (-2.73)

mkat 0.208 -32.305***
(1.69) (-17.64)

bklev -0.644 32.187***
(-1.34) (5.48)

mk2bk 0.074*** 7.279***
(2.88) (6.40)

profitvol -7.774** 608.899***
(-2.52) (23.46)

Constant -2.718* 331.276***
(-1.90) (16.81)

Observations 794 143
R2 0.062 0.689
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