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1 Information-Theoretic Interpretation for Model Fragility

In Chen, Dou, and Kogan (2017), we provide an econometric justification for our Fisher fragility

measure: it essentially quantifies the over-fitting tendency of the functional-form specifications for

certain structural components of a model. In this section, we formalize the intuition that excessive

informativeness of cross-equation restrictions is fundamentally associated with model fragility. More

precisely, we formally show that structural economic models are fragile when the cross-equation

restrictions appear excessively informative about certain combinations of model parameters that

are otherwise difficult to estimate (we refer to such parameter combinations as “dark matter”). To

do so, we introduce a measure of informativeness of the cross-equation restrictions, and express it

in terms of the effective sample size. This informational measure of cross-equation restrictions is

interpretable in finite samples and provides economic intuition for the Fisher fragility measure.

We develop our analysis in a Bayesian framework. Starting with a prior on (θ, ψ), denoted by

π(θ, ψ), we obtain posterior distributions through the baseline model and the structural model,

respectively. Then, the discrepancy between the two posteriors shows how the cross-equation

restrictions affect the inference about θ.

We assume that the stochastic process {xt} is strictly stationary and ergodic with a stationary

distribution P. The true joint distribution for xn ≡ (x1, · · · ,xn) is Pn. Similarly, we assume that

the joint stochastic process {xt,yt} is strictly stationary and ergodic with a stationary distribution

Q. The econometrician does not need to specify the full functional form of the joint distribution

of (xn,yn) ≡ {(xt,yt) : t = 1, · · · , n}, which we denote by Qn. The unknown joint density is

q(xn,yn).

We evaluate the performance of a structural model under the Generalized Method of Moments

(GMM) framework. The seminal paper by Hansen and Singleton (1982) pioneers the literature

of applying GMM to evaluate rational expectation asset pricing models. Specifically, we assume

that the model builder is concerned with the model’s in-sample and out-of-sample performances as

represented by a set of moment conditions,1 based on a DQ × 1 vector of functions gQ(θ, ψ; x,y) of

1We can also adopt the CUE method of Hansen, Heaton, and Yaron (1996) or its modification Hausman, Lewis,
Menzel, and Newey (2011)’s RCUE method, or some other extension of GMM with the same first-order efficiency and
possibly superior higher-order asymptotic properties. This will lead to alternative but conceptually similar measures
of overfitting. To simplify the comparison with the Fisher fragility measure, we chose to use the original GMM
framework.
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data observations (xt,yt) and the parameter vectors θ and ψ satisfying the following conditions:

E [gQ(θ0, ψ0; xt,yt)] = 0. (1)

The baseline moment functions gP(θ; xt) characterize the moment conditions of the baseline model.

They constitute the first DP elements of the whole vector of moment functions gQ(θ, ψ; xt,yt). Thus,

the baseline moments can be represented by the full set of moments weighted by a special matrix:

gP(θ; xt) = ΓPgQ(θ, ψ; xt,yt) where ΓP ≡
[
IDP

, ODP×(DQ−DP)

]
. (2)

The moment functions gP(θ; xt) depend only on parameters θ, since all parameters of the baseline

model are included in θ. Accordingly, the moment conditions for the baseline model is

E [gP(θ0; xt)] = 0. (3)

Denote the empirical moment conditions for the full model and the baseline model by

ĝQ,n(θ, ψ) ≡ 1

n

n∑
t=1

gQ(θ, ψ; xt,yt) and ĝP,n(θ) ≡ 1

n

n∑
t=1

gP(θ; xt), respectively.

Then, the optimal GMM estimator (θ̂Q, ψ̂Q) of the full model and that of the baseline model θ̂P

minimize, respectively,

Ĵn,SQ
(θ, ψ) ≡ nĝQ,n(θ, ψ)TS−1

Q ĝQ,n(θ, ψ) and Ĵn,SP
(θ) ≡ nĝP,n(θ)TS−1

P ĝP,n(θ). (4)

Here, Ĵn,SQ
(θ, ψ) and Ĵn,SP

(θ) are often referred to as the J-distances, and SQ and SP have the

following explicit formulae (see Hansen, 1982),

SQ ≡
+∞∑
`=−∞

E
[
gQ(θ0, ψ0; xt,yt)gQ(θ0, ψ0; xt−`,yt−`)

T
]
, and (5)

SP ≡
+∞∑
`=−∞

E
[
gP(θ0; xt)gP(θ0; xt−`)

T
]
, respectively. (6)

The matrix SQ and SP are the covariance matrices of the moment conditions at the true parameter

values. In practice, when SQ or SP is unknown, we can replace it with a consistent estimator ŜQ,n

or ŜP,n, respectively. The consistent estimators of the covariance matrices are provided by Newey

and West (1987), Andrews (1991), and Andrews and Monahan (1992).

We use GMM to evaluate model performance because of the concern of likelihood mis-specification.

The GMM approach gives the model builder flexibility to choose which aspects of the model to

emphasize when estimating model parameters and evaluating model specifications. This is in

contrast to the likelihood approach, which relies on the full probability distribution implied by the

3



structural model.

Finally, we introduce some further notation. We denote the GMM Fisher information matrix for

the baseline model as IP(θ) (see Hansen, 1982; Hahn, Newey, and Smith, 2011), and

IP(θ) ≡ GP(θ)TS−1
P GP(θ), (7)

where GP(θ) ≡ E [∇gP(θ; xt)],and for brevity, we denote GP ≡ GP(θ0). We denote the analog for

the structural model as IQ(θ, ψ),

IQ(θ, ψ) ≡ GQ(θ, ψ)TS−1
Q GQ(θ, ψ), (8)

where GQ(θ, ψ) ≡ E [∇gQ(θ, ψ; xt,yt)], and for brevity, we denote GQ ≡ GQ(θ0, ψ0). Computing the

expectation GQ(θ) and GQ(θ, ψ) requires knowing the distribution Q. In cases when Q is unknown,

GP(θ) in (7) and GQ(θ, ψ) in (8) can be replaced by their consistent estimators ∇gP(θ; xt) and

∇gQ(θ, ψ; xt,yt). For the full model Q, we will focus on its implied Fisher information matrix

IQ(θ|ψ):

IQ(θ|ψ) ≡
[
ΓΘIQ(θ, ψ)−1ΓTΘ

]−1
, where ΓΘ ≡ [IDΘ

, ODΘ×DΨ
] . (9)

More precisely, the Fisher information matrix IQ(θ, ψ) can be partitioned into a two-by-two block

matrix according to θ and ψ:

IQ(θ, ψ) =

[
I

(1,1)
Q (θ, ψ), I

(1,2)
Q (θ, ψ)

I
(2,1)
Q (θ, ψ), I

(2,2)
Q (θ, ψ)

]
, (10)

where I
(1,1)
Q (θ, ψ) is the DΘ × DΘ information matrix corresponding to baseline parameters θ,

I
(2,2)
Q (θ, ψ) is the DΨ × DΨ information matrix corresponding to nuisance parameters ψ, and

I
(1,2)
Q (θ, ψ) = I

(2,1)
Q (θ, ψ)T is the DΘ×DΨ cross-information matrix corresponding to θ and ψ. Then

IQ(θ|ψ) can be written as

IQ(θ|ψ) = I
(1,1)
Q (θ, ψ)− I

(1,2)
Q (θ, ψ)I

(2,2)
Q (θ, ψ)−1I

(1,2)
Q (θ, ψ)T , (11)

which generally is not equal to the Fisher information sub-matrix I
(1,1)
Q (θ, ψ) for baseline parameters

θ, except the special case in which I
(1,2)
Q (θ, ψ) = 0, i.e. the knowledge of θ and that of ψ are not

informative about each other. We assume that the information matrices are nonsingular in this

paper (Assumption A4 in Appendix 1.4).

We first introduce a moment-based Bayesian method with limited-information likelihoods in

Subsection 1.1. Then, we introduce the definition of effective sample size to gauge the informativeness

of the cross-equation restrictions and state the main results in Subsection 1.2. Third, we predefine

the necessary special notations in Subsection 1.3. Fourth, we introduce the standard regularity

conditions in Subsection 1.4. Fifth, we prove the basic lemmas in Subsection 1.5, which are

themselves interesting and general. Sixth, in Subsection 1.6, we state and prove propositions which
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serve as intermediate steps for the proof of the main results. Finally, the main results stated in

Subsection 1.2 are proved in Subsection 1.9 - 1.11.

1.1 Bayesian Analysis with Limited-Information Likelihoods

When likelihood-based methods are difficult or unreliable, one robust tool for the econometrician

to derive the posteriors of baseline model πP(θ|xn) and full structural model πQ(θ, ψ|xn,yn) is

the limited-information likelihood (LIL). It relies on certain moment conditions used for model

evaluation. Of course, the full likelihood function can be used when likelihood methods are possible.2

Here, restricted to the moment constraints, we embed a likelihood that is closest to the underlying

true distribution into the Bayesian paradigm. We use the Kullback-Leibler divergence (also known

as the relative entropy) to gauge the discrepancy between probability measures.3

We first focus on the limited-information likelihood for the full structural model. The large-

sample results of Kim (2002) provide an asymptotic Bayesian interpretation of GMM, using the

exponential quadratic form and ignoring the finite-sample validity and a valid parametric family for

likelihoods. However, our information-theoretic rationale to model fragility indeed requires a valid

finite-sample interpretation. To achieve this goal, we adopt the framework of Kitamura and Stutzer

(1997), and we focus on the case that moment functions are stable autoregressive processes.4 More

precisely, there exists a set of autoregressive (AR) coefficients ω0, · · · , ωmg such that the error terms

of the following stable AR regression have zero means and zero serial correlations:

gωQ(θ0, ψ0; zt) ≡
mg∑
j=0

ωjgQ(θ0, ψ0; xt−j,yt−j) (12)

where zt ≡ {xt−j,yt−j : j = 0, · · · ,mg}. This assumption does not offer the most general setting;

however, it should provide a fair approximation to the dynamics of moment conditions in many cases

studied in finance and economics, and more important, it allows a factorization of the likelihood for

finite-sample interpretation while guaranteeing the first-order asymptotic efficiency of the analogous

maximum likelihood estimator. Importantly, as a result of stability, the original moment condition

E [gQ(θ0, ψ0; xt,yt)] = 0 is equivalent to the moment condition:

E [gωQ(γ0; zt)] = 0, (13)

2The idea of acknowledging that it is often very difficult to come up with precise distributions to be used as
likelihood functions and thus choosing a likelihood (or a prior) among a set of sampling models (or priors) in Bayesian
analysis is referred to as “robust Bayesian analysis” (see, e.g. Wasserman, 1992; Berger, 1994; Pericchi and Pérez,
1994).

3Alternatively, the empirical likelihood (EL) of Owen (1988, 1990, 1991) and the exponential tilted empirical
likelihood (ETEL) of Kitamura and Stutzer (1997) and Schennach (2007) can also be used as the likelihood part of
the Bayesian inference. In fact, they are the Bayesian empirical likelihood (BEL) of Lazar (2003) and the Bayesian
exponential tilted empirical likelihood (BETEL) of Schennach (2005). One application of BEL and BETEL is the
statistical analysis of disaster risk models in Julliard and Ghosh (2012).

4The same assumption is also adopted by Kim (2002, Remarks 1 and 3). More details can be found in Assumption
A9 in Appendix 1.4. The assumption can be weakened to the case that the lag size mg increases with sample size n.
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where we define γ ≡ (θ, ψ) and γ0 ≡ (θ0, ψ0) for notational simplicity.

Given each γ, we define the set of probability measures, denoted by Q(γ;n), such that

Q(γ;n) ≡ {Qn : EQn [gωQ(γ; zt)] = 0, ∀ t = 1, · · · , n} . (14)

The true distribution of zn = (z1, · · · , zn), denoted by Qn, belongs to the distribution set Q(γ0;n).

The limited-information likelihood Qγ,n for Bayesian analysis of full model is chosen according to

the principle of minimum Kullback-Leibler divergence:

Qγ,n = argmin
Qn∈Q(γ;n)

DKL(Qn||Qn) = argmin
Qn∈Q(γ;n)

∫
ln (dQn/dQn) dQn (15)

where dQn/dQn is the Radon-Nikodym derivative (or density) of Qn with respect to the true

probability measure Qn. It is well-known that the limited-information likelihood Qγ,n has the

following Gibbs canonical density (see, e.g., Csiszár, 1975; Cover and Thomas, 1991, Chapter 11):

dQγ,n/dQn = exp

{
ηQ(γ)T

n∑
t=1

gωQ(γ; zt)− nAQ(γ)

}
, ∀ γ (16)

where AQ(γ) ≡ lnE
[
eηQ(γ)T gω

Q
(γ;zt)

]
, and the Lagrangian multipliers ηQ(γ) are chosen to make the

moment conditions satisfied:

0 = E
[
gωQ(γ; z)eηQ(γ)T gω

Q
(γ;z)

]
, ∀ γ. (17)

We denote πQ(zt; γ) ≡ exp
{
ηQ(γ)T gωQ(γ; zt)−AQ(γ)

}
. The posterior density is

πQ(γ|xn,yn) ∝ π(γ) exp

{
ηQ(γ)T

n∑
t=1

gωQ(γ; zt)− nAQ(γ)

}
. (18)

More discussions on the validity of the limited-information likelihood and Bayesian analysis can

be found in Appendix 1.1. Analogously, the limited-information likelihood Pθ,n for the baseline

model is constructed based on the baseline moment conditions E [gP(θ,xt)] = 0 and the principle of

minimum Kullback-Leibler divergence (15). It has the density function:

dPθ,n/dPn = exp

{
ηP(θ)T

n∑
t=1

gωP(θ; wt)− nAP(θ)

}
(19)

where wt = {xt−j : j = 0, · · · ,mg} with underlying true distribution Pn; gωP(θ; wt) is the correspond-

ing sub-vector of smoothed moments gωQ(θ; zt) for the baseline model; the functions ηP(θ) and AP(θ)

are defined analogous to ηQ(γ) and AQ(γ). We denote πP(wt; θ) ≡ exp
{
ηP(θ)T gωP(θ; wt)−AP(θ)

}
.

The MLE for Pθ,n, denoted by θ̂PML, also satisfies asymptotic normality with variance IP(θ0)−1.
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Similar to full model, the posterior of baseline model is

πP(θ|xn) ∝ π(θ) exp

{
ηP(θ)T

n∑
t=1

gωP(θ; wt)− nAP(θ)

}
. (20)

Without loss of generality, we assume that gP(θ; xt) = gωP(θ; wt) and gQ(γ; xt,yt) = gωQ(γ; zt). It

should also be noted that the functions in the limited-information likelihoods ηP(θ), AP(θ), ηQ(γ),

and AQ(γ) are not known. It is innocuous for our theoretical exercises and results. However, in

practice, they need to be replaced by their approximating counterparts. For example, ηP(θ) can be

estimated by solving the following equation, for each θ,

0 =
1

n

n∑
t=1

gP(θ; xt)e
η̂P(θ)T gP(θ;xt) (21)

and then we estimate AP(θ) by ÂP(θ) as follows:

ÂP(θ) = ln

[
1

n

n∑
t=1

eη̂P(θ)T gP(θ;xt)

]
. (22)

The functional estimators η̂Q(γ) and ÂQ(γ) can be constructed in the similar way. Under the regularity

conditions, the functional estimators converge to the true functions uniformly in probability.

Discussion: The Validity of Limited-Information Likelihood Qγ,n The GMM Bayesian

methods of Kim (2002) and Chernozhukov and Hong (2003) are primarily for large sample analysis

and potentially invalid for finite-sample interpretation due to the fact that the GMM framework based

on a quadratic form empirical moments under general assumptions are justified asymptotically (see,

Hansen, 1982). Specifically, Chernozhukov and Hong (2003) motivate the exponential of moment

conditions’ quadratic form as the limited-information likelihood mainly from a computational

perspective, without providing a compelling theoretical rationalization. Kim (2002) justifies the

particular exponential quadratic form by appealing to the principle of minimum Kullback-Leibler

divergence yet based on moment conditions in an asymptotic sense. To guarantee a valid finite-sample

interpretation and valid parametric family for likelihoods, we adopt the framework of Kitamura and

Stutzer (1997).

Here are several reasons for the limited-information likelihood in (16) to be used as a valid

parametric family for likelihood within the Bayesian paradigm. First, the set of distributions Qγ,n

characterize a proper parametric family of likelihoods for statistical inference, since Qγ,n is the true

distribution if and only if γ = γ0, that is ηQ(γ0) = AQ(γ0) = 0. Further, the MLE of the parametric

family Qγ,n, denoted by γ̂QML, is asymptotically first-order equivalent to the GMM estimator Hansen

(1982) and the ET estimator Kitamura and Stutzer (1997) with a normal asymptotic distribution
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(see Section 1.6):

wlim
n→∞

√
n
(
γ̂QML − γ0

)
= N(0, IQ(γ0)−1), with nIQ(γ0) = −E

[
∇2 ln (dQγ,n/dQn)

]
.

It should be noted that Kitamura and Stutzer (1997) propose the exponential tilted estimator based

on Fenchel duality:

ηQ(γ) = argmin
η

E
[
eη
T gQ(γ;z)

]
, ∀ γ. (23)

Their motivation is computational. But we are not proposing new estimation method here. Thus,

we directly consider the maximum likelihood estimator for the limited-information likelihood family

Qγ,n.

Second, the limited-information likelihood (16) can be factorized properly so as to be consistent

with the stationary Markovian properties of underlying time series, since the sequential dependence

of Qγ,n are fully captured by the true distribution Qn.

Third, the Bayesian analysis based on (16) is equivalent to Bayesian exponentially tilted empirical

likelihood (BETEL) asymptotically (see, e.g., Julliard and Ghosh, 2012). Schennach (2005) provides

a probabilistic interpretation of the exponential tilted empirical likelihood that justifies its use in

Bayesian inference.

1.2 The Effective-Sample Size

We quantify the discrepancy between probability distributions using a standard statistical measure,

the relative entropy (also known as the Kullback-Leibler divergence). The relative entropy between

πP(θ|xn) and the marginal posterior πQ(θ|xn,yn) is

DKL [πQ(θ|xn,yn)||πP(θ|xn)] =

∫
ln

(
πQ(θ|xn,yn)

πP(θ|xn)

)
πQ(θ|xn,yn)dθ . (24)

Intuitively, we can think of the log posterior ratio ln(πQ(θ|xn,yn)/πP(θ|xn)) as a measure of the

discrepancy between the two posteriors at a given θ. Then the relative entropy is the average

discrepancy between the two posteriors over all possible θ, where the average is computed under

the constrained posterior. DKL(πQ(θ|xn,yn)||πP(θ|xn)) is finite if and only if the support of the

posterior πQ(θ|xn,yn) is a subset of the support of the posterior πP(θ|xn), that is, Assumption A6

in Subsection 1.4 holds.

The magnitude of relative entropy is difficult to interpret directly, and we propose an intuitive

“effective sample size” interpretation. Instead of imposing the cross-equation restrictions from the

structural model, one can gain extra information about θ within the baseline model with additional

data. We evaluate the amount of additional data under the baseline model needed to match the

informativeness of cross-equation restrictions.
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Suppose we draw additional data x̃m of sample size m from the Bayesian predictive distribution

πP(x̃m|xn) ≡
∫
πP(x̃m|θ)πP(θ|xn)dθ, (25)

where the effective sample x̃m is independent of observed sample xn given baseline parameters θ,

that is, πP(x̃m, θ|xn) = πP(x̃m|θ)πP(θ|xn). Again, we measure the gain in information from this

additional sample x̃m using relative entropy,

DKL(πP(θ|x̃m,xn)||πP(θ|xn)) =

∫
ln

(
πP(θ|x̃m,xn)

πP(θ|xn)

)
πP(θ|x̃m,xn)dθ . (26)

DKL(πP(θ|x̃m,xn)||πP(θ|xn)) depends on the realization of the additional sample of data x̃m. The

average relative entropy (information gain) over possible future samples {x̃m} according to the

Bayesian predictive distribution πP(x̃m|xn) equals the mutual information between x̃m and θ given

xn:

I(x̃m; θ|xn) ≡ Ex̃m|xn [
DKL(πP(θ′|x̃m,xn)||πP(θ′|xn))

]
=

∫ ∫
DKL(πP(θ′|x̃m,xn)||πP(θ′|xn))πP(x̃m|θ)πP(θ|xn) dx̃m dθ. (27)

Like the relative entropy, the mutual information is always positive. It is easy to check that

I(x̃m; θ|xn) = 0 when m = 0. Under the assumption that the prior distribution is nonsingular

and the parameters in the likelihood function are well identified, and additional general regularity

conditions, I(x̃m; θ|xn) is monotonically increasing in m and converges to infinity as m increases.

These properties ensure that we can find an extra sample size m that equates (approximately, due to

the fact that m is an integer) DKL(πQ(θ|xn,yn)||πP(θ|xn)) with I(x̃m; θ|xn). It is only meaningful

to match 1-dimensional distributions even in asymptotic senses. Thus, the results in this section are

valid only for scalar feature functions.

Definition 1 (Effective-Sample Size Information Measure). For a feature function vector f : RDΘ →
R, we define the effective-sample measure of the informativeness of the cross-equation restrictions as

%fKL (xn,yn) =
n+m∗f
n

, (28)

where m∗f enables the matching of two information quantities

I(x̃m∗f ; f(θ)|xn) ≤ DKL(πQ(f(θ)|xn,yn)||πP(f(θ)|xn)) < I(x̃m∗f +1; f(θ)|xn), (29)

with DKL(πQ(f(θ)|xn,yn)||πP(f(θ)|xn)) being the relative entropy between the constrained and

unconstrained posteriors of f(θ) and I(x̃m; f(θ)|xn) being the conditional mutual information

between the additional sample of data xm and the transformed parameter f(θ) given the existing

sample of data xn.
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For scalar-valued feature functions (Df = 1), there exists a direct connection between our Fisher

fragility measure and the relative-entropy based informativeness measure (i.e. effective-sample

size information measure in Definition 1). The effective-sample size ratio %fKL (xn,yn) is defined

with finite-sample validity. The following theorem establishes asymptotic equivalence between the

Fisher fragility measure %v(θ0|ψ0) and the effective-sample size information measure %fKL(xn,yn).

Intuitively, the extra effective-sample size m∗f increases proportionally in the observed sample size n

where the limiting proportional growth rate wlimn→∞ %
f
KL(xn,yn) is stochastic.

Theorem 1. Consider a feature function f : RDΘ → R with v = ∇f(θ0). Under the standard

regularity conditions A1 - A8 stated in Subsection 1.4, it must hold that

wlim
n→∞

ln %fKL (xn,yn) = ln [%v(θ0|ψ0)] +
[
1− %v(θ0|ψ0)−1

]
(χ2

1 − 1), (30)

where χ2
1 is a chi-square random variable with degrees of freedom 1. It immediately implies that

E
[
wlim
n→∞

ln %fKL (xn,yn)
]

= ln [%v(θ0|ψ0)] .

The result of Theorem 1 follows immediately from the following approximation results sum-

marized in Theorem 2 and Theorem 3. Without loss of generality, we assume that gωQ(θ, ψ; zt) ≡
gQ(θ, ψ; xt,yt) or equivalently mg = 0 in Equation (12). Also, because of Assumption A7 (the

regular feature function condition), as well as the fact that the definition of our “dark matter”

measure in Chen, Dou, and Kogan (2017) and regularity assumptions A1 - A6 in Appendix 1.4 are

invariant under invertible and second-order smooth transformations of parameters, we can assume

that DΘ = 1 in the intuitive proofs. The full proofs are in the online appendix.

Theorem 2 (Kullback-Leibler Divergence). Consider a feature function f : RDΘ → R with

v = ∇f(θ0). Let the MLE for the limited-information likelihood of the baseline model P be θ̂PML, and

the analogy of the structural model Q be γ̂QML = (θ̂QML, ψ̂
Q
ML). Under the regularity conditions stated

in Appendix 1.4,

DKL(πQ(f(θ)|xn,yn)||πP(f(θ)|xn))− n

2vIQ(θ0|ψ0)−1vT
(f(θ̂PML)− f(θ̂QML))2

→ 1

2
ln

vIP(θ0)−1vT

vIQ(θ0|ψ0)−1vT
+

1

2

vIQ(θ0|ψ0)−1vT

vIP(θ0)−1vT
− 1/2, (31)

where convergence is in probability under Qn.

This theorem generalizes the results in Lin, Pittman, and Clarke (2007, Theorem 3) in two

important aspects. It focuses on the results of the moment-based LIL framework, instead of the

standard likelihood-based framework. And also, it allows for general weak dependence among the

observations which makes our results applicable to time series models in finance and economics.
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Here we provide an intuitive proof. The detailed and rigorous technical proof can be found in

Subsection 1.10. When n is large, it following approximations hold under the standard conditions:

πP (f(θ)|xn) ≈ N
(
f(θ̂PML), n−1vIP(θ0)−1vT

)
, and (32)

πQ (f(θ)|xn,yn) ≈ N
(
f(θ̂QML), n−1vIQ(θ0|ψ0)−1vT

)
. (33)

Therefore, when n is large, the asymptotic approximation (31) holds.

Corollary 1. Consider the feature function f : RDΘ → R with v = ∂f(θ0)/∂θ. Under the

assumptions in Subsection 1.4, if we define

λ ≡ vT IP(θ0)−1v

vT IQ(θ0)−1v
,

then it follows that

wlim
n→+∞

n

vT IQ(θ0)−1v
(f(θ̂P)− f(θ̂Q))2 = (1− λ−1)χ2

1. (34)

Moreover,

wlim
n→+∞

DKL(πQ(f(θ)|xn,yn)||πP(f(θ)|xn)) =
1− λ−1

2
(χ2

1 − 1) +
1

2
ln(λ), (35)

The asymptotic distribution result in (34) is directly from Proposition 11. The asymptotic result

in (35) is based on Theorem 2, limit result (34), and the Slutsky Theorem.

Theorem 3 (Mutual Information). Consider a feature function f : RDΘ → R with v = ∇f(θ0).

Under the assumptions in Subsection 1.4, if m/n→ ς ∈ (0,∞) as both m and n approach infinity,

I(x̃m; f(θ)|xn)− 1

2
ln

(
m+ n

n

)
→ 0, (36)

where convergence is in probability under Qn.

There exist related approximation results for mutual information I(x̃m; θ|xn), which consider

large m while holding the observed sample size n fixed. For more details, see Clarke and Barron

(1990, 1994) and references therein. See also the case of non-identically distributed observations by

Polson (1992), among others. Our results differ in that we allow both m and n to grow. Ours is a

technically nontrivial extension of the existing results.

Here we provide an intuitive proof. The detailed and rigorous technical proof can be found in

11



Subsection 1.10. By definition in (27), the mutual information given xn can be rewritten as

I(x̃m; θ|xn) =

∫ ∫
πP(x̃m|θ)πP(θ|xn) ln

πP(x̃m,xn|θ)πP(xn)

πP(x̃m,xn)πP(xn|θ)
dx̃mdθ

=

∫ ∫
πP(x̃m|θ)πP(θ|xn) ln

πP(x̃m,xn|θ)
πP(x̃m,xn)

dx̃mdθ −
∫
πP(θ|xn) ln

πP(xn|θ)
πP(xn)

dθ.

The following approximation is standard in the information-theoretic literature (see, e.g., Clarke

and Barron, 1990, 1994): when m and n are large, it holds that

ln
πP(x̃m,xn|θ)
πP(x̃m,xn)

≈ −1

2
S̃m+n(θ)T IP(θ)−1S̃m+n(θ) +

1

2
ln
m+ n

2π
+ ln

1

πP(θ)
+

1

2
ln |IP(θ)|,

where

S̃m+n(θ) ≡ 1√
m+ n

[
n∑
t=1

∇ lnπP(xt; θ) +

m∑
t=1

∇ lnπP(x̃t; θ)

]
. (37)

Similarly, it also holds that

ln
πP(xn|θ)
πP(xn)

≈ −1

2
Sn(θ)T IP(θ)−1Sn(θ) +

1

2
ln

n

2π
+ ln

1

πP(θ)
+

1

2
ln |IP(θ)|, (38)

where

Sn(θ) ≡ 1√
n

n∑
t=1

∇ lnπP(xt; θ). (39)

It follows from (37) and (39) that

S̃m+n(θ) =

√
n

m+ n
Sn(θ) +

√
m

m+ n
S̃m(θ), (40)

where

S̃m(θ) ≡ 1√
m

m∑
t=1

∇ lnπP(x̃t; θ). (41)

Now recall that the family of limited-information likelihoods πP(x; θ) satisfy the standard properties:

∀ θ,

E [πP(x; θ)] = 1 and E [πP(x; θ)∇ lnπP(x; θ)] = 0 and

E
{
πP(x; θ) [∇ lnπP(x; θ)] [∇ lnπP(x; θ)]T

}
= −E

{
πP(x; θ)∇2 lnπP(x; θ)

}
= IP(θ).

Thus, the following important identity can be derived:∫ ∫
S̃m+n(θ)T IP(θ)−1S̃m+n(θ)πP(x̃m|θ)πP(θ|xn)dx̃mdθ

=
n

m+ n

∫
Sn(θ)T IP(θ)−1Sn(θ)πP(θ|xn)dθ +

m

m+ n
.

12



Using the Taylor expansion of Sn(θ) around θ̂PML and the normal approximation of posterior (32),∫
Sn(θ)T IP(θ)−1Sn(θ)πP(θ|xn)dθ

≈ nIP(θ0)−1

[
1

n

n∑
t=1

∇2 lnπP(xt; θ̂
P
ML)

]2 ∫ (
θ − θ̂PML

)2
ϕP,n(θ)dθ

≈ 1

where ϕP,n(θ) =
√

det [n−1IP(θ0)] /(2π)DΘ exp
{
−1

2(θ − θ̂PML)T [nIP(θ0)] (θ − θ̂PML)
}

.

Therefore, when m and n are large, the mutual information can be approximated as follows

I(x̃m; θ|xn) ≈ 1

2

[
ln
m+ n

n
+

m

m+ n

∫
Sn(θ)T IP(θ)−1Sn(θ)πP(θ|xn)dθ − m

m+ n

]
≈ 1

2
ln
m+ n

n
.

Now we have completed the intuitive proof. The lengthy full proof in Subsection 1.9 follows the

same main idea, yet with rigorous establishments of the approximation signs “≈” above.

1.3 Generic Notations and Definitions

First, we introduce some notations for the matrices. For any real symmetric non-negative definite

matrix A, we define λM (A) to be the largest eigenvalue of A and define λm(A) to be the smallest

eigenvalue of A. For a matrix A, we define the spectral norm of A to be ||A||S. By definition of

spectral norm, we know that for any real matrix A,

||A||S ≡
√
λM (ATA).

Denote λ(θ) and λ(θ) to be the largest eigenvalue and the smallest eigenvalue of IP(θ), respectively.

That is,

λ(θ) = λm(IP(θ)) and λ(θ) = λM (IP(θ)).

If the matrix IP(θ) is continuous in θ, λ(θ) and λ(θ) are continuous in θ. We define upper bound

and lower bound to be

λ ≡ sup
θ∈Θ

λ(θ), and λ ≡ inf
θ∈Θ

λ(θ). (42)

Second, we introduce some notations related to subsets in Euclidean spaces. We define the

“Euclidean distance” between two sets S1, S2 ⊂ RDΘ as follows

dL(S1, S2) ≡ inf{|s1 − s2| : si ∈ Si, i = 1, 2}. (43)

For θ ∈ RDΘ , we denote θ(1) to be the first element of θ and denote θ(−1) to be the DΘ−1 dimensional

vector containing all elements of θ other than θ(1). Define the open ball centered at θ with radius r

13



to be

Ω(θ, r) ≡ {ϑ : |ϑ− θ| < r} and Ω(θ, r) ≡ {ϑ : |ϑ− θ| ≤ r}

Denote

Ω(1)(θ, r) = Ω(θ(1), r) ⊂ R1, and Ω(−1)(θ, r) = Ω(θ(−1), r) ⊂ RDΘ−1.

In addition, we define

Θ−1(θ(1)) ≡

{
θ(−1) ∈ RDΘ−1

∣∣ ( θ(1)

θ(−1)

)
∈ Θ

}
, (44)

and we denote

VΘ ≡ Vol(Θ) < +∞, VΘ(θ(1)) ≡ Vol(Θ−1(θ(1))) < +∞, and VΘ,1 ≡ sup
θ(1)∈Θ(1)

VΘ(θ(1)) < +∞.

Third, we introduce some notations on metrics of probability measures. Consider two probability

measures P and Q with densities p and q with respect to Lebesgue measure, respectively. The

Hellinger affinity between P and Q is denoted as

αH(P,Q) ≡
∫ √

p(x)q(x)dx.

The total variation distance between P and Q is denoted as

||P −Q||TV ≡
∫
|p(x)− q(x)|dx.

Fourth, we introduce notations for time series. The maximal correlation coefficient and the

uniform mixing coefficient are defined as

ρmax(F1,F2) ≡ sup
f1∈L2

real(F1),f2∈L2
real(F2)

|Corr(f1, f2)| ,

and

φ(F1,F2) ≡ sup
A1∈F1,A2∈F2

|P (A2|A1)− P (A2)| ,

where L2
real(Fi) denote the space of square-integrable. Fi-measurable, real-valued random variables,

for any sub σ−fields Fi ⊂ F.

1.4 Regularity Conditions for Theoretical Results

The regularity conditions we choose to impose on the behavior of the data are influenced by three

major considerations. First, our assumptions are chosen to allow processes of sequential dependence.

In particular, the processes allowed should be relevant to intertemporal asset pricing models. Second,

our assumptions are required to meet the analytical tractability. Third, our assumptions are
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sufficient conditions in the sense that we are not trying to provide the weakest conditions or high

level conditions to guarantee the results; but instead, we chose those regularity conditions which are

relatively straightforward to check in practice.

Assumption A1 (Stationarity Condition)

The underlying time series (xt, yt) with t = 1, · · · , n follow an mS-order strictly stationary Markov

process.

Remark. This assumption implies that the marginal conditional density for xt can be speci-

fied as πP(xt|θ, xt−1, · · · , xt−mS ). Define the stacked vectors xt = (xt, · · · , xt−mS+1)T and yt =

(yt, · · · , yt−mS+1)T . Then the marginal conditional density from the parametric family specified for

the baseline model can be rewritten as πP(xt; θ), and the stacked vectors (xt,yt) follow a first-order

Markov process.

Assumption A2 (Mixing Condition)

There exists constant λD ≥ 2dD/(dD − 1), where dD is the constant in Assumption A3 (dominance

condition), such that (xt,yt) for t = 1, 2, · · · , n is uniform mixing and there exists a constant φ̄

such that the uniform mixing coefficients satisfy

φ(m) ≤ φ̄m−λD for all possible probabilistic models,

where φ(m) is the uniform mixing coefficient. Its definition is standard and can be found, for

example, in White and Domowitz (1984) or Bradley (2005).

Remark. Following the literature (see, e.g. White and Domowitz, 1984; Newey, 1985b; Newey

and West, 1987), we adopt the mixing conditions as a convenient way of describing economic and

financial data which allows time dependence and heteroskedasticity. The mixing conditions basically

restrict the memory of a process to be weak, while allowing heteroskedasticity, so that large sample

properties of the process are preserved. In particular, we employ the uniform mixing which is

discussed in White and Domowitz (1984).

Assumption A3 (Dominance Condition)

The function gQ(θ, ψ; x,y) is twice continuously differentiable in (θ, ψ) almost surely. There exist

dominating measurable functions a1(x,y) and a2(x,y), and constant dD > 1, such that almost

everywhere

|gQ(θ, ψ; x,y)|2 ≤ a1(x,y), ||∇gQ(θ, ψ; x,y)||2S ≤ a1(x,y),

||∇2gQ,(i)(θ, ψ; x,y)||2S ≤ a1(x,y), for i = 1, · · · , Dg,

|q(x,y)| ≤ a2(x,y), |q(x1,y1,xt,yt)| ≤ a2(x1,y1)a2(xt,yt), for t ≥ 2,∫
[a1(x,y)]dD a2(x,y)dxdy < +∞,

∫
a2(x,y)dxdy < +∞,

where || · ||S is the spectral norm of matrices.
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Remark. The dominating function assumption is widely adopted in the literature of generalized

method of moments (Newey, 1985a,b; Newey and West, 1987). The dominating assumption, together

with the uniform mixing assumption and stationarity assumption, imply the stochastic equicontinuity

condition (iv) in Proposition 1 of Chernozhukov and Hong (2003). In the seminal GMM paper by

Hansen (1982), the moment continuity condition can also be derived from the dominance conditions.

Remark. Following the discussion of Section 1, for each pair of j and k, it holds that for some

constant ζ > 0 and large constant C > 0,

E sup
θ∈Θ

∣∣∣∣ ∂2

∂θj∂θk
lnπP(w; θ)

∣∣∣∣2+ζ

< C, and E sup
θ∈Θ

∣∣∣∣ ∂∂θj lnπP(w; θ)

∣∣∣∣2+ζ

< C, and (45)

E sup
γ∈Θ×Ψ

∣∣∣∣ ∂2

∂γj∂γk
lnπQ(z; γ)

∣∣∣∣2+ζ

< C, and E sup
γ∈Θ×Ψ

∣∣∣∣ ∂∂γj lnπQ(z; γ)

∣∣∣∣2+ζ

< C, (46)

where γ = (θ, ψ), and πP and πQ are defined in Section 1. The dominance condition, together with

the uniform mixing assumption and stationarity assumption, implies the stochastic equicontinuity

condition (i) in Proposition 3 of Chernozhukov and Hong (2003).

Assumption A4 (Nonsingular Condition)

The Fisher information matrices IP(θ) and IQ(θ, ψ) are positive definite for all θ, ψ.

Remark. It implies that the covariance matrices SP and SQ are positive definite, and the expected

moment function gradients GP(θ) and GQ(θ, ψ) have full rank for all θ and ψ.

Assumption A5 (Identification Condition)

The true baseline parameter vector θ0 is identified by the baseline moment conditions in the sense

that E [gP(θ; x)] = 0 only if θ = θ0. And, the true parameters (θ0, ψ0) of the full model is identified

by the moment conditions in the sense that E [gQ(θ, ψ; x,y)] = 0 only if θ = θ0 and ψ = ψ0.

Remark. Consider the discussion of limited-information likelihood in Section 1. The continuous

differentiability of moment functions, together with the identification condition, imply that the

parametric family of limited-information distributions Pθ and Qγ, as well as the moment conditions,

are sound: the convergence of a sequence of parameter values is equivalent to the weak convergence

of the distributions:

θ → θ0 ⇔ Pθ → Pθ0 ⇔ E [ln (dPθ/dP)]→ E [ln (dPθ0/dP)] = 0, and (47)

γ → γ0 ⇔ Qγ → Qγ0 ⇔ E [ln (dQγ/dQ)]→ E [ln (dQγ0/dQ)] = 0, (48)

where γ = (θ, ψ) and γ0 = (θ0, ψ0). And, the convergence of a sequence of parameter values is

equivalent to the convergence of the moment conditions:

γ → γ0 ⇔ E [gQ(γ; x,y)]→ E [gQ(γ0; x,y)] = 0. (49)

16



Assumption A6 (Regular Bayesian Condition)

Suppose the parameter set is Θ×Ψ ⊂ RDΘ+DΨ with Θ and Ψ being compact. And, the prior is

absolutely continuous with respect to the Lebesgue measure with Radon-Nykodim density π(θ, ψ),

which is twice continuously differentiable and positive. Denote π ≡ maxθ∈Θ,ψ∈Ψ π(θ, ψ) and π ≡
minθ∈Θ,ψ∈Ψ π(θ, ψ). The probability measure defined by the limited-information posterior density

πQ(θ|xn,yn) is dominated by the probability measure defined by the baseline limited-information

posterior density πP(θ|xn), for almost every xn,yn under Q0.

Remark. Compactness implies total boundness. In our diaster risk model, the parameter set for

the prior is not compact due to the adoption of uninformative prior. However, in that numerical

example, we can truncate the parameter set at very large values which will not affect the main

numerical results.

Remark. The concept of dominating measure here is the one in measure theory. More pre-

cisely, this regularity condition requires that for any measurable set which has zero measure under

πQ(θ|xn,yn), it must also have zero measure under πP(θ|xn). This assumption is just to guarantee

that DKL (πQ(θ|xn,yn)||πP(θ|xn)) to be well defined.

Assumption A7 (Regular Feature Function Condition)

The feature function f = (f1, · · · , fDf ) : Θ → RDf is a twice continuously differentiable vector-

valued function. We assume that there exist DΘ −Df twice continuously differentiable functions

fDf+1, · · · , fDΘ
on Θ such that F = (f1, f2, · · · , fDΘ

) : Θ → RDΘ is a one-to-one mapping (i.e.

injection) and F (Θ) is a connected and compact DΘ-dimensional subset of RDΘ .

Remark. A simple sufficient condition for the regular feature function condition to hold is that

each function fi (i = 1, · · · , Df ) is a proper and twice continuously differentiable function on RDΘ

and
∂f(θ)

∂(θ(1), · · · , θ(Df ))
> 0 at each θ ∈ RDΘ. In this case, we can simply choose fk(θ) ≡ θ(k) for

k = Df + 1, · · · , DΘ. Then, the Jacobian determinant of F is nonzero at each θ ∈ RDΘ and

F is proper and twice differentiable mapping RDΘ → RDΘ. According to the Hadamard’s Global

Inverse Function Theorem (e.g. Krantz and Parks, 2013), F is a one-to-one mapping and F (Θ) is

a connected and compact DΘ-dimensional subset of RDΘ.

Assumption A8 (Exponential Condition)

For sufficiently small δ > 0, E
[
supγ′∈Ω(γ,δ) exp

{
vT gQ(γ; x,y)

}]
<∞, for all vectors v in a neigh-

borhood of the origin.

Remark. This assumption is needed to guarantee that the limited-information likelihood Qγ in (16)

is well-defined and the related Fenchel duality holds. While this assumption is stronger than the

moment existence assumption in Hansen (1982), it is commonly adopted in the literature involving

Kullback-Leibler divergence (see, e.g. Csiszár, 1975; Kitamura and Stutzer, 1997) and general

exponential-family models (see, e.g. Berk, 1972; Dou, Pollard, and Zhou, 2012).
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1.5 Lemmas

As emphasized by White and Domowitz (1984), the mixing conditions serve as an operating

assumption for economic and financial processes, because mixing assumptions are difficult to verify

or test. However, White and Domowitz (1984) argues that the restriction is not so restrictive in the

sense that a wide class of transformations of mixing processes are themselves mixing.

Lemma 1. Let zt = Z ((xt+τ0 ,yt+τ0), · · · , (xt+τ ,yt+τ )) where Z is a measurable function onto

RDz and two integers τ0 < τ . If {xt,yt} is uniform mixing with uniform mixing coefficients

φ(m) ≤ Cm−λ for some λ > 0 and C > 0, then {zt} is uniform mixing with uniform mixing

coefficients φz(m) ≤ Czm−λ for some Cz > 0.

Proof. It can be derived directly from the definition of uniform mixing. �

The following classical result is put here for easy reference. And, it easily leads to a corollary

which will be used repeatedly.

Lemma 2. For any two σ−fields F1 and F2, it holds that

ρmax(F1,F2) ≤ 2 [φ(F1,F2)]1/2 .

Proof. The proof can be found in Ibragimov (1962) or Doob (1950, Lemma 7.1). �

Corollary 2. Let {zt} be strictly stationary process satisfying uniform mixing such that φ(m) ≤
Cm−λ for some λ > 0 and C > 0, then the autocorrelation function

max
i,j

∣∣Corr(z(i),t, z(j),t+m)
∣∣ ≤ 2

√
Cm−λ/2

where z(i),t is the i-th element of zt.

Proof. It directly follows from Lemma 1 and Lemma 2. �

Lemma 3. Let {zt} be a sequence of strictly stationary random vectors such that EP0 |zt|2 < +∞
and it satisfies the uniform mixing condition with φ(m) ≤ Cm−λ for some λ > 2 and C > 0. Then,

limn→∞ nvar0

(
n−1

∑n
t=1 zt

)
= V0 < +∞.

Proof. Let z(i),t be the i-th element of vector zt. Denote σ2
i ≡ var0(z(i),t) for each i. And, we denote

the cross correlation to be ρi,j(τ) ≡ Corr(z(i),t, z(j),t+τ ) for all t, τ , i and j. Then, we have, for each

pair of i and j,

nCov0

(
n−1

n∑
t=1

z(i),t, n
−1

n∑
t=1

z(j),t

)
= σiσj

[
ρi,j(0) + 2

n− 1

n
ρi,j(1) + · · ·+ 2

1

n
ρi,j(n− 1)

]
.

According to Corollary 2, we know that ρi,j(m) = o(m−1). Thus, by verifying the Cauchy condition,

we know that ρi,j(0) + 2n−1
n ρi,j(1) + · · ·+ 2 1

nρi,j(n− 1) converges to a finite constant. �
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The following two lemmas are extensions of Propositions 6.1 - 6.2 in Clarke and Barron (1990,

Page 468-470). Lemma 4 shows that analogs of the soundness condition for certain metrics on prob-

ability measures imply the existence of strongly uniformly exponentially consistent (SUEC)

hypothesis tests. A composite hypothesis test is called uniformly exponentially consistency

(UEC) if its type-I and type-II errors are uniformly upper bounded by e−ξn for some positive ξ,

over all alternatively (see e.g. Barron, 1989). A strongly uniformly exponentially consistent

(SUEC) test is a hypothesis test whose type-I and type-II errors are upper bounded by e−ξn for

some positive constant ξ, uniformly over all alternatives and all null parametric models over two

subsets in the probability measure space. Lemma 5 shows that metrics with the desirable consistency

property exists, which extends Proposition 6.2 in Clarke and Barron (1990).

Lemma 4. Suppose dG is a metric on the space of probability measures on X with the property

that for any ε > 0, there exists ξ > 0 and C > 0 such that

P
{
dG(P̂n,P) > ε

}
≤ Ce−ξn, (50)

uniformly over all probability measures P, where P̂n is the empirical distribution. And, the metric

dG also satisfies

dG(Pθ′ ,Pθ)→ 0 ⇒ θ′ → θ. (51)

Then, for any δ > δ1 ≥ 0 and for each θ ∈ Ω(θ0, δ1), there exists a SUEC hypothesis test of

θ ∈ Ω(θ0, δ1) versus alternative Ω(θ0, δ)
{.

Proof. The proof is an extension based on that of Lemma 6.1 in Clarke and Barron (1990). From

(51), for any given δ > δ1 ≥ 0, there exists ε1 > 0 such that dL({θ},Ω(θ0, δ)
{) > δ − δ1 > 0 implies

that dG(Pθ,Pθ′) > ε1 for all θ′ ∈ Ω(θ0, δ)
{. Thus, for any δ > δ1 ≥ 0, there exists ε1 > 0 such that,

dG(Pθ,Pθ′) > ε1 for all θ ∈ Ω(θ0, δ1) and θ′ ∈ Ω(θ0, δ)
{. Therefore, for each θ ∈ Ω(θ0, δ1), if we have

a SUEC test of

H0 : P = Pθ versus HA : P ∈ {P̃ : dG(P̃,Pθ) > ε1},

then we have a SUEC test of

H0 : θ′ = θ versus HA : P ∈ {Pθ′ : |θ′ − θ| > δ − δ1}.

Let P̂n be the empirical distribution. We choose ε = ε1/2 and let

Aθ,n ≡ {xn : dG(P̂n,Pθ) ≤ ε}

be the acceptance region. By the condition (50), we have that the probability of type-I error satisfies,

for some ξ > 0 and C > 0,

Pθ,nA{θ,n ≤ Ce−ξn, uniformly over θ ∈ Ω(θ0, δ1).
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We want to show that the probability of type-II error Pθ′Aθ,n is exponentially small uniformly over

θ′ ∈ Ω(θ0, δ)
{ and θ ∈ Ω(θ0, δ1).

More precisely, using triangular inequality, we know that for any θ ∈ Ω(θ0, δ1) and θ′ ∈ Ω(θ0, δ)
{

2ε ≤ dG(Pθ,Pθ′) ≤ dG(Pθ, P̂n) + dG(P̂n,Pθ′). (52)

By definition and inequality (52), for each θ ∈ Ω(θ0, δ1), on the acceptance region Aθ,n, we have

2ε < ε+ dG(P̂n,Pθ′) for any θ′ ∈ Ω(θ0, δ)
{. (53)

Thus, for each θ ∈ Ω(θ0, δ1), on the acceptance region Aθ,n, it holds that

dG(P̂n,Pθ′) > ε, for any θ′ ∈ Ω(θ0, δ)
{.

Therefore, for each θ ∈ Ω(θ0, δ1) and each θ′ ∈ Ω(θ0, δ)
{, we have

Pθ′,nAθ,n ≤ Pθ′,n
{
dG(P̂n,Pθ′) > ε

}
≤ Ce−ξn.

�

Lemma 5. For a space of probability measures denoted by P(Ψ, λ), on a separable metric space X

such that the mixing coefficient φ(m) ≤ Ψm−λ with Ψ > 0 and λ ≥ 2 being universal constants, there

exists a metric dG(P,Q) for probability measure P and Q in P(Ψ, λ) that satisfies the property (50)

and such that convergence in dG implies the weak convergence of the measures. Thus, in particular,

for probability measures in a parametric family

dG(Pθ′ ,Pθ)→ 0⇒ Pθ′ → Pθ. (54)

Proof. We extend the proof for the existence result in Proposition 6.2 in Clarke and Barron (1990)

to allow for weak dependence. Let {Fi : i = 1, 2, · · · } be the countable field of sets generated by

balls of the form {x : dX(x, sj1) ≤ 1/j2} for j1, j2 = 1, 2, · · · , where dX denotes the metric for the

space X and s1, s2, · · · is a countable dense sequence of points in X. Define a metric on the space of

probability measures as follows

dG(P,Q) =

∞∑
i=1

2−i|PFi −QFi|.

According to Gray (1988, Page 251–253), if dG(P̂n,P)→ 0, then P̂n converges weakly to P. Now,

for any ε > 0, we choose k ≥ 1− ln (ε) / ln(2). Thus,

dG(P̂n,P) ≤
k∑
i=1

2−i
∣∣∣P̂nFi − PFi

∣∣∣+
∞∑

i=k+1

2−i ≤ max
1≤i≤k

∣∣∣P̂nFi − PFi
∣∣∣+ ε/2.
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Then, we have

P
{
dG(P̂n,P) > ε

}
≤ P

{
max
1≤i≤k

∣∣∣P̂nFi − PFi
∣∣∣ > ε/2

}
≤

k∑
i=1

P
{∣∣∣P̂nFi − PFi

∣∣∣ > ε/2
}

The Hoeffding-type inequality for uniform mixing process (see, e.g. Roussas, 1996, Theorem 4.1)

guarantees that there exists C1 > 0 and ξ > 0 such that

sup
P∈P(Ψ,λ)

P
{∣∣∣P̂nFi − PFi

∣∣∣ > ε/2
}
≤ C1e

−ξn.

Thus,

P
{
dG(P̂n,P) > ε

}
≤ Ce−ξn, (55)

with C = kC1. �

Lemma 6 extends the large deviation result of Schwartz (1965, Lemma 6.1) to allow time

dependence in the data process. Let zn = (z1, · · · , zn) be strictly stationary and uniform mixing

with φ(m) = O
(
m−λ

)
for some positive λ. The process zn have the joint density Pθ,n. Denote the

mixture distribution of the parametric family Pθ,n with respect to the conditional prior distribution

πP(·|N{) to be PN{,n with density πP(zn|N{). More precisely, we define

πP(zn|N{) ≡
∫
N{
πP(zn|θ)πP(θ|N{)dθ. (56)

Lemma 6. Assume that the mixing coefficient power λ > 2. Suppose there exist strongly uniformly

exponentially consistent (SUEC) tests of hypothesis θ ∈ N0 against the alternative θ ∈ N{ such that

N0 ⊂ N with dL(N0,N
{) ≥ δ for some δ > 0. Then, there exists ξ > 0 and a positive integer k such

that, for all θ ∈ N0, ∣∣∣∣∣∣Pθ,n − PN{,n

∣∣∣∣∣∣
TV
≥ 2(1− 2e−ξm), where m+ k ≤ n.

Proof. We assume that there exists a sequence of SUEC tests, denoted by {An}, for any sample

with size n. Then, there exists a positive integer k such that for all n ≥ k

Pθ,nAn <
1

8
for all θ ∈ N0 and (57)

Pθ′,nAn > 1− 1

8
for all θ′ ∈ N{. (58)

For each j = 1, 2, · · · , we define

Ak,j = Ak (zj+1, · · · , zj+k) , (59)
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then, according to Lemma 1,

Ym =
1

m

m∑
j=1

Ak,j (60)

is an average of strictly stationary and uniform mixing such that φ(m) ≤ φ∗m−λ. The expectation

of Ym, under distribution Pθ,n, is µ(θ) with

µ(θ) =

{
< 1

8 if θ ∈ N0

> 7
8 if θ ∈ N{.

(61)

By Corollary 2 and the uniform mixing conditions with λ > 2, together with the fact that Ak,j ∈ [0, 1],

we know that the assumptions of Theorem 2.4 in White and Domowitz (1984) holds and hence the

CLT for the time series holds, i.e.

m1/2Ym
d−→ N(µ(θ), V (θ)), (62)

where V (θ) = limm→+∞ Pθ,n
[
m1/2

∑m
j=1(Ak,j − µ(θ))

]2
. From Lemma 3, we know that V (θ) ≤

V ∗ <∞. Therefore, the moment generating functions converge

m−1 lnPθ,netmYm →
1

2
t2V (θ). (63)

On the one hand, when θ ∈ N{, we have µ(θ) > 1
4 , according to Theorem 8.1.1 of Taniguchi and

Kakizawa (2000), we can achieve the following large deviation result

lim
m→+∞

m−1 lnPθ,n
{
Ym ≤

1

4

}
= − 1

32V (θ)
≤ − 1

32V ∗
. (64)

Therefore, there exists ξ1 > 0 such that

Pθ,n
{
Ym ≤

1

4

}
≤ e−ξ1m for all θ ∈ N{. (65)

Thus,

PN{,n

{
Ym ≤

1

4

}
=

∫
N{

Pθ,n
{
Ym ≤

1

4

}
πP(θ|N{)dθ ≤ e−ξ1m, for n ≥ m+ k. (66)

On the other hand, when θ ∈ N0, we have µ(θ) < 1
4 , according to Theorem 8.1.1 of Taniguchi

and Kakizawa (2000), we obtain the large deviation result

lim
m→+∞

m−1 lnPθ,n
{
Ym ≥

1

4

}
= − 1

32V (θ)
≤ − 1

32V ∗
. (67)

Therefore, there exists ξ2 > 0 such that

Pθ,n
{
Ym ≥

1

4

}
≤ e−ξ2m. (68)
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For ξ = min(ξ1, ξ2), it follows that∣∣∣∣∣∣Pθ,n − PN{,n

∣∣∣∣∣∣
TV

= 2 sup
A∈F

∣∣∣Pθ,nA− PN{,nA
∣∣∣ ≥ 2(1− 2e−ξm) (69)

for m+ k ≤ n by considering A = {Ym ≤ 1
4}. �

We introduce Le Cam’s theory on hypothesis testing (see, e.g. Le Cam and Yang, 2000, Chapter 8).

Lemma 7. Under the regularity conditions in Subsection 1.4, there are test functions An and

positive coefficients C, ξ, ε and K such that P0,n(1−An)→ 0 and Pθ,nAn ≤ Ce−nξ|θ−θ0|
2/2 for all

θ such that K/
√
n ≤ |θ − θ0| ≤ ε.

Proof. For all z ∈ RK(Dx+Dy), define the rectangular Fz ≡ (−∞, z1]×(−∞, z2]×· · ·×(−∞, zK(Dx+Dy)].

The empirical process is defined as Π̂n(z) ≡ P̂nFz = n−1
∑n

t=1 1{zt∈Fz}. We define Πθ(z) ≡
PθFz. According to Le Cam and Yang (2000, Page 250), there exists positive constants c and

ε such that supx |Πθ0(x)−Πθ(x)| > c|θ − θ0| for |θ − θ0| ≤ ε. Denote the expectation to be

µn(θ) ≡ EPθ supx |Πθ0(x)−Πθ(x)|. By the classical result of weak convergence for the Kolmogorov-

Smirnov statistic
√
n supx |Πθ0(x)−Πθ(x)|, we know that there exists a large constant M such

that µn(θ) ≤ M
2c
√
n

for all |θ − θ0| ≤ ε. We choose K ≡ 4M
c . Consider the test functions

An = {supz |Πθ0(z)−Πθ(z)| < K/
√
n}. Using triangular inequality, we obtain

Pθ,nAn ≤ Pθ,n
{
c

2
|θ − θ0| ≤ sup

z

∣∣∣Π̂n(z)−Πθ(z)
∣∣∣− µn(θ)

}
Using Dvoretzky-Kiefer-Wolfowitz type inequality for uniform mixing variables in Samson (2000,

Theorem 3), we can show there exists ξ > 0 such that

Pθ,n
{
c

2
|θ − θ0| ≤ sup

z

∣∣∣Π̂n(z)−Πθ(z)
∣∣∣− µn(θ)

}
≤ e−ξ|θ−θ0|2/2

for all K/
√
n ≤ |θ − θ0| ≤ ε. Thus, Pθ,nAn ≤ e−ξ|θ−θ0|

2/2 for all K/
√
n ≤ |θ − θ0| ≤ ε. By the

same inequality, it is straightforward to get P0,n(1−An)→ 0. �

1.6 Basic Properties of Limited-Information Likelihoods

The MLE for Limited-Information Likelihood Qγ,n The empirical log-likelihood function

is defined as

L̂n(γ) ≡ 1

n

n∑
t=1

lnπQ(xt,yt; γ), ∀ γ. (70)

The maximum likelihood estimator θ̂Q is defined as follows:

γ̂QML ≡ argmax
γ

L̂n(γ) = argmax
γ

ηQ(γ)T

[
1

n

n∑
t=1

gQ(γ; xt,yt)

]
−AQ(γ). (71)
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We shall show that the MLE γ̂QML is consistent and asymptotic normal with asymptotic efficient

variance-covariance matrix. This is important to justify the use of our limited-information likelihood

Qγ of (16) in the Bayesian paradigm as a valid likelihood.

The first-order condition is 0 = ∇L̂n(γ̂QML) which is

0 =
[
∇ηQ(γ̂QML)

]T [ 1

n

n∑
t=1

gQ(γ̂QML; xt,yt)

]
+

[
1

n

n∑
t=1

∇gQ(γ̂QML; xt,yt)

]T
ηQ(γ̂QML)−∇AQ(γ̂QML).

(72)

The definition of γ̂QML in (71) and the properties of expected log-likelihood L(γ) plays a vital role

in establishing the consistency of γ̂QML. The first-order condition (72) is crucial for obtaining the

asymptotic normality of γ̂QML.

Now, let’s consider the expected log-likelihood of Qγ :

L(γ) ≡ ηQ(γ)T gQ(γ)−AQ(γ). (73)

where gQ(γ) ≡ E [gQ(γ; x,y)]. It holds that L(γ0) = 0 since ηQ(γ0) = 0 and AQ(γ0) = 0. Further,

it holds that ∇L(γ0) = 0 since ∇L(γ0) = [∇ηQ(γ0)]T gQ(γ0) + [∇gQ(γ0)]T ηQ(γ0) − ∇AQ(γ0), and

gQ(γ0) = 0 and ∇AQ(γ0) = 0. The Jacobian matrix of L(γ) evaluated at γ0 is equal to the negative

Fisher information matrix IQ(γ0):

∇2L(γ0) = −∇2AQ(γ0) = −∇ηQ(γ0)T∇gQ(γ0) = −GTQS−1
Q GQ = −IQ(γ0). (74)

Here the first equality is simply implied by the formula of ∇2L(γ) from (73). The second equality

of (74) is due to

∇AQ(γ)eAQ(γ) = E
[
ηQ(γ)T∇gQ(γ; x,y)eηQ(γ)T gQ(γ;x,y)

]
∀ γ, (75)

which is implied by the definition of AQ(γ) and the condition (17). The third equality of (74) is due

to the relation ∇gQ(γ0) = GQ and the following relation implied by (17):

∇ηQ(γ0) = S−1
Q GQ. (76)

And, the fourth equality of (74) is simply due to the definition of IQ(γ0).

Another important property of expected log-likelihood of Qγ is the identification of γ0 in the

following sense:

L(γ) ≤ L(γ0) = 0, ∀ γ, (77)

where the inequality is due to the Jensen’s inequality applied to AQ(γ). The Jensen’s inequality

holds with equality if and only if ηQ(γ)T gQ(γ; x,y) is constant almost surely under Q which is true

only when γ = γ0.
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Consistency We first prove the consistency of the estimator γ̂QML. To our knowledge, the

theoretical result for the MLE of limited-information likelihood Qγ based on the principle of minimum

Kullback-Leibler divergence is new, though we appeal to the standard approach of Wald (1949) and

Wolfowitz (1949).

Proposition 1. Under Assumptions A1 - A5 and A8 - A9, γ̂QML converges to γ0 in probability.

Proof. Our goal is to show that for any ε > 0 there exists N such that

Qn

{
γ̂QML ∈ Ω(γ0, ε)

}
< ε for n ≥ N, (78)

where Ω(γ0, ε) ≡ {γ : |γ − γ0| > ε} is the open ball centered at γ0 with radius ε.

For all ε > 0, it holds that (due to the definition of γ̂QML in (71))

1{γ̂QML ∈ Ω(γ0, ε)} ≤ 1{ sup
γ∈Ω(γ0,ε){

L̂n(γ) ≥ L̂n(γ0)}. (79)

Moreover, for all ε > 0 and h > 0, it holds that

1{ sup
γ∈Ω(γ0,ε){

L̂n(γ) ≥ L̂n(γ0)} = 1{L̂n(γ0) < −h}1{ sup
γ∈Ω(γ0,ε){

L̂n(γ) ≥ L̂n(γ0)}

+ 1{L̂n(γ0) ≥ −h}1{ sup
γ∈Ω(γ0,ε){

L̂n(γ) ≥ L̂n(γ0)}

≤ 1{L̂n(γ0) < −h}+ 1{ sup
γ∈Ω(γ0,ε){

L̂n(γ) ≥ −h}. (80)

Combining (78) and (80), it suffices to show that for all ε > 0 there exists h > 0 and N such that

for n ≥ N
max

{
Qn

{
L̂n(γ0) < −h

}
,Qn

{
supγ∈Ω(γ0,ε){

L̂n(γ) ≥ −h
}}

< ε/2. (81)

The first probabilistic bound in (81) is straightforward due to the LLN result

wlim
n→∞

L̂n(γ0) = L(γ0) = 0. (82)

Now, we consider the second probabilistic bound in (81). From the dominance condition (Assumption

A3) and the remark of identification condition (Assumption A5), we know that

lim
δ→0

sup
γ′∈Ω(γ,δ)

lnπQ(x,y; γ′) = lnπQ(x,y; γ) a.s. Q for all γ. (83)

Thus, we have the following Dominance Convergence result:

lim
δ→0

E

[
sup

γ′∈Ω(γ,δ)
lnπQ(x,y; γ′)

]
= L(γ). (84)
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Therefore, there exists a small constant ε′ > 0 such that for all γ in the compact set Ω(γ0, ε)
{ ≡

(Θ×Ψ) \ Ω(γ0, ε) (Assumption A6)

lim
δ→0

E sup
γ′∈Ω(γ,δ)

lnπQ(x,y; γ′) < −3ε′. (85)

Thus, for each γ ∈ Ω(γ0, ε)
{ there exists δγ > 0 such that

E sup
γ′∈Ω(γ,δγ)

lnπQ(x,y; γ′) < −2ε′. (86)

The collection of small open balls Ω(γ, δγ) cover the compact set Ω(γ0, ε)
{, thus there exists a finite

cover consists of small open balls {Ω(γj , δj) : j = 1, · · · ,mc} where mc is a constant integer. Take

h = ε′ in the second probabilistic bound of (81), we have

Qn

{
sup

γ∈Ω(γ0,ε){
L̂n(γ) ≥ −ε′

}
≤

mg∑
j=1

Qn

{
sup

γ′∈Ω(γj ,δj)
L̂n(γ′) ≥ −ε′

}

≤
mg∑
j=1

Qn

{
1

n

n∑
t=1

sup
γ′∈Ω(γj ,δj)

lnπQ(xt,yt; γ
′) ≥ −ε′

}
.

According to the LLN and the inequality (86), it follows that there exists N such that for all

j = 1, · · · ,mg:

Qn

{
1

n

n∑
t=1

sup
γ′∈Ω(γj ,δj)

lnπQ(xt,yt; γ
′) ≥ −ε′

}
<

ε

2mg
, ∀ n ≥ N. (87)

Thus, it holds that

Qn

{
sup

γ∈Ω(γ0,ε){
L̂n(γ) ≥ −ε′

}
<
ε

2
, ∀ n ≥ N. (88)

Therefore, we have finished proving the proposition. �

Asymptotic Normality The asymptotic normality is also new, though the result is not

surprising given the asymptotic normality result in Kitamura and Stutzer (1997) for the exponential

tilted (ET) estimator.

Proposition 2. Under Assumptions A1 - A5 and A8 - A9, the asymptotic normality of γ̂QML holds:

wlim
n→∞

√
n
(
γ̂QML − γ0

)
= N

(
0, IQ(γ0)−1

)
, where IQ(γ0) = GTQS

−1
Q GQ. (89)
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Proof. Let’s consider the following three Taylor expansions around γ0:

ηQ(γ̂QML) = ∇ηQ(γ̃η)(γ̂
Q
ML − γ0) and ∇AQ(γ̂QML) = ∇2AQ(γ̃a)(γ̂

Q
ML − γ0) and

1

n

n∑
t=1

gQ(γ̂QML; xt,yt) =
1

n

n∑
t=1

gQ(γ0; xt,yt) +

[
1

n

n∑
t=1

∇gQ(γ̃g; xt,yt)

]
(γ̂QML − γ0),

where γ̃η, γ̃g, and γ̃a are all between γ̂QML and γ0.

Plugging the three Taylor expansions above into the first-order condition of γ̂QML in (72), it

follows that

0 =
[
∇ηQ(γ̂QML)

]T [ 1

n

n∑
t=1

gQ(γ0; xt,yt)

]
+
[
∇ηQ(γ̂QML)

]T [ 1

n

n∑
t=1

∇gQ(γ̃g; xt,yt)

]
(γ̂QML − γ0)

+

[
1

n

n∑
t=1

∇gQ(γ̂QML; xt,yt)

]T
∇ηQ(γ̃η)(γ̂

Q
ML − γ0)−∇2A(γ̃a)(γ̂

Q
ML − γ0). (90)

The consistency of γ̂QML implies that, in probability

∇ηQ(γ̃η)→ ∇ηQ(γ0) = S−1
Q GQ, and ∇ηQ(γ̂QML)→ ∇ηQ(γ0) = S−1

Q GQ, and

∇2AQ(γ̃a)→ ∇2AQ(γ0) = IQ(γ0) = GTQS
−1
Q GQ.

The uniform law of large numbers (ULLN) (see, e.g., White and Domowitz, 1984) implies that, in

probability,

1

n

n∑
t=1

∇gQ(γ̃g; xt,yt)→ GQ. (91)

Thus, according to (90), it holds that

√
n(γ̂QML − γ0) = −

(
GTQS

−1
Q GQ

)−1
GTQS

−1
Q

1√
n

n∑
t=1

gQ(γ0; xt,yt) + op(1), (92)

where the CLT implies

wlim
n→∞

1√
n

n∑
t=1

gQ(γ0; xt,yt) = N(0, SQ). (93)

Therefore, we have finished proving the result of the proposition. �

The MLE for Limited-Information Likelihood Pθ,n

Proposition 3. Under Assumptions A1 - A5 and A8 - A9, the asymptotic normality of θ̂QML holds:

wlim
n→∞

√
n
(
θ̂PML − θ0

)
= N

(
0, IP(θ0)−1

)
, where IP(θ0) = GTPS

−1
P GP. (94)

Proof. It is the same as the proofs for the full model Q above. �
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Asymptotic Normality of LIL Posteriors

Proposition 4. Under Assumptions A1 - A6 in Appendix 1.4, it holds that

DKL(πP(θ|xn)||N(θ̂PML, n
−1IP(θ0)−1))→ 0 in Pn.

Proof. We extend the proof of Theorem 2.1 in Clarke (1999) which is under the i.i.d. condition.

However, we have to adjust two parts of their proof, to extend the result to the case that the

observations are time series with uniform mixing. The first part is to show that supθ∈Θ |ĤP,n(θ)| =
Op(1) where

ĤP,n(θ) ≡ − 1

n

n∑
t=1

lnπP(xt; θ). (95)

When n is large enough, we obtain that

sup
θ∈Θ
|ĤP,n(θ)| ≤ 1 +

1

n

n∑
t=1

sup
θ∈Θ
| lnπP(xt; θ)|.

Based on the mixing condition and the dominance condition, it follows from Theorem 2.3 of White

and Domowitz (1984) that

1

n

n∑
t=1

sup
θ∈Θ
| lnπP(xt; θ)| → E sup

θ∈Θ
| lnπP(xt; θ)| a.s.

which further implies that supθ∈Θ |ĤP,n(θ)| = Op(1). The second part is to show that∫
uTu

∣∣∣πP(θ̂PML + u/
√
n|xn)− ϕP(u)

∣∣∣du→ 0 in Pn (96)

where ϕP(u) =
√

detIP(θ0)/(2π)DΘ exp
[
−1

2u
T IP(θ0)u

]
. In Clarke (1999), it shows that when

x1, · · · ,xn are i.i.d., the limit result (96) is satisfied under the regularity conditions in Assumptions

A3 - A6. To extend this limit result to allow weak dependence, we appeal to Theorem 1 and

Proposition 3 of Chernozhukov and Hong (2003) whose conditions are implied by Assumptions A1 -

A6 in Appendix 1.4. �

Proposition 5. Under Assumptions A1 - A6 in Appendix 1.4, it holds that

DKL(πQ(γ|xn,yn)||N(γ̂QML, n
−1IQ(γ0)−1))→ 0 in Qn.

Proof. It is the same as the proofs of Proposition 4. �

Proposition 6. Denote θ(1) to be the first element in θ. Then, we have

DKL(πQ(θ(1)|xn,yn)||πP(θ(1)|xn)) ≤ DKL(πQ(θ|xn,yn)||πP(θ|xn)). (97)
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Proof. Denote θ(−1) to be the vector containing all parameters other than θ(1) in θ. Then, we have

DKL (πQ(θ|xn,yn)||πP(θ|xn))

= Eθ(1)DKL

(
πQ(θ(−1)|xn,yn, θ(1))||πP(θ(−1)|xn, θ(1))

)
+ DKL

(
πQ(θ(1)|xn,yn)||πP(θ(1)|xn)

)
.

(98)

Because the term (98) is nonnegative, the result of the proposition is proved. �

Corollary 3. Denote v ≡ ∇f(θ0). Under the assumptions in Subsection 1.4, we have

DKL

(
πP(f(θ)|xn)||N(f(θ̂P), n−1vT IP(θ0)−1v)

)
→ 0 in Pn, (99)

and

DKL

(
πQ(f(θ)|xn,yn)||N(f(θ̂Q), n−1vT IQ(θ0)−1v)

)
→ 0 in Qn. (100)

Proof. Because of Assumption FF and the assumptions in Subsection 1.4 are invariant under

invertible and second-order smooth transformations, without loss of generality, we assume that

f(θ) = (θ(1), θ(2), · · · , θ(Df )). Applying Proposition 4, Proposition 5 and Proposition 6, we know

that the results hold. �

1.7 Information Matrices of Limited-Information Likelihoods

Definition 2. We define the following quantities which are expected negative log (limited information)

likelihood will be used repeatedly in the proofs.

HQ(γ) ≡ −
∫
πQ(x,y|γ0) lnπQ(x,y; γ)dxdy, and HP(θ) ≡ −

∫
πP(x|θ0) lnπP(x; θ)dx. (101)

Define the sample correspondences as

ĤQ,n(γ) ≡ − 1

n

n∑
t=1

lnπQ(xt,yt; γ) and ĤP,n(θ) ≡ − 1

n

n∑
t=1

lnπP(xt; θ). (102)

Proposition 7. Under the regularity conditions in Subsection 1.4, we have

ĤQ,n(γ)→ HQ(γ) and ĤP,n(θ)→ HP(θ) a.s. uniformly in θ, γ.

Proof. Simply follows the uniform law of large numbers (ULLN) in White and Domowitz (1984,

Theorem 2.3). �

Definition 3. We define the observed Fisher information matrices as

ÎP,n(θ) ≡ − 1

n
∇2 lnπP(xn|θ) = − 1

n

n∑
t=1

∇2 lnπP(xt; θ) + op(1), (103)
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and

ÎQ,n(γ) ≡ − 1

n
∇2 lnπQ(xn,yn|γ) = − 1

n

n∑
t=1

∇2 lnπQ(xt,yt; γ) + op(1), (104)

Definition 4. The empirical score functions are

sP,n(θ) ≡ 1

n
∇ lnπP(xn|θ) =

1

n

n∑
i=1

∇ lnπP(xt; θ) + op(1),

and

sQ,n(γ) ≡ 1

n
∇ lnπQ(xn,yn|γ) =

1

n

n∑
i=1

∇ lnπQ(xt,yt; γ) + op(1),

The standardized empirical score functions are

SP,n(θ) =
√
nsP,n(θ), and SQ,n(θ) =

√
nsQ,n(θ).

Proposition 8. Under the assumptions in Subsection 1.4, the uniform law of large numbers (ULLN)

holds:

sup
γ∈Γ

∣∣∣∣∣∣̂IQ,n(γ)− IQ(γ)
∣∣∣∣∣∣
S
→ 0 in Qn, (105)

where

IQ(γ) ≡ −E
[
∇2 lnπQ(x,y; γ)

]
.

Proof. By applying Theorem 2.3 of White and Domowitz (1984), the ULLN gives

− 1

n

n∑
t=1

∇2 lnπQ(xt,yt; γ)→ IQ(γ) a.s. uniformly in γ.

�

Proposition 9. Under the assumptions in Subsection 1.4, the uniform law of large numbers (ULLN)

holds:

sup
θ∈Θ

∣∣∣∣∣∣̂IP,n(θ)− IP(θ)
∣∣∣∣∣∣
S
→ 0 in Pn, (106)

where

IP(θ) ≡ −E
[
∇2 lnπP(x; θ)

]
.

Proof. By applying Theorem 2.3 of White and Domowitz (1984), the ULLN gives

− 1

n

n∑
t=1

∇2 lnπP(xt; θ)→ IP(θ) a.s. uniformly in Θ.

�
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Corollary 4. Under the assumptions in Subsection 1.4, for any sequence of random variables γ̃n

and θ̃n such that γ̃n → γ0 and θ̃n → θ0 in probability, we have

ÎQ,n(γ̃n)→ IQ(γ0) in Qn, and ÎP,n(θ̃n)→ IP(θ0) in Pn,

where ÎP,n(θ̃) and ÎQ,n(θ̃) are observed Fisher Information matrixes defined in (103) and (104),

respectively.

Proposition 10. Under the assumptions in Subsection 1.4, it holds that the Hausman test statistic

based on ML estimation of the limited-information likelihood satisfies

n(θ̂PML − θ̂QML)T
[
IP(θ0)−1 − IQ(θ0)−1

]−1
(θ̂PML − θ̂QML) χ2

DΘ

Proof. Under the constrained model Q, the estimator θ̂QML is asymptotic efficient with asymptotic

variance n−1IQ(θ0)−1, while the estimator θ̂PML is asymptotic normal but not asymptotic efficient. The

estimator θ̂QML becomes inconsistent when Q is false, while the estimator θ̂PML is always consistent since

P is assumed always to be true. Thus, the statistic n(θ̂PML − θ̂QML)T
[
IP(θ0)−1 − IQ(θ0)−1

]−1
(θ̂PML −

θ̂QML) is effectively the Hausman specification test statistic based on MLE of limited-information

likelihoods for subset of moments. In fact, the result directly follows from Theorem 3 of Newey

(1985b) with DΘ to be the rank of IP(θ0)−1 − IQ(θ0)−1. �

Proposition 11. Denote v ≡ ∇f(θ0). Under the assumptions in Subsection 1.4, it holds that the

Hausman test statistic based on MLEs satisfies

n(f(θ̂PML)− f(θ̂QML))T
[
vT IP(θ0)−1v − vT IQ(θ0)−1v

]−1
(f(θ̂PML)− f(θ̂QML)) χ2

Df
(107)

Proof. By using the Delta method and Proposition 10, it follows that
√
n(f(θ̂PML)− f(θ̂QML)) has

asymptotic normal distribution with the asymptotic covariance matrix vT IP(θ0)−1v− vT IQ(θ0)−1v.

According to continuous mapping theorem, we know that the result holds. �

Proposition 12. Suppose that the assumptions in Subsection 1.4 are satisfied. Define the sets

I1,n(δ, η) ≡
{∣∣∣∣∣∣̂IP,n(θ̃)− IP(θ)

∣∣∣∣∣∣
S
≤ η

∣∣∣∣IP(θ)−1
∣∣∣∣−1

S
, ∀ θ ∈ Ω(θ0, δ) and θ̃ ∈ Ω(θ, δ)

}
,

and

I2,n(θ, δ, η) ≡
{∣∣∣∣∣∣̂IP,n(θ̃)− IP(θ)

∣∣∣∣∣∣
S
≤ η

∣∣∣∣IP(θ)−1
∣∣∣∣−1

S
, ∀ θ̃ ∈ Ω(θ, δ)

}
.

Then, for any η > 0 there exists small enough positive constants δ1 and δ such that

PnI1,n(δ, η){ = o

(
1

n

)
and sup

θ∈Ω(θ0,δ1)
Pθ,nI2,n(θ, δ, η){ = o

(
1

n

)
.

Proof. Appealing to the fact that the Spectral norm and the Frobenius norm are equivalent for the

DΘ ×DΘ matrixes and following the argument on page 49 of Clarke and Barron (1994) or page
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465 of Clarke and Barron (1990), we can prove the results very similarly. We omit the detailed

proofs to avoid tedious repetition of the proofs in Clarke and Barron (1990) and Clarke and Barron

(1994). �

Corollary 5. Suppose that the assumptions in Subsection 1.4 are satisfied. Define the sets

I3,n(δ, η) ≡
{

1− η ≤
∣∣∣∣∣∣IP(θ)−1/2ÎP,n(θ̃)IP(θ)−1/2

∣∣∣∣∣∣
S
≤ 1 + η, ∀ θ ∈ Ω(θ0, δ) and θ̃ ∈ Ω(θ, δ)

}
,

and

I4,n(θ, δ, η) ≡
{

1− η ≤
∣∣∣∣∣∣IP(θ)−1/2ÎP,n(θ̃)IP(θ)−1/2

∣∣∣∣∣∣
S
≤ 1 + η, ∀ θ̃ ∈ Ω(θ, δ)

}
.

Then, for any η > 0 there exists small enough positive constants δ1 and δ such that

PnI3,n(δ, η){ = o

(
1

n

)
, and sup

θ∈Ω(θ0,δ1)
Pθ,nI4,n(θ, δ, η){ = o

(
1

n

)
.

Proof. We have∣∣∣∣∣∣∣∣∣IP(θ)−1/2ÎP,n(θ̃)IP(θ)−1/2
∣∣∣∣∣∣
S
− 1
∣∣∣ ≤ ∣∣∣∣∣∣IP(θ)−1/2ÎP,n(θ̃)IP(θ)−1/2 − I

∣∣∣∣∣∣
S

=
∣∣∣∣∣∣IP(θ)−1/2

[
ÎP,n(θ̃)− IP(θ)

]
IP(θ)−1/2

∣∣∣∣∣∣
S

≤
∣∣∣∣∣∣̂IP,n(θ̃)− IP(θ)

∣∣∣∣∣∣
S

∣∣∣∣IP(θ)−1
∣∣∣∣
S

(108)

The first inequality is due to the triangular inequality for spectral norm. The second inequality is

because for each unit vector v in Rd,

vT IP(θ)−1/2
[
ÎP,n(θ̃)− IP(θ)

]
IP(θ)−1/2v ≤ λM

(
ÎP,n(θ̃)− IP(θ)

) ∣∣∣vT IP(θ)−1/2
∣∣∣2

=
∣∣∣∣∣∣̂IP,n(θ̃)− IP(θ)

∣∣∣∣∣∣
S
vT IP(θ)−1v

≤
∣∣∣∣∣∣̂IP,n(θ̃)− IP(θ)

∣∣∣∣∣∣
S

∣∣∣∣IP(θ)−1
∣∣∣∣
S
.

Therefore, the results of this corollary follow directly from the inequality (108) and the results of

Proposition 12. �

Proposition 13. Under the assumptions in Subsection 1.4, for any η > 0 there exists δ > 0 such

that

Pn

{
sup

θ∈Ω(θ0,δ)
sP,n(θ)T IP(θ)−1sP,n(θ) < η

}{
= o(1).

Proof. Due to the continuity, we know that there exists δ1 > 0 such that for all θ ∈ Ω(θ0, δ1),

1

2
< λm

(
IP(θ)−1/2IP(θ0)IP(θ)−1/2

)
≤ λM

(
IP(θ)−1/2IP(θ0)IP(θ)−1/2

)
< 2.
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It follows that for all θ ∈ Ω(θ0, δ1)

sP,n(θ)T IP(θ)−1sP,n(θ) ≤ 2sP,n(θ)T IP(θ0)−1sP,n(θ)

≤ 4sP,n(θ0)T IP(θ0)−1sP,n(θ0)

+ 4
[
sP,n(θ)− sP,n(θ0)

]T
IP(θ0)−1

[
sP,n(θ)− sP,n(θ0)

]
.

By Taylor’s expansion of the score function sP,n(θ) around θ0, we know that there exists θ̃

between θ0 and θ such that

[
sP,n(θ)− sP,n(θ0)

]T
IP(θ0)−1

[
sP,n(θ)− sP,n(θ0)

]
= (θ − θ0)T ÎP,n(θ̃)IP(θ0)−1ÎP,n(θ̃)(θ − θ0)

≤ λ−1(θ − θ0)T ÎP,n(θ̃)2(θ − θ0). (109)

where the inequality above is due to the fact that λ ≤ λ(θ0). According to Proposition 12, there

exists δ2 ∈ (0, δ1) such that

PnI1,n(δ2, 1){ = o

(
1

n

)
,

where

I1,n(δ2, 1) ≡
{∣∣∣∣∣∣̂IP,n(θ̃)− IP(θ)

∣∣∣∣∣∣
S
≤
∣∣∣∣IP(θ)−1

∣∣∣∣−1

S
, ∀ θ ∈ Ω(θ0, δ2) and θ̃ ∈ Ω(θ, δ2)

}
.

Therefore, we only need to focus on the big probability set I1,n(δ2, 1). Thus, by the triangular

inequality, for any θ ∈ Ω(θ0, δ2), we know that∣∣∣∣∣∣̂IP,n(θ̃)
∣∣∣∣∣∣
S
≤ ||IP(θ)||S +

∣∣∣∣IP(θ)−1
∣∣∣∣−1

S
≤ λ+ λ.

Then, following the inequality (109), if we restrict on the big probability set I1,n(δ2, 1), it follows

that [
sP,n(θ)− sP,n(θ0)

]T
IP(θ0)−1

[
sP,n(θ)− sP,n(θ0)

]
≤ λ−1(λ+ λ)2|θ − θ0|2.

Therefore, we choose

δ = min

{
δ1, δ2,

√
η

8λ−1(λ+ λ)2

}
,

and when θ ∈ Ω(θ0, δ) and xn ∈ I1,n(δ, 1),

sP,n(θ)T IP(θ)−1sP,n(θ) ≤ 4sP,n(θ0)T IP(θ0)−1sP,n(θ0) +
η

2
.

By Markov’s inequality, it is straightforward to see that

sP,n(θ0)T IP(θ0)−1sP,n(θ0)→ 0 in Pn.
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Therefore, we have shown that

Pn

{
sup

θ∈Ω(θ0,δ)
sP,n(θ)T IP(θ)−1sP,n(θ) < η

}{
= o(1).

�

1.8 Properties of Posteriors Based on Limited-Information Likelihoods

Proposition 14. Let’s define

Sn(δ, η) ≡

{∣∣∣∣∣
∫

Ω(θ0,δ)
πP(θ|xn)SP,n(θ)T IP(θ)−1SP,n(θ)dθ −DΘ

∣∣∣∣∣ < η

}
.

Suppose that the assumptions in Subsection 1.4 hold. For any η > 0, there exists δ > 0 such that

PnSn(δ, η){ = o(1).

Proof. We first show that for any η > 0

Pn

{∫
Ω(θ0,δ)

πP(θ|xn)SP,n(θ)T IP(θ)−1SP,n(θ)dθ > DΘ + η

}
= o(1). (110)

According to Corollary 5, we know that there exists δ1 > 0 such that

PnI3,n

(
δ1,

η

2DΘ

){
= o

(
1

n

)
,

where

I3,n

(
δ1,

η

2DΘ

)
≡

{(
1− η

2DΘ

)1/2

≤
∣∣∣∣∣∣IP(θ)−1/2ÎP,n(θ̃)IP(θ)−1/2

∣∣∣∣∣∣
S
≤
(

1 +
η

2DΘ

)1/2

, ∀ θ ∈ Ω(θ0, δ1) and θ̃ ∈ Ω(θ, δ1)

}
.

According to the consistency of the estimators, the set An(δ1) ≡
{
θ̂PML ∈ Ω(θ0, δ1)

}
has probability

going to 1. Thus, on the big probability event I3,n

(
δ1,

η
2DΘ

)
∩An(δ1), by Taylor’s expansion, we

have

SP,n(θ)T IP(θ)−1SP,n(θ) = n(θ − θ̂PML)T ÎP,n(θ̃)IP(θ)−1ÎP,n(θ̃)(θ − θ̂PML)

= n(θ − θ̂PML)T IP(θ)1/2
[
IP(θ)−1/2ÎP,n(θ̃)IP(θ)−1/2

]2
IP(θ)1/2(θ − θ̂PML)

≤ n
(

1 +
η

2DΘ

)1/2

(θ − θ̂PML)T IP(θ)(θ − θ̂PML)

where θ̃ is between θ and θ̂PML. By the continuity, we know that there exists δ2 > 0 such that for all
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θ ∈ Ω(θ0, δ2) ∣∣∣∣∣∣IP(θ0)−1/2IP(θ)IP(θ0)−1/2
∣∣∣∣∣∣
S
≤
(

1 +
η

2DΘ

)1/2

.

Choose δ ≡ min{δ1, δ2}. Thus, when considering θ ∈ Ω(θ0, δ) and restricting on the event

I3,n

(
δ, η

2DΘ

)
∩An(δ), we have

SP,n(θ)T I−1
P (θ)SP,n(θ) ≤

(
1 +

η

2DΘ

)
n(θ − θ̂PML)T IP(θ0)(θ − θ̂PML).

Therefore, we have∫
Ω(θ0,δ)

πP(θ|xn)SP,n(θ)T I−1
P (θ)SP,n(θ)dθ ≤

(
1 +

η

2DΘ

)∫
Ω(θ0,δ)

πP(θ|xn)n(θ − θ̂PML)T IP(θ0)(θ − θ̂PML)dθ.

According to Theorem 1 and Proposition 3 of Chernozhukov and Hong (2003), we know that(
1 +

η

2DΘ

)∫
Ω(θ0,δ)

πP(θ|xn)n(θ − θ̂PML)T IP(θ0)(θ − θ̂PML)dθ → DΘ +
η

2
in Pn.

Therefore, the limit result in (110) holds. The proof of the following limit result is quite similar

Pn

{∫
Ω(θ0,δ)

πP(θ|xn)SP,n(θ)T IP(θ)−1SP,n(θ)dθ > DΘ − η

}
= o(1), ∀ η > 0. (111)

So, we ignore the detailed proof. �

Proposition 15. Let’s define

Sv,n(δ, η) ≡

{∣∣∣∣∣
∫

Ω(θ0,δ)
πP(θ|xn)

vT IP(θ)−1SP,n(θ)SP,n(θ)T IP(θ)v

vT IP(θ)−1v
dθ − 1

∣∣∣∣∣ < η

}
.

Suppose that the assumptions in Subsection 1.4 hold. For any η > 0, there exists δ > 0 such that

PnSv,n(δ, η){ = o(1).

Proof. The proof is similar to that of Proposition 14. �

Proposition 16. Under the assumptions in Subsection 1.4, for any open subset N ⊂ Θ and open

set N0 ⊂ N such that dL(N{,N0) > δ for some δ > 0, there exist positive constants C, ξ1 and ξ2

such that

sup
θ∈N0

Pθ,n
{
πP(xn|θ) ≤ eξ1n

∫
N{
πP(ϑ)πP(xn|ϑ)dϑ

}
≤ Ce−ξ2n.

Proof. According to Lemma 4 and Lemma 5 at the end of Section 1.6, the assumptions in Sub-

section 1.4 guarantee the existence of strongly uniformly exponentially consistent (SUEC)

hypothesis tests.
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In particular, for any open subset N ⊂ Θ and N0 ⊂ N such that dL(N,N0) > δ for some δ > 0,

for each θ ∈ N0, there exists a sequence of tests with acceptance region Aθ,n for null hypothesis

θ′ = θ versus θ′ ∈ N{ such that

sup
θ∈N0

Pθ,nA{θ,n ≤ Ce−ξn and sup
θ∈N0

sup
θ′∈N{

Pθ′,nAθ,n < Ce−ξn, for some ξ > 0.

Denote the mixture distribution of Pθ,n with respect to the conditional prior distribution πP(·|N{)
by PN{,n with density πP(xn|N{). More precisely, we define

πP(xn|N{) ≡
∫
N{
πP(xn|θ)πP(θ|N{)dθ. (112)

Following Lemma 6, we can show that there exist a real number r > 0 such that∣∣∣∣∣∣Pθ,n − PN{,n

∣∣∣∣∣∣
TV
≥ 2(1− 2e−rn), ∀ θ ∈ N0.

For any positive sequence εn, by Markov’s inequality, it follows that for each θ ∈ N0

Pθ,n

{
πP(xn|N{)
πP(xn|θ)

> εn

}
≤ 1

ε
1/2
n

∫
πP(xn|θ)1/2πP(xn|N{)1/2dxn =

1

ε
1/2
n

αH(Pθ,n,PN{,n)

≤ 1

ε
1/2
n

√
1−

(
1

2

∣∣∣∣∣∣Pθ,n − PN{,n

∣∣∣∣∣∣
TV

)2

≤ 1

ε
1/2
n

√
1− (1− 2e−rn)2 =

2e−
rn
2

ε
1/2
n

√
1− e−rn ≤ 2e−

rn
2

ε
1/2
n

.

If we choose εn = e−
rn
4 , then we have

sup
θ∈N0

Pθ,n

{
πP(xn|N{)
πP(xn|θ)

> e−
rn
4

}
≤ 2e−

rn
4 .

�

Proposition 17. Under the assumptions in Subsection 1.4, for any open subset N ⊂ Θ and open

set N0 ⊂ N such that dL(N{,N0) > δ for some δ > 0, then there exist positive constants C, ξ1, ξ2

such that

sup
θ∈N0

Pθ,n

{
πP(xn|θ) ≤ eξ1n

∫
N−1(θ(1))

{
πP(θ′(−1)|θ(1))πP(xn|θ(1), θ

′
(−1))dθ

′
(−1)

}
≤ Ce−ξ2n. (113)

Proof. The proof is the same as that of Proposition 16. �

Proposition 18. Under the assumptions in Subsection 1.4, for any open neighborhood N ⊂ Θ of

θ0 there exist positive constants C and ξ such that

Qn

{
πQ(xn,yn|θ0) ≤ eξn

∫
N{
πP(ϑ)πQ(xn,yn|ϑ)dϑ

}
= o(1). (114)
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Proof. For any open neighborhood N of θ0, from the identification assumption (i.e. Assumption

ID) and the compactness of Θ, it follows that there exists ε > 0 such that minθ∈N{ HQ(θ) ≥ ε where

HQ(θ) is defined in (101). Consider the large probability set

An ≡
{

sup
θ∈Θ
|ĤQ,n(θ)−HQ(θ)| < ε/2

}
.

From Proposition 7, we know that QnAn → 1 as n→∞. Thus, we only need to focus on event An.

Then, we have

QnAn

{
πQ(xn,yn|θ0) ≤ enε/4

∫
N{
πP(θ′)πQ(xn,yn|θ′)dθ′

}
= QnAn

{
e−nĤQ,n(θ0) ≤ enε/4

∫
N{
πP(θ′)e−nĤQ,n(θ)dθ′

}
≤ Qn

{
e−nĤQ,n(θ0) ≤ enε/4

∫
N{
πP(θ′)e−n[HQ(θ′)−ε/2]dθ′

}
≤ Qn

{
e−nĤQ,n(θ0) ≤ enε/4

∫
N{
πP(θ′)e−nε/2dθ′

}
≤ Qn

{
e−nĤQ,n(θ0) ≤ e−nε/4

}
≤ e−nε/16EenĤQ,n(θ0)/4

Because nĤQ,n(θ0) converges to a chi-squire random variable with degree of freedom DΘ in distribu-

tion, we know that EenĤQ,n(θ0)/4 → 2DΘ/2. Thus,

QnAn

{
πQ(xn,yn|θ0) ≤ enε/4

∫
N{
πP(θ′)πQ(xn,yn|θ′)dθ′

}
≤ Ce−nε/16

for some constant C > 0. Therefore, if we take ξ = ε/4, the proof is completed. �

Proposition 19. Under the assumptions in Subsection 1.4, for any open subsets N ⊂ Θ and any

positive constant ξ, there exists a neighborhood N0 of θ0 such that

sup
θ∈N0

Pθ,n
{
πP(xn|θ) ≥ eξn

∫
N

πP(ϑ)πP(xn|ϑ)dϑ

}
= o

(
1

n

)
. (115)

Proof. Let rn = 1/
√
n and it is sufficient to show that

sup
θ∈N0

Pθ,n

{
πP(xn|θ) ≥ eξn

∫
Ω(θ,rn)

πP(ϑ)πP(xn|ϑ)dϑ

}
= o

(
1

n

)
.

It is equivalent to show that

sup
θ∈N0

Pθ,n
{

ln
πP(xn|θ)

πP(xn|Ω(θ, rn))
≥ ξnn

}
= o

(
1

n

)
,
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where

ξn ≡ ξ −
1

n
lnπP(Ω(θ, rn))

with

πP(xn|Ω(θ, rn)) ≡
∫

Ω(θ,rn)

πP(ϑ)

πP(Ω(θ, rn))
πP(xn|ϑ)dϑ.

In fact, we have

πP(Ω(θ, rn)) =

∫
Ω(θ,rn)

πP(ϑ)dϑ ≥ mπΓDΘ

(
1

n

)DΘ/2

,

where ΓDΘ
is the volume of the unit ball in RDΘ . Thus,

ξn = ξ −O(n−1 lnn).

Therefore, for all large n, ξn ≥ ξ/2 and hence it suffices to show that

sup
θ∈N0

Pθ,n
{

ln
πP(xn|θ)

πP(xn|Ω(θ, rn))
≥ ξn/2

}
= o

(
1

n

)
.

For each θ ∈ Θ, by Markov’s inequality, we have

Pθ,n
{

ln
πP(xn|θ)

πP(xn|Ω(θ, rn))
≥ ξn/2

}
≤ 4

n2ξ2
EPθ

[
ln

πP(xn|θ)
πP(xn|Ω(θ, rn))

]2

(116)

We consider the set

I4,n(θ, δ, 1) ≡
{∣∣∣∣∣∣IP(θ)−1/2ÎP,n(θ̃)IP(θ)−1/2

∣∣∣∣∣∣
S
≤ 2, ∀ θ̃ ∈ Ω(θ, δ)

}
.

According to Corollary 5, it follows that there exist positive constants δ and δ0 such that

sup
θ∈Ω(θ0,δ0)

Pθ,nI4,n(θ, δ, 1){ = o

(
1

n

)
.

Therefore, we only need to focus on the big probability set I4,n(θ, δ, 1) for each θ ∈ Ω(θ0, δ0).

We choose N0 = Ω(θ0, δ0). We have for each θ ∈ N0 the following equality holds

ln
πP(xn|Ω(θ, rn))

πP(xn|θ)
= ln

∫
Ω(θ,rn)

πP(ϑ|Ω(θ, rn))
πP(xn|ϑ)

πP(xn|θ)
dϑ

= ln

∫
Ω(θ,rn)

πP(ϑ|Ω(θ, rn))e
√
nSP,n(θ)T (ϑ−θ)− 1

2
n(ϑ−θ)T ÎP,n(θ̃)(ϑ−θ)dϑ,

where θ̃ is between θ and ϑ.
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On the one hand, on the event I4,n(θ, δ, 1), we have

ln
πP(xn|Ω(θ, rn))

πP(xn|θ)
≤ ln

∫
Ω(θ,rn)

πP(ϑ|Ω(θ, rn))e|SP,n(θ)|+||IP(θ)||Sdϑ = |SP,n(θ)|+ ||IP(θ)||S .

Thus, on the other hand, on the event I4,n(θ, δ, 1), we have by Jensen’s inequality

ln
πP(xn|Ω(θ, rn))

πP(xn|θ)
≥
∫

Ω(θ,rn)

[√
nSP,n(θ)T (ϑ− θ)− 1

2
(ϑ− θ)T ÎP,n(θ̃)(ϑ− θ)

]
πP(ϑ|Ω(θ, rn))dϑ

≥
∫

Ω(θ,rn)

[√
nSP,n(θ)T (ϑ− θ)− (ϑ− θ)T IP(θ)(ϑ− θ)

]
πP(ϑ|Ω(θ, rn))dϑ

≥ −|SP,n(θ)| − ||IP(θ)||S

Therefore, we have[
ln

πP(xn|θ)
πP(xn|Ω(θ, rn))

]2

≤
[
|SP,n(θ)|+ ||IP(θ)||S

]2 ≤ 2|SP,n(θ)|2 + 2 ||IP(θ)||2S . (117)

Combining (116) and (117), we know that

Pθ,n
{

ln
πP(xn|θ)

πP(xn|Ω(θ, rn))
≥ ξn/2

}
≤ 8

n2ξ2

[
EPθ |SP,n(θ)|2 + EPθ ||IP(θ)||2S

]
≤ 8

n2ξ2

[
tr (IP(θ)) + λM (IP(θ))2

]
≤ 8(DΘλ+ λ

2
)

n2ξ2
.

�

Proposition 20. Under the assumptions in Subsection 1.4, for any open subsets N ⊂ Θ and any

positive constant ξ, we have

Qn

{
πQ(xn,yn|γ) ≥ eξn

∫
N

πP(γ′)πQ(xn,yn|γ′)dγ′
}

= o

(
1

n

)
, for every γ ∈ N.

Proof. Let rn = 1/
√
n and it is sufficient to show that

Qn

{
πQ(xn,yn|γ) ≥ eξn

∫
Ω(γ,rn)

πP(γ′)πQ(xn,yn|γ′)dγ′
}

= o

(
1

n

)
.

It is equivalent to show that

Qn

{
ln

πQ(xn,yn|γ)

πQ(xn,yn|Ω(γ, rn))
≥ ξnn

}
= o

(
1

n

)
,

where

ξn ≡ ξ −
1

n
lnπP(Ω(γ, rn))
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with

πQ(xn,yn|Ω(γ, rn)) ≡
∫

Ω(γ,rn)

πP(γ′)

πP(Ω(γ, rn))
πQ(xn,yn|γ′)dγ′.

Thus, we have

πP(Ω(γ, rn)) =

∫
Ω(γ,rn)

πP(γ′)dγ′ ≥ mπBD

(
1

n

)D/2
,

where BD is the volume of the unit ball in RD. Thus,

ξn = ξ −O(n−1 lnn).

Therefore, for all large n, ξn ≥ ξ/2 and hence it suffices to show that

Qn

{
ln

πQ(xn,yn|γ)

πQ(xn,yn|Ω(γ, rn))
≥ ξn/2

}
= o

(
1

n

)
.

By Markov’s inequality, we have

Qn

{
ln

πQ(xn,yn|γ)

πQ(xn,yn|Ω(γ, rn))
≥ ξn/2

}
≤ 4

n2ξ2
E
[
ln

πQ(xn,yn|γ)

πQ(xn,yn|Ω(γ, rn))

]2

(118)

We consider the set

In ≡
{∣∣∣∣∣∣IQ(γ0)−1/2ÎQ,n(γ̃)IQ(γ0)−1/2

∣∣∣∣∣∣
S
≤ 2, ∀ γ̃ ∈ Ω(γ0, rn)

}
.

According to Proposition 8, it follows that QnI
{
n = o (1). Therefore, we only need to focus on the

big probability set In. It holds that

ln
πQ(xn,yn|Ω(γ0, rn))

πQ(xn,yn|γ0)
= ln

∫
Ω(γ0,rn)

πP(γ|Ω(γ0, rn))
πQ(xn,yn|γ)

πQ(xn,yn|γ0)
dγ

= ln

∫
Ω(γ0,rn)

πP(γ|Ω(γ0, rn))enĤQ,n(γ0)−nĤQ,n(γ)dγ. (119)

By a second-order Taylor expansion around γ0 and Cauchy-Schwarz inequality, it holds that

∣∣∣nĤQ,n(γ0)− nĤQ,n(γ)
∣∣∣ ≤ ∣∣∣∣∣ 1√

n

n∑
t=1

∇ lnπQ(γ0; zt)

∣∣∣∣∣+
1

2
(γ − γ0)T

[
− 1

n

n∑
t=1

∇2 lnπQ(γ̃; zt)

]
(γ − γ0)

=

∣∣∣∣∣ 1√
n

n∑
t=1

∇ lnπQ(γ0; zt)

∣∣∣∣∣+
n

2
(γ − γ0)T ÎQ,n(γ̃)(γ − γ0)
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where γ̃ is between γ0 and γ. Thus, on the event In and when γ ∈ Ω(γ0, rn), we have

∣∣∣nĤQ,n(γ0)− nĤQ,n(γ)
∣∣∣ ≤ ||IQ(γ0)||S +

∣∣∣∣∣ 1√
n

n∑
t=1

∇ lnπQ(γ0; zt)

∣∣∣∣∣ .
Combining (119), we know that on the event In, it holds that

[
πQ(xn,yn|Ω(γ0, rn))

πQ(xn,yn|γ0)

]2

≤ 2 ||IQ(γ0)||2S + 2

∣∣∣∣∣ 1√
n

n∑
t=1

∇ lnπQ(γ0; zt)

∣∣∣∣∣
2

.

In fact, it easy to see that

E

∣∣∣∣∣ 1√
n

n∑
t=1

∇ lnπQ(γ0; zt)

∣∣∣∣∣
2

→ tr
[
IQ(γ0)−1

]
, as n→∞.

The trace tr
[
IQ(γ0)−1

]
is upper bounded by λm (IQ(γ0))−1. Then, combining (118) and (119), we

know that

lim sup
n→∞

Qn

{
ln

πQ(xn,yn|γ)

πQ(xn,yn|Ω(γ, rn))
≥ ξn/2

}
≤ 8

n2ξ2

{
||IQ(γ0)||2S + λm (IQ(γ0))−1

}
.

�

Proposition 21. Assume the regularity conditions in Subsection 1.4 hold. For any open neighbor-

hood N of θ0, there is an ξ > 0 and a open neighborhood N0 of θ0 such that

sup
θ∈N0

Pθ,n
{∫

N

πP(θ′)πP(xn|θ′)dθ′ ≥ eξn
∫
N{
πP(θ′)πP(xn|θ′)dθ′

}
= o(1).

Proof. According to Proposition 19, for any positive constant ξ1, there exists a neighborhood N0 of

θ0 such that dL(N{,N0) > δ for some δ > 0 and

sup
θ∈N0

Pθ,nAn(θ, ξ1) = o

(
1

n

)
,

with

An(θ, ξ1) ≡
{
πP(xn|θ) ≥ eξ1n

∫
N

πP(ϑ)πP(xn|ϑ)dϑ

}
.

By Proposition 16, there exist positive constants C, ξ′ and ξ2 such that

sup
θ∈N0

Pθ,n
{
πP(xn|θ) ≤ eξ′n

∫
N{
πP(ϑ)πP(xn|ϑ)dϑ

}
≤ Ce−ξ2n.
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We take a constant 0 < ξ < ξ′ and let ξ′′ = ξ′ − ξ. Then,

sup
θ∈N0

Pθ,n
{∫

N

πP(θ′)πP(xn|θ′)dθ′ ≤ eξn
∫
N{
πP(θ′)πP(xn|θ′)dθ′

}
≤ sup

θ∈N0

Pθ,nAn(θ, ξ′′)

{∫
N

πP(θ′)πP(xn|θ′)dθ′ ≤ eξn
∫
N{
πP(θ′)πP(xn|θ′)dθ′

}
+ sup
θ∈N0

Pθ,nAn(θ, ξ′′){

≤ sup
θ∈N0

Pθ,n
{
πP(xn|θ) ≤ en(ξ−ξ′′)

∫
N{
πP(θ′)πP(xn|θ′)dθ′

}
+ o(1)

≤ sup
θ∈N0

Pθ,n
{
πP(xn|θ) ≤ enξ′

∫
N{
πP(θ′)πP(xn|θ′)dθ′

}
+ o(1)

≤ Ce−ξ2n + o(1) = o(1).

�

Proposition 22. Assume the regularity conditions in Subsection 1.4 hold. For any open neighbor-

hood N of θ0, there is an ξ > 0 such that

Qn

{∫
N

πP(γ′)πQ(xn,yn|γ′)dγ′ ≥ eξn
∫
N{
πP(γ′)πQ(xn,yn|γ′)dγ′

}
= o(1).

Proof. According to Proposition 20, for any positive constant ξ1, there exists a neighborhood N0 of

θ0 such that dL(N{,N0) > δ for some δ > 0 and

QnAn(ξ1) = o

(
1

n

)
,

with

An(ξ1) ≡
{
πQ(xn,yn|γ0) ≥ eξ1n

∫
N

πP(ϑ)πQ(xn,yn|γ′)dγ′
}
.

By Proposition 18, there exist positive constants C and ξ′ such that

Qn

{
πQ(xn,yn|γ0) ≤ eξ′n

∫
N{
πP(γ′)πQ(xn,yn|γ′)dγ′

}
= o(1).

We take a constant 0 < ξ < ξ′ and let ξ′′ = ξ′ − ξ. Then,

Qn

{∫
N

πP(γ′)πQ(xn,yn|γ′)dγ′ ≤ eξn
∫
N{
πP(γ′)πQ(xn,yn|γ′)dγ′

}
≤ QnAn(ξ′′)

{∫
N

πP(γ′)πQ(xn,yn|γ′)dγ′ ≤ eξn
∫
N{
πP(γ′)πQ(xn,yn|γ′)dγ′

}
+ QnAn(ξ′′){

≤ Qn

{
πQ(xn,yn|γ0) ≤ en(ξ−ξ′′)

∫
N{
πP(γ′)πQ(xn,yn|γ′)dγ′

}
+ o(1)

≤ Qn

{
πQ(xn,yn|γ0) ≤ enξ′

∫
N{
πP(γ′)πQ(xn,yn|γ′)dγ′

}
+ o(1) = o(1).

�
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1.9 Proof of Theorem 1

It follows immediately from the results of Theorem 2 and Theorem 3, which are proved in Section

1.10 and Section 1.11, respectively.

1.10 Proof of Theorem 2

Because of Assumption FF and the assumptions in Subsection 1.4 are invariant under invertible

and second-order smooth transformations, without loss of generality, we assume that f(θ) = θ(1)

and hence v = (1, 0, · · · , 0)T . Let us denote

ϕP(θ(1)|xn) =
1√

2π 1
nvT IP(θ0)−1v

exp

{
− 1

2 1
nvT IP(θ0)−1v

(θ(1) − θ̂P(1))
2

}

ϕQ(θ(1)|xn,yn) =
1√

2π 1
nvT IQ(θ0|ψ0)−1v

exp

{
− 1

2 1
nvT IQ(θ0|ψ0)−1v

(θ(1) − θ̂Q(1))
2

}

where θ̂P and θ̂Q are MLE estimators for baseline model and full model, respectively, and θ̂P(1) and

θ̂Q(1) are the first elements of θ̂P and θ̂Q, respectively. Let’s now focus on the decomposition of the

relative entropy between constrained and unconstrained posterior distributions:

DKL

(
πQ(θ(1)|xn,yn)||πP(θ(1)|xn)

)
= An +Bn + Cn (120)

where

An =

∫
πQ(θ(1)|xn,yn) ln

πQ(θ(1)|xn,yn)

ϕQ(θ(1)|xn,yn)
dθ(1), (121)

Bn =

∫
πQ(θ(1)|xn,yn) ln

ϕQ(θ(1)|xn,yn)

ϕP(θ(1)|xn)
dθ(1), (122)

Cn =

∫
πQ(θ(1)|xn,yn) ln

ϕP(θ(1)|xn)

πP(θ(1)|xn)
dθ(1). (123)

We shall show that

An → 0 in Qn, (124)

and

Bn −
n

2vT IP(θ0)−1v

(
θ̂P(1) − θ̂

Q
(1)

)2
→ 1

2
ln

vT IP(θ0)−1v

vT IQ(θ0|ψ0)−1v
+

1

2

vT IQ(θ0|ψ0)−1v

vT IP(θ0)−1v
− 1

2
in Qn,

(125)

and

Cn → 0 in Qn. (126)
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Step 1: we prove the weak convergence ofAn in (124). In fact, An = DKL

(
πQ(θ(1)|xn,yn)||ϕQ(θ(1)|xn,yn)

)
.

And, according to Corollary 3, we know An → 0 in Qn.

Step 2: we prove the weak convergence of Bn in (125). We know that

Bn =
1

2

∫
πQ(θ(1)|xn,yn)

[
ln

vT IP(θ0)−1v

vT IQ(θ0|ψ0)−1v
− n

(θ(1) − θ̂Q(1))
2

vT IQ(θ0|ψ0)−1v
+ n

(θ(1) − θ̂P(1))
2

vT IP(θ0)−1v

]
dθ(1) (127)

Now let’s define

∆B,n ≡Bn −
n

2vT IP(θ0)−1v

(
θ̂P(1) − θ̂

Q
(1)

)2
− 1

2
ln

vT IP(θ0)−1v

vT IQ(θ0|ψ0)−1v
− 1

2

vT IQ(θ0|ψ0)−1v

vT IP(θ0)−1v
+ 1/2.

(128)

We consider the following decomposition for ∆B,n:

∆B,n =
1

2

∫ [
πQ(θ(1)|xn,yn)− ϕQ

(
θ(1)|xn,yn

)]
dθ(1) ln

vT IP(θ0)−1v

vT IQ(θ0|ψ0)−1v
(129)

− 1

2

∫ [
πQ(θ(1)|xn,yn)− ϕQ

(
θ(1)|xn,yn

)]
n

(θ(1) − θ̂Q(1))
2

vT IQ(θ0|ψ0)−1v
dθ(1) (130)

+
1

2

∫ [
πQ(θ(1)|xn,yn)− ϕQ

(
θ(1)|xn,yn

)]
n

(θ(1) − θ̂P(1))
2

vT IP(θ0)−1v
dθ(1) (131)

The term in (129) is denoted as Bn,1, the term in (130) is denoted as Bn,2, and the term (131) is

denoted as Bn,3.

Step 2.1: We show that Bn,1 → 0 in Qn. We know that, in Qn,

|Bn,1| ≤
1

2
ln

vT IP(θ0)−1v

vT IQ(θ0|ψ0)−1v

∫ ∣∣πQ(θ(1)|xn,yn)− ϕQ(θ(1)|xn,yn)
∣∣dθ(1) → 0 (132)

where the convergence result in (132) is due to the fact that the squared total variation distance5 is

upper bounded by the relative entropy (see e.g. Kullback, 1967) and due to the result in Proposition

3.

Step 2.2: We show that Bn,2 → 0 in Qn. Equivalently, we show that

∫
Θ

[πQ(θ|xn,yn)− ϕQ (θ|xn,yn)]n
(θ(1) − θ̂Q(1))

2

vT IQ(θ0|ψ0)−1v
dθ → 0 in Qn.

5The total variation distance between the constrained posterior on θ(1) and normal distribution is∫ ∣∣πQ(θ(1)|xn,yn)− ϕQ(θ(1)|xn,yn)
∣∣dθ(1).
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This is actually a direct implication from Theorem 1 and Proposition 1 of Chernozhukov and Hong

(2003).

Step 2.3: Similar argument can be used to prove that Bn,3 → 0 in Qn. More precisely, it is

equivalent to show that

1

2

∫ [
πQ(θ(1)|xn,yn)− ϕQ

(
θ(1)|xn,yn

)]
n

(θ(1) − θ̂P(1))
2

vT IP(θ0)−1v
dθ(1) → 0 in Qn,

and

1

2

∫ [
πQ(θ(1)|xn,yn)− ϕQ

(
θ(1)|xn,yn

)]
n

2(θ(1) − θ̂Q(1))(θ
Q
(1) − θ̂

P
(1))

vT IP(θ0)−1v
dθ(1) → 0 in Qn,

and

1

2

∫ [
πQ(θ(1)|xn,yn)− ϕQ

(
θ(1)|xn,yn

)]
n

(θQ(1) − θ̂
P
(1))

2

vT IP(θ0)−1v
dθ(1) → 0 in Qn.

According to Chernozhukov and Hong (2003, Theorem 1 and Proposition 1), all the three limiting

conditions above are satisfied.

Step 3: We prove the weak convergence of Cn in (126). For a constant r > 0, we decompose the

term Cn as follows

Cn = Cn,1 + Cn,2 − Cn,3, (133)

where

Cn,1 =

∫
Ω(θ0,(1),r)

πQ(θ(1)|xn,yn) ln
ϕP(θ(1)|xn)

πP(θ(1)|xn)
dθ(1) (134)

Cn,2 =

∫
Ω(θ0,(1),r)

{
πQ(θ(1)|xn,yn) lnϕP(θ(1)|xn)dθ(1) (135)

Cn,3 =

∫
Ω(θ0,(1),r)

{
πQ(θ(1)|xn,yn) lnπP(θ(1)|xn)dθ(1). (136)

Step 3.1: we show that Cn,3 → 0 in Qn. Equivalently, we show that for any ε > 0

lim sup
n→+∞

Qn {|Cn,3| > ε} < ε. (137)

Let

An(η) ≡

{∫
Ω(θ0,(1),r)

{

∫
Θ−1(θ(1))

πP(θ(1), θ(−1))πP(xn|θ(1), θ(−1))dθ(1)dθ(−1)∫
Ω(θ0,(1),r)

∫
Θ−1(θ(1))

πP(θ(1), θ(−1))πP(xn|θ(1), θ(−1))dθ(1)dθ(−1)
< η

}
.

By Proposition 21, we know that for any η > 0

QnAn(η){ = o(1).
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Define the set

Bn(η) ≡
{

sup
θ∈Θ

∣∣∣ĤP,n(θ)−HP(θ)
∣∣∣ < η

}
,

where HP(θ) and ĤP,n(θ) are defined in (101) and (95), respectively. By Proposition 7, we know

that for any η > 0

QnBn(η){ = o(1).

Define the set

I1,n(δ, η) ≡
{∣∣∣∣∣∣̂IP,n(θ̃)− IP(θ)

∣∣∣∣∣∣
S
≤ η

∣∣∣∣IP(θ)−1
∣∣∣∣−1

S
, ∀ θ ∈ Ω(θ0, δ) and θ̃ ∈ Ω(θ, δ)

}
,

By Proposition 12, we know that for any η > 0 there exists δ > 0 such that

QnI1,n(δ, η){ = o

(
1

n

)
.

Define the set

En(δ) ≡
{
θ̂P ∈ Ω(θ0, δ)

}
.

By consistency of MLE for limited-information likelihoods, we know that

QnEn(δ){ = o(1).

Let

Kn(δ, η) ≡

{
πP(xn) ≤ (1 + η)

∫
Ω(θ0,δ)

πP(θ)πP(xn|θ)dθ

}
.

According to Proposition 21, we know that for any δ > 0 and η > 0 we have

QnKn(δ, η){ → 0.

We define

Mn(δ, η) ≡ An(η) ∩Bn(η) ∩ I1,n(δ, η) ∩ En(δ) ∩Kn(δ, η),

then, we have

QnMn(δ, η){ = o(1).

Let’s consider the decomposition

Qn {|Cn,3| > ε} ≤ QnMn(δ, η) ∩ {|Cn,3| > ε}+ QnMn(δ, η){.

Our strategy of proving the result (137) is to find random variables Cn,3 and Cn,3 such that

Cn,3 ≤ Cn,3 ≤ Cn,3 on An(η) (of course on) Mn(δ, η)
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and

Cn,3 → 0 in Qn and Cn,3 → 0 in Qn.

Thus, we have

lim sup
n→+∞

Qn {|Cn,3| > ε} ≤ lim sup
n→+∞

Qn0Mn(δ, η) ∩ {|Cn,3| > ε}

≤ lim sup
n→+∞

QnMn(δ, η) ∩
{

max{|Cn,3|, |Cn,3|} > ε
}

≤ lim sup
n→+∞

QnMn(δ, η) ∩
{
|Cn,3| > ε

}
+ lim sup

n→+∞
QnMn(δ, η) ∩

{
|Cn,3| > ε

}
= 0.

Now, let’s figure out the limits of Cn,3 and Cn,3. On the event Mn(δ, η), we have that

πP(θ(1)|xn) =

∫
Θ−1(θ(1))

πP(θ)πP(θ|xn)dθ(−1)∫
Θ πP(θ)πP(xn|θ)dθ

(138)

=

∫
Θ−1(θ(1))

πP(θ)πP(θ|xn)dθ(−1)∫
Ω(θ0,(1),r)

πP(θ)πP(xn|θ)dθ

(
1 +

∫
Ω(θ0,(1),r)

{ πP(θ)πP(xn|θ)dθ∫
Ω(θ0,(1),r)

πP(θ)πP(xn|θ)dθ

) (139)

≥

∫
Θ−1(θ(1))

πP(θ)πP(xn|θ)dθ(−1)

(1 + η)
∫

Ω(θ0,(1),r)
πP(θ)πP(xn|θ)dθ

(140)

Because θ̂P is the MLE for limited-information likelihood of baseline model Pθ, we have

πP(xn|θ) ≤ πP(xn|θ̂P) = exp

{
− ln

1

πP(xn|θ̂P)

}
= exp

{
−nĤP,n(θ̂P)

}
(141)

Thus, we have

πP(θ(1)|xn) ≥

∫
Θ−1(θ(1))

πP(θ)πP(xn|θ)dθ(−1)

(1 + η)πP(Ω(θ0,(1), r)) exp{−nĤP,n(θ̂P)}
(142)
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Plug (142) into the expression for Cn,3, we have

Cn,3 ≥
∫

Ω(θ0,(1),r)
c

πQ(θ(1)|xn,yn) ln

∫
Θ−1(θ(1))

πP(θ)πP(xn|θ)dθ(−1)

(1 + η)πP(Ω(θ0,(1), r)) exp{−nĤP,n(θ̂P)}
dθ(1)

≥
∫

Ω(θ0,(1),r)
{

∫
Θ−1(θ(1))

πQ(θ(1)|xn,yn)πP(θ(−1)|θ(1)) ln
[
πP(θ(1))πP(xn|θ)

]
dθ(1)dθ(−1)

−
∫

Ω(θ0,(1),r)
{
πP(θ(1)|xn,yn)

[
ln(1 + η) + lnπP(Ω(θ0,(1), r))− nHP,n(θ̂P)

]
dθ(1)

=

∫
Ω(θ0,(1),r)

{

∫
Θ−1(θ(1))

πQ(θ(1)|xn,yn)πP(θ(−1)|θ(1)) lnπP(θ(1))πP(xn|θ)dθ(1)dθ(−1)

− πP(Ω(θ0,(1), r)
{|xn,yn)

[
ln(1 + η) + lnπP(Ω(θ0,(1), r))− nĤP,n(θ̂P)

]
(143)

We define the term in (143) to be Cn,3. Thus, we can further decompose Cn,3 as follows,

Cn,3 = Cn,3,1 − Cn,3,2

where

Cn,3,1 =

∫
Ω(θ0,(1),r)

{

∫
Θ−1(θ(1))

πQ(θ(1)|xn,yn)πP(θ(−1)|θ(1)) ln
[
πP(θ(1))πP(xn|θ)

]
dθ(1)dθ(−1)

and

Cn,3,2 = πQ(Ω(θ0,(1), r)
{|xn,yn)

[
ln(1 + η) + lnπP(Ω(θ0,(1), r))− nĤP,n(θ̂P)

]
.

We have

|Cn,3,1| ≤

∣∣∣∣∣
∫

Ω(θ0,(1),r)
{

∫
Θ−1(θ(1))

πQ(θ(1)|xn,yn)πP(θ(−1)|θ(1)) lnπP(θ(1))dθ(1)dθ(−1)

∣∣∣∣∣
+

∣∣∣∣∣
∫

Ω(θ0,(1),r)
{

∫
Θ−1(θ(1))

πQ(θ(1)|xn,yn)πP(θ(−1)|θ(1)) lnπP(xn|θ)dθ(1)dθ(−1)

∣∣∣∣∣
≤
∫

Ω(θ0,(1),r)
{

∫
Θ−1(θ(1))

πQ(θ(1)|xn,yn)πP(θ(−1)|θ(1))
∣∣lnπP(θ(1))

∣∣ dθ(1)dθ(−1) (144)

+

∫
Ω(θ0,(1),r)

{

∫
Θ−1(θ(1))

πQ(θ(1)|xn,yn)πP(θ(−1)|θ(1))n|ĤP,n(θ)−HP(θ)|dθ(1)dθ(−1) (145)

+

∫
Ω(θ0,(1),r)

{

∫
Θ−1(θ(1))

πQ(θ(1)|xn,yn)πP(θ(−1)|θ(1))n|HP(θ)|dθ(1)dθ(−1) (146)

+ op(1).

The term (144) can be bounded from above by

M1

∫
Ω(θ0,(1),r)

{
πQ(θ(1)|xn,yn)dθ(1) = M1πQ(Ω(θ0,(1), r)

{|xn,yn)→ 0 in Qn, (147)
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where the existence of such constant M1 is due to the compactness of Θ ⊂ Rd and the continuity of

πP(θ(−1)|θ(1))| lnπP(θ(1))| and we have∫
Θ−1(θ(1))

πP(θ(−1)|θ(1))| lnπP(θ(1))|dθ(−1) ≤M1. (148)

The term (145), for large enough n, is bounded from above by

n

∫
Ω(θ0,(1),r)

{

∫
Θ−1(θ(1))

πQ(θ(1)|xn,yn)πP(θ(−1)|θ(1))dθ(1)dθ(−1), (149)

because

sup
θ∈Θ
|ĤP,n(θ)−HP(θ)| < 1 for large enough n. (150)

The term (149) can be further bounded from above by

M2n

∫
Ω(θ0,(1),r)

{
πQ(θ(1)|xn,yn)dθ(1) = M2nπQ(Ω(θ0,(1), r)

{|xn,yn)→ 0 in Qn, (151)

where the existence of such constant M2 is due to the compactness of the Θ ⊂ Rd and the continuity

of πP(θ(−1)|θ(1)) =
πP(θ(1),θ(−1))

πP(θ(1))
,

∫
Θ−1(θ(1))

πP(θ(−1)|θ(1))dθ(−1) ≤M2. (152)

The term (146) is bounded from above by

M3n

∫
Ω(θ0,(1),r)

{
πQ(θ(1)|xn,yn) = M3nπQ(Ω(θ0,(1), r)|xn,yn)→ 0 in Qn. (153)

Therefore, the term Cn,3,1 → 0 in Qn. It is straightforward to see that Cn,3,2 converges to zero in

probability, because nπQ(Ω(θ0,(1), r)|xn,yn)→ 0 in Qn and ĤP,n(θ̂P)→ HP(θ0) in Qn.

Now, let’s construct Cn,3 and show it indeed converges to zero in probability. By restricting the

domain to Ω(θ0, δ), we have

πP(θ|xn) ≤

∫
Θ−1(θ(1))

πP(θ)πP(xn|θ)dθ(−1)∫
Ω(θ0,δ)

πP(θ)πP(xn|θ)dθ
. (154)
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By Taylor expansion of lnπP(xn|θ) around θ̂P, we have

πP(θ|xn) ≤

∫
Θ−1(θ(1))

πP(θ)πP(xn|θ)dθ(−1)

mππP(xn|θ̂P)
∫

Ω(θ0,δ)
exp{−n(θ − θ̂P)T ÎP,n(θ̃)(θ − θ̂P)}dθ

≤

∫
Θ−1(θ(1))

πP(θ)dθ(−1)

mπ

∫
Ω(θ0,δ)

exp{−n(θ − θ̂P)T ÎP,n(θ̃)(θ − θ̂P)}dθ

≤ M4∫
Ω(θ0,δ)

exp{−n(θ − θ̂P)T ÎP,n(θ̃)(θ − θ̂P)}dθ

where θ̃ is on the segment between θ̂P and θ. And, the existence of the constant M4 such that∫
Θ−1(θ(1))

πP(θ)dθ(−1)

mπ
≤M4. (155)

Thus, we have

Cn,3 ≤
∫

Ω(θ0,(1),r)
{
πQ(θ(1)|xn,yn) ln

M4dθ(1)∫
Ω(θ0,δ)

exp{−n
2 (θ − θ̂P)T ÎP,n(θ̃)(θ − θ̂P)}dθ

(156)

We define Cn,3 to be the term on the right hand side of the inequality (156). On the event Mn(δ, η),

we have

(θ − θ̂P)T ÎP,n(θ̃)(θ − θ̂P) ≤ 2(θ − θ̂P)T IP(θ0)(θ − θ̂P)

and

Cn,3 ≤
∫

Ω(θ0,(1),r)
{
πQ(θ(1)|xn,yn) ln

M4dθ(1)∫
Ω(θ0,δ)

exp{−n(θ − θ̂P)T IP(θ0)(θ − θ̂P)}dθ

By the normal distribution and the
√
n− consistency of MLE θ̂P, we know that for any ν > 0, it

follows that

Qn

{∫
Ω(θ0,δ)

exp{−n(θ − θ̂P)T IP(θ0)(θ − θ̂P)}dθ∫
RDΘ exp{−n(θ − θ̂P)T IP(θ0)(θ − θ̂P)}dθ

< 1− ν

}
→ 0. (157)

Thus, we have

lim sup
n→+∞

Qn{|Cn,3| > ε}

≤ lim sup
n→+∞

Qn

{∫
Ω(θ0,(1),r)

{
πQ(θ(1)|xn,yn) ln

(1− ν)−1M4dθ(1)∫
RDΘ exp{−n(θ − θ̂P)T IP(θ0)(θ − θ̂P)}dθ

> ε

}

= lim sup
n→+∞

Qn

{∫
Ω(θ0,(1),r)

{
πQ(θ(1)|xn,yn)

∣∣∣∣∣ln M4(2π)DΘ/2

(1− ν)|2nIP(θ0)|1/2

∣∣∣∣∣ > ε

}

= lim sup
n→+∞

Qn

{
πQ(Ω(θ0,(1), r)

{|xn,yn)

∣∣∣∣∣ln M4(2π)DΘ/2

(1− ν)|2nIP(θ0)|1/2

∣∣∣∣∣ > ε

}
= 0,
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where the last limiting result is a direct implication of Proposition 18. Thus, Cn,3 → 0 in Qn.

Therefore, we have Cn,3 → 0 in Qn.

Step 3.2: We show Cn,2 goes to zero in Qn. The expression (135) for Cn,2 can be rewritten as

Cn,2 =πQ(Ω(θ0,(1), r)
{|xn,yn) ln

|nvT IP(θ0)v|1/2

(2π)1/2
−
∫

Ω(θ0,(1),r)
{
πQ(θ(1)|xn,yn)

n(θ(1) − θ̂P(1))
2

2vT IP(θ0)−1v
dθ(1)

Thus, the term Cn,2 can be decomposed as follows

Cn,2 = πQ(Ω(θ0,(1), r)
{|xn,yn) ln

|nvT IP(θ0)v|1/2

(2π)1/2
(158)

−
∫

Ω(θ0,(1),r)
{

[
πQ(θ(1)|xn,yn)− ϕQ(θ(1)|xn,yn)

] n(θ(1) − θ̂P(1))
2

2vT IP(θ0)v
dθ(1) (159)

−
∫

Ω(θ0,(1),r)
{
ϕQ(θ(1)|xn,yn)

n(θ(1) − θ̂P(1))
2

2vT IP(θ0)−1v
dθ(1) (160)

It is easy to see that the first term (158) goes to zero in Qn. The second term (159) and the third

term (160) go to zero in probability according to Theorem 1 and Proposition 1 in Chernozhukov and

Hong (2003) and the fact that n(θ̂Q − θ̂P)2 = Op(1). Therefore, we have shown that Cn,2 → 0 in Qn.

Step 3.3: We need to prove Cn,1 goes to zero in Qn. According to Corollary 5, we know that for

any η > 0 there exists δ0 > 0 such that

PnIn(δ0, η)→ 1, as n→∞,

with

In(δ0, η) ≡
{

1− η ≤
∣∣∣∣∣∣IP(θ0)−1/2ÎP,n(θ̃)IP(θ0)−1/2

∣∣∣∣∣∣
S
≤ 1 + η, for all θ̃ ∈ Ω(θ0, δ0)

}
.

Also, by the continuity and positivity of the prior density πP(θ), we know that for any η > 0,

there exists δ1 small enough it holds that 1 − η ≤ πP(θ)/πP(θ′) ≤ 1 + η for all θ, θ′ ∈ Ω(θ0, δ1).

According to the consistency of MLE θ̂P, we shall only focus on the event An(δ) ≡ θ̂P ∈ Ω(θ0, δ) with

δ = min(δ0, δ1). On the joint large probability event In(δ, η) ∩An(η), we have for each θ ∈ Ω(θ0, r)

with r < δ, when n is large enough,

πP(θ|xn) ≤ πP(θ)πP(xn|θ)∫
Ω(θ0,r)

πP(ϑ)πP(xn|ϑ)dϑ
≤ (1 + η)2

[
n(1 + η)

2π

]DΘ/2

[detIP(θ0)]1/2 e−
1
2

(1−η)n(θ−θ̂P)T IP(θ0)(θ−θ̂P).
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On the event In(δ, η) ∩An(η) we have

Cn,1 ≥
∫

Ω(θ0,(1),r)
πQ(θ(1)|xn,yn) ln

1√
2πn−1|vT IP(θ0)−1v|

dθ(1)

−
∫

Ω(θ0,(1),r)
πQ(θ(1)|xn,yn)

n(θ(1) − θ̂P(1))
2

2vT IP(θ0)−1v
dθ(1)

−
∫

Ω(θ0,(1),r)
πQ(θ(1)|xn,yn) ln

[∫
Θ−1(θ(1))

e−
n
2

(1−η)(θ−θ̂P)T IP(θ0)(θ−θ̂P) [(1− η)n]DΘ/2 [detIP(θ0)]1/2

(2π)DΘ/2
dθ(−1)

]
dθ(1)

−
[
DΘ

2
+ 2

]
ln (1 + η) +

DΘ

2
ln (1− η) .

There exists open square centered at θ0 which is denoted as O = Ω(θ0,(1), r)⊗ Ω(θ0,(−1), δ). First,

we have

∫
Θ−1(θ(1))

e−
n
2

(1−η)(θ−θ̂P)T IP(θ0)(θ−θ̂P) [(1− η)n]DΘ/2 [detIP(θ0)]1/2

(2π)DΘ/2
dθ(−1) ≤

e
−(1−η)

n(θ(1)−θ̂
P
(1)

)2

2vT IP(θ0)−1v√
2πn−1vT IP(θ0)−1v/(1− η)

.

Thus, on the large probability event In(δ, η) ∩An(η) we have, when n is large

Cn,1 ≥−
[
DΘ

2
+ 2

]
ln(1 + η) +

[
DΘ − 1

2

]
ln(1− η) + η

∫
Ω(θ0,(1),r)

πQ(θ(1)|xn,yn)
n(θ(1) − θ̂P(1))

2

2vT IP(θ0)−1v
dθ(1).

According to Theorem 1 and Proposition 1 of Chernozhukov and Hong (2003), we know that

∫
Ω(θ0,(1),r)

πQ(θ(1)|xn,yn)
n(θ(1) − θ̂P(1))

2

2vT IP(θ0)−1v
dθ(1) = Op(1).

Therefore, it follows that

Cn,1 ≥ −
[
DΘ

2
+ 2

]
ln(1 + η) +

[
DΘ − 1

2

]
ln(1− η) + ηOp(1). (161)

On the other hand, by Proposition 21, we know that for any η′ > 0 and δ′ > 0

PnXn(δ′, η′)→ 1, as n→∞,

with

Xn(δ′, η′) ≡

{
πP(xn) ≤ (1 + η′)

∫
Ω(θ0,δ′)

πP(θ)πP(xn|θ)dθ

}
.
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Then, on the large probability event In(δ, η) ∩An(η) ∩ Xn(δ, η) and taking r < δ, it holds that

Cn,1 =

∫
Ω(θ0,(1),r)

πQ(θ(1)|xn,yn)

[
ln

ϕP(θ(1)|xn)πP(xn)∫
Θ−1(θ(1))

πP(θ)πP(xn|θ)dθ(−1)

]
dθ(1)

≤
∫

Ω(θ0,(1),r)
πQ(θ(1)|xn,yn) ln

 (2π)−1/2|n−1vT IP(θ0)−1v|−1/2e
−
n(θ(1)−θ̂

P
(1)

)2

2vT IP(θ0)−1v∫
Θ−1(θ(1))

(1− η)e−(1+η)n
2

(θ−θ̂P)T IP(θ0)(θ−θ̂P)dθ(−1)

dθ(1)

+

∫
Ω(θ0,(1),r)

πQ(θ(1)|xn,yn) ln

[∫
Ω(θ0,δ)

(1 + η)e−(1−η)n
2

(ϑ−θ̂P)T IP(θ0)(ϑ−θ̂P)dϑ

]
dθ(1).

Calculating the integrations, we have

Cn,1 ≤
DΘ + 1

2
ln(1 + η)− DΘ + 2

2
ln(1− η)− inf

θ(1)∈Ω(θ0,(1),r)
ln Φn(Θ−1(θ(1))|θ(1)) + η

∫
πQ(θ(1)|xn,yn)

n(θ(1) − θ̂P(1))
2

2vT IP(θ0)v
dθ.

where Φn(·|θ(1)) is the multivariate normal probability measure on RDΘ−1 and effectively it is the

conditional distribution of θ(−1) given θ(1) where θ = (θ(1), θ(−1)) ∼ N(θ̂P, (1 + η)−1n−1IP(θ0)−1).

In fact, Φn(·|θ(1)) is multivariate normal with distribution

N
(
θ̂P(−1) + Σ21Σ−1

11 (θ(1) − θ̂P(1)), (1 + η)−1n−1(Σ22 − Σ21Σ−1
11 Σ12)

)
with

IP(θ0)−1 =

[
Σ11 Σ12

Σ21 Σ22

]
.

We choose δ and r small enough such that θ̂P(−1)+Σ21Σ−1
11 (θ(1)−θ̂P(1)) is in the interior of Θ−1(θ(1)) and

there exists τ0 > 0 such that dL(θ̂P(−1) + Σ21Σ−1
11 (θ(1) − θ̂P(1)), ∂Θ−1(θ(1))) > τ0 for all θ(1) ∈ Ω(θ0,(1)).

Thus,

inf
θ(1)∈Ω(θ0,(1),r)

Φn(Θ−1(θ(1))|θ(1))→ 1.

Therefore, when n is large enough, we have

inf
θ(1)∈Ω(θ0,(1),r)

Φn(Θ−1(θ(1))|θ(1)) >
1

2
ln(1− η).

And hence, we have

Cn,1 ≤
DΘ + 1

2
ln(1 + η)− DΘ + 3

2
ln(1− η) + η

∫
πQ(θ(1)|xn,yn)

n(θ(1) − θ̂P(1))
2

2vT IP(θ0)v
dθ.

According to Theorem 1 and Proposition 1 of Chernozhukov and Hong (2003), we know that

∫
πQ(θ(1)|xn,yn)

n(θ(1) − θ̂P(1))
2

2vT IP(θ0)v
dθ = Op(1).
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Therefore, we can get

Cn,1 ≤
DΘ + 1

2
ln(1 + η)− DΘ + 3

2
ln(1− η) + ηOp(1). (162)

Combine the bounds in (161) and (162) where the constant η can be arbitrarily small, we know

that Cn,1 → 0 in Qn.

1.11 Proof of Theorem 3

Because of Assumption FF and the assumptions in Subsection 1.4 are invariant under invertible

and second-order smooth transformations, without loss of generality, we assume that f(θ) = θ(1)

and hence v = (1, 0, · · · , 0)T . We want to show when m and n go to infinity and m/n→ %, we have

for any ε > 0 that

lim sup
n→+∞

Pn
{∣∣∣∣∫ πP(θ|xn)

∫
π(x̃m|θ) ln

πP(x̃m|xn)

πP(x̃m|θ(1))
dx̃mdθ − 1

2
ln

n

m+ n

∣∣∣∣ > ε

}
< ε.

Denote

Rn ≡
∫
πP(θ|xn)

∫
π(x̃m|θ) ln

πP(x̃m|xn)

πP(x̃m|θ(1))
dx̃mdθ − 1

2
ln

n

m+ n
.

Then, we are going to show for any ε > 0 it holds that

lim sup
n→+∞

Pn {|Rn| > ε} < ε (163)

We can further decompose Rn as follows:

Rn =

∫
πP(θ(1)|xn) ln

πP(θ(1)|xn)

πP(θ(1))
dθ(1) (164)

+

∫
πP(θ|xn)

∫
πP(x̃m|θ) ln

∫
πP(x̃m,xn|θ′)πP(θ′)dθ′

πP(x̃m,xn|θ)
dx̃mdθ (165)

−
∫
πP(θ|xn)

∫
πP(x̃m|θ) ln

∫
πP(x̃m,xn|θ(1), θ

′
(−1))πP(θ′(−1)|θ(1))dθ

′
(−1)

πP(x̃m,xn|θ)
dx̃mdθ (166)

− 1

2
ln

n

m+ n
.

We denote the term in (164) as Rn,1, denote the term in (165) as Rn,2, and denote the term in (166)

as Rn,3.

For the term Rn,1, we can further decompose it as follows

Rn,1 =

∫
πP(θ(1)|xn) ln

πP(θ(1)|xn)

ϕ(θ(1)|xn)
dθ(1) +

1

2
ln (n)− 1

2
ln
(
2πvT IP(θ0)−1v

)
−
∫
πP(θ(1)|xn)

n(θ(1) − θ̂P(1))
2

2vT IP(θ0)−1v
dθ(1) −

∫
πP(θ(1)|xn) lnπP(θ(1))dθ(1),
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where

ϕP(θ(1)|xn) =
1√

2π 1
nvT IP(θ0)−1v

exp

{
− 1

2 1
nvT IP(θ0)−1v

(θ(1) − θ̂P(1))
2

}
.

According to Corollary 3, we know that∫
πP(θ(1)|xn) ln

πP(θ(1)|xn)

ϕ(θ(1)|xn)
dθ(1) → 0 in Pn. (167)

The same argument as in proving the weak convergence of the term involving Bn in (127) can be

used to show that ∫
πP(θ(1)|xn)

n(θ(1) − θ̂P(1))
2

2vT IP(θ0)−1v
dθ(1) →

1

2
in Pn. (168)

Note that the prior πP(θ(1)) is assumed to be continuous on the compact domain. Again, because of

Corollary 3 and the fact that total variation distance is bounded by relative entropy, we know that∫
πP(θ(1)|xn) lnπP(θ(1))dθ(1) → lnπP(θ0,(1)) in Pn. (169)

Thus, following (167 – 169), it holds that

Rn,1 −
1

2
ln(n)− 1

2
ln (2π)− 1

2
ln
(
vT IP(θ0)−1v

)
− 1

2
− lnπP(θ0,(1))→ 0 in Pn. (170)

We shall also show that, in Pn,

Rn,2 +
DΘ

2
ln(n+m)− DΘ

2
ln (2π)− 1

2
ln det

[
IP(θ0)−1

]
− lnπP(θ0)− DΘ

2
→ 0. (171)

and

Rn,3 +
DΘ − 1

2
ln(n+m)− DΘ − 1

2
ln (2π)− 1

2
ln

det
[
IP(θ0)−1

]
vT IP(θ0)−1v

− lnπP(θ0,(−1)|θ0,(1))−
DΘ − 1

2
→ 0 in Pn.

(172)

Combining the weak convergence results (170 – 172), we can achieve the weak convergence of Rn,

or equivalently the result in (163).

The proofs of the result (171) and the result (172) are quite similar, though the proof of the

result (172) is a little bit more involving. Without tedious repeating the same proofs, we shall only

provide the proof for the result (172). We further define the left-hand side of (172) as R∗n,3, that is,

R∗n,3 ≡ Rn,3 +
DΘ − 1

2
ln(n+m)− DΘ − 1

2
ln (2π)− 1

2
ln

det
[
IP(θ0)−1

]
vT IP(θ0)−1v

− lnπP(θ0,(−1)|θ0,(1))−
DΘ − 1

2
.

(173)
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In the rest of the proof, we shall show that for any ε > 0, it holds that

lim sup
n→+∞

Pn
{
|R∗n,3| > ε

}
< ε (174)

Step 1: We first define the big probability events which we shall focus on in order to show (174).

We define the big probability event

An(θ0, δ, ξ) ≡
{
πP(Ω(θ0, δ)

{|xn) ≤ e−ξn
}
. (175)

According to Theorem 1 and Proposition 3 in Chernozhukov and Hong (2003), we know that it

suffices to show that

lim sup
n→+∞

PnAn(θ0, δ, ξ)
{
|R∗n,3| > ε

}
< ε. (176)

Define the sets

I1,n(δ, η) ≡
{∣∣∣∣∣∣̂IP,n(θ̃)− IP(θ)

∣∣∣∣∣∣
S
≤ η

∣∣∣∣IP(θ)−1
∣∣∣∣−1

S
, ∀ θ ∈ Ω(θ0, δ) and θ̃ ∈ Ω(θ, δ)

}
,

I2,m(θ, δ, η) ≡
{∣∣∣∣∣∣̂IP,m(θ̃)− IP(θ)

∣∣∣∣∣∣
S
≤ η

∣∣∣∣IP(θ)−1
∣∣∣∣−1

S
, ∀ θ̃ ∈ Ω(θ, δ)

}
.

Appealing to Propositions 12, we know that for any η > 0 there exists small enough positive

constants δ1 and δ such that

PnI1,n(δ, η){ = o

(
1

n

)
and sup

θ∈Ω(θ0,δ1)
Pθ,mI2,m(θ, δ, η){ = o

(
1

m

)
.

Define

H1,n(δ) ≡
{∣∣∣ĤP,n(θ̂P)−H(θ0)

∣∣∣ < δ
}
, and H2,n(δ) ≡

{
sup
θ∈Θ

∣∣∣ĤP,n(θ)−H(θ)
∣∣∣ < δ

}
.

According to Proposition 7, we know that

PnH1,n(δ){ = o(1) and PnH2,n(δ){ = o(1).

Define

Bm(θ, δ, ξ) ≡

{
πP(xm|θ) > eξm

∫
Ω(−1)(θ,δ)

{
πP(θ′(−1)|θ(1))πP(xm|θ(1), θ

′
(−1))dθ

′
(−1)

}
. (177)

According to Proposition 16, for any δ0 ∈ (0, δ), there exists ξ > 0 such that

sup
θ∈Ω(θ0,δ0)

Pθ,mBm(θ, δ, ξ){ = O(e−ξm).
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Define

Cm(θ, δ, ξ) ≡

{
πP(xm|θ) < eξm

∫
Ω(θ,δ)

πP(θ′(−1)|θ(1))πP(xm|θ(1), θ
′
(−1))dθ

′
(−1)

}
. (178)

According to Proposition 19, for any δ0 ∈ (0, δ), there exists ξ > 0 such that

sup
θ∈Ω(θ0,δ0)

Pθ,mCm(θ, δ0, ξ)
{ = o

(
1

n

)
.

We define

Ln(δ, η) ≡
{
sP,n(θ)T IP(θ)−1sP,n(θ) < η, ∀ θ ∈ Ω(θ0, δ)

}
. (179)

According to Proposition 13, we know that for any η > 0, there exists δ > 0 such that

PnLn(δ, η){ = o(1).

Step 2: We capture the asymptotically essential component in Rn,3. For any η ∈ (0, 1/2),

according to the discussion in Step 1, we know that there exists δ, δ1 ∈ (0, η) such that

PnI1,n(δ, η){ = o

(
1

n

)
and sup

θ∈Ω(θ,δ1)
Pθ,mI2,m(θ, δ, η){ = o

(
1

m

)
.

For the given δ above, we know that there exist positive constants δ2 < δ, ξ1 and ξ2 such that

sup
θ∈Ω(θ0,δ2)

Pθ,mBm(θ, δ, ξ1/%){ ≤ e−ξ2m and sup
θ∈Ω(θ0,δ2)

Pθ,mCm(θ, δ, ξ1/8){ = o

(
1

m

)
where Bm(θ, δ, ξ1) and Cm(θ, δ, ξ1) are defined in (177) and (178), respectively. Because HP(θ) is

continuous in θ, then there exists δ3 > 0 such that

sup
θ∈Ω(θ0,δ3)

|HP(θ)−HP(θ0)| < ξ1/8.

For the given δ, according to Proposition 13, we know that there exists δ4 > 0 such that

PnLn(δ0,
1

2
λδ2η){ = o(1).

We choose δ0 ≡ min{δ1, δ2, δ3, δ4}. According to Proposition 16, there exist ξ0 > 0 such that

PnAn(δ0, ξ0){ ≤ e−ξ0n. By restricting on the event

Mn ≡ An(θ0, δ0, ξ0) ∩H1,n(ξ1/8) ∩H2,n(ξ1/8) ∩ I1,n(δ, η) ∩ Ln(δ0,
1

2
λδ2η)
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and then focusing on the event, for a given θ ∈ Ω(θ0, δ0),

Nm(θ) ≡ Bm(θ, δ, ξ1) ∩ I2,m(θ, δ, η) ∩ Cm(θ, δ, ξ1).

We show that the following term, denoted as Ren,3, is the asymptotically essential term of Rn,3

∫
Ω(θ0,δ0)

πP(θ|xn)

∫
Nm(θ)

πP(x̃m|θ) ln

∫
Ω(−1)(θ,δ)

πP(x̃m,xn|θ(1), θ
′
(−1))πP(θ′(−1)|θ(1))dθ

′
(−1)

πP(x̃m,xn|θ)
dx̃mdθ.

(180)

That is, there exists a function a(η) with limη→0 a(η) = 0 such that on the event Mn

|Rn,3 −Ren,3| ≤ a(η) + op(1).

We consider the decomposition∫
πP(x̃m,xn|θ(1), θ

′
(−1))πP(θ′(−1)|θ(1))dθ

′
(−1)

πP(x̃m,xn|θ)
(181)

=

(∫
Ω(−1)(θ,δ)

+
∫

Ω(−1)(θ,δ)
{

)
πP(x̃m,xn|θ(1), θ

′
(−1))πP(θ′(−1)|θ(1))dθ

′
(−1)

πP(x̃m,xn|θ)

On the event Mn and Nm(θ), we know that the second term in the log term of (181) can be upper

bounded by

πP(xn|θ(1), θ
′
(−1))

πP(xn|θ(1), θ(−1))
= e
−n

[
ĤP,n(θ(1),θ

′
(−1)

)−ĤP,n(θ(1),θ(−1))
]
≤ e−n

[
HP(θ(1),θ

′
(−1)

)−HP(θ(1),θ(−1))
]
+nξ1/4

≤ e−n
[
HP(θ(1),θ

′
(−1)

)−HP(θ0,(1),θ0,(−1))
]
+nξ13/8 ≤ enξ13/8.

Thus, we have on the event Mn and Nm(θ)∫
Ω(−1)(θ,δ)

{ πP(x̃m,xn|θ(1), θ
′
(−1))πP(θ′(−1)|θ(1))dθ

′
(−1)

πP(x̃m,xn|θ)

≤ enξ13/8

∫
Ω(−1)(θ,δ)

{ πP(x̃m|θ(1), θ
′
(−1))πP(θ′(−1)|θ(1))dθ

′
(−1)

πP(x̃m|θ(1), θ(−1))
≤ e−nξ15/8.

On the other hand, we have on the event Mn and Nm(θ)

πP(xn|θ(1), θ
′
(−1))

πP(xn|θ(1), θ(−1))
= e
−n

[
ĤP,n(θ(1),θ

′
(−1)

)−ĤP,n(θ(1),θ(−1))
]
≥ e−n

[
HP(θ(1),θ

′
(−1)

)−HP(θ(1),θ(−1))
]
−nξ1/4 ≥ e−nξ13/8.
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Thus, we have on the event Mn and Nm(θ)∫
Ω(−1)(θ,δ)

πP(x̃m,xn|θ(1), θ
′
(−1))πP(θ′(−1)|θ(1))dθ

′
(−1)

πP(x̃m,xn|θ)

≥ e−nξ13/8

∫
Ω(−1)(θ,δ)

πP(x̃m|θ(1), θ
′
(−1))πP(θ′(−1)|θ(1))dθ

′
(−1)

πP(x̃m|θ(1), θ(−1))
≥ e−nξ1/2.

Therefore, on the event Mn and Nm(θ), for the positive constant η > 0, we know that when n is

large enough, it holds that∫
πP(x̃m,xn|θ(1), θ

′
(−1))πP(θ′(−1)|θ(1))dθ

′
(−1)

πP(x̃m,xn|θ)
≤ (1 + η)

∫
Ω(−1)(θ,δ)

πP(x̃m,xn|θ(1), θ
′
(−1))πP(θ′(−1)|θ(1))dθ

′
(−1)

πP(x̃m,xn|θ)

Because HP(θ) is continuous on Θ, we can define

MH ≡ sup
θ∈Θ

HP(θ)− inf
θ∈Θ

HP(θ). (182)

Then, on the event Mn, we have |Rn,3 −Ren,3| is upper bounded by

∫
Ω(θ0,δ0)

πP(θ|xn)

∫
Nm(θ){

πP(x̃m|θ)

∣∣∣∣∣ln
∫

Ω(−1)(θ,δ)
πP(x̃m,xn|θ(1), θ

′
(−1))πP(θ′(−1)|θ(1))dθ

′
(−1)

πP(x̃m,xn|θ)

∣∣∣∣∣dx̃mdθ

+ ln(1 + η) + πP(Ω(θ0, δ0){|xn)(m+ n)MH .

The first term in the long expression above is upper bounded by

(m+ n)MH sup
θ∈Ω(θ0,δ0)

Pθ,mNm(θ){

≤ (m+ n)MH

[
sup

θ∈Ω(θ0,δ0)
Pθ,mBm(θ, δ, ξ1/%){ + sup

θ∈Ω(θ0,δ0)
Pθ,mI2,m(θ, δ, η){ + sup

θ∈Ω(θ0,δ0)
Pθ,mCm(θ, δ, ξ1/8){

]
= o(1).

On the set Mn, we know that

πP(Ω(θ0, δ0){|xn)(m+ n)MH = O
(
ne−ξ0n

)
. (183)

Therefore, by the arbitrariness of positive constant η, we know that the asymptotically essential

component of Rn,3 is Ren,3 with expression

∫
Ω(θ0,δ0)

πP(θ|xn)

∫
Nm(θ)

πP(x̃m|θ) ln

∫
Ω(−1)(θ,δ)

πP(x̃m,xn|θ(1), θ
′
(−1))πP(θ′(−1)|θ(1))dθ

′
(−1)

πP(x̃m,xn|θ)
dx̃mdθ
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Step 3: We first show that the term R∗n,3 is upper-bounded, asymptotically, by zero.

Step 3.1: We find the upper bound for the log term in the expression of Ren,3 when xn ∈ Mn,

θ ∈ Ω(θ0, δ0) and x̃m ∈ Nm(θ). By Taylor’s expansion, we have

ln

∫
Ω(−1)(θ,δ)

πP(x̃m,xn|θ(1), θ
′
(−1))

πP(x̃m,xn|θ(1), θ(−1))
πP(θ′(−1)|θ(1))dθ

′
(−1)

= ln

∫
Ω(−1)(θ,δ)

e(θ′−θ)T [nsP,n(θ)+msP,m(θ)]− 1
2

(θ′−θ)T [nÎP,n(θ̃)+mÎP,m(θ̃)](θ′−θ)πP(θ′(−1)|θ(1))dθ
′
(−1),

where θ̃ is between θ′ and θ, and

θ′ ≡

(
θ(1)

θ′(−1)

)
, (184)

and

sP,n(θ) ≡ 1

n

n∑
t=1

∇ lnπP(xt; θ), and sP,m(θ) ≡ 1

m

m∑
t=1

∇ lnπP(x̃t; θ),

and

ÎP,n(θ) ≡ − 1

n

n∑
t=1

∇2 lnπP(xt; θ), and ÎP,m(θ) ≡ − 1

m

m∑
t=1

∇2 lnπP(x̃t; θ).

Let’s define

ρ(δ) ≡ sup
θ∈Ω(θ0,2δ)

∣∣∣∣ln πP(θ(−1)|θ(1))

πP(θ0,(−1)|θ0,(1))

∣∣∣∣ . (185)

Because θ ∈ Ω(θ0, δ0) and θ′(−1) ∈ Ω(−1)(θ, δ) imply that θ′ ∈ Ω(θ0, 2δ), we know that

ln

∫
Ω(−1)(θ,δ)

πP(x̃m,xn|θ(1), θ
′
(−1))

πP(x̃m,xn|θ(1), θ(−1))
πP(θ′(−1)|θ(1))dθ

′
(−1)

≤ ln

∫
Ω(−1)(θ,δ)

e(θ′−θ)T [nsP,n(θ)+msP,m(θ)]− 1
2

(θ′−θ)T [nÎP,n(θ̃)+mÎP,m(θ̃)](θ′−θ)dθ′(−1) + lnπP(θ0,(−1)|θ0,(1)) + ρ(δ).

It is obvious that ρ(·) is increasing a univariate increasing function. Then, ρ(δ) ≤ ρ(η) since δ < η.

Thus, we have

ln

∫
Ω(−1)(θ,δ)

πP(x̃m,xn|θ(1), θ
′
(−1))

πP(x̃m,xn|θ(1), θ(−1))
πP(θ′(−1)|θ(1))dθ

′
(−1)

≤ ln

∫
Ω(−1)(θ,δ)

e(θ′−θ)T [nsP,n(θ)+msP,m(θ)]− 1
2

(θ′−θ)T [nÎP,n(θ̃)+mÎP,m(θ̃)](θ′−θ)dθ′(−1) + lnπP(θ0,(−1)|θ0,(1)) + ρ(η),

where the function ρ(η) is defined in (185). On the event I1,n(δ, η), we have for all θ ∈ Ω(θ0, δ0)

(θ′ − θ)T ÎP,n(θ′ − θ) ≥ (1− η)(θ′ − θ)T IP(θ)(θ′ − θ).
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On the event I2,m(θ, δ, η), we have

(θ′ − θ)T ÎP,m(θ′ − θ) ≥ (1− η)(θ′ − θ)T IP(θ)(θ′ − θ).

Thus, it follows that

ln

∫
Ω(−1)(θ,δ)

πP(x̃m,xn|θ(1), θ
′
(−1))

πP(x̃m,xn|θ(1), θ(−1))
πP(θ′(−1)|θ(1))dθ

′
(−1)

≤ ln

∫
Ω(−1)(θ,δ)

e(θ′−θ)T [nsP,n(θ)+msP,m(θ)]− 1
2

(1−η)(θ′−θ)T [nIP(θ)+mIP(θ)](θ′−θ)dθ′(−1) + lnπP(θ0,(−1)|θ0,(1)) + ρ(η),

where the function ρ(η) is defined in (185).

Denote

α =
n

n+m
.

Let’s consider the following identities

(θ′ − θ)T [αsP,n(θ) + (1− α)sP,m(θ)]− 1

2
(1− η)(θ′ − θ)T IP(θ)(θ′ − θ)

= −1− η
2

(θ′ − u)T IP(θ)(θ − u) +
1

2(1− η)
[αsP,n(θ) + (1− α)sP,m(θ)]T IP(θ)−1[αsP,n(θ) + (1− α)sP,m(θ)]

where

u ≡ θ +
1

1− η
IP(θ)−1[αsP,n(θ) + (1− α)sP,m(θ)]. (186)

Therefore, we have

ln

∫
Ω(−1)(θ,δ)

πP(x̃m,xn|θ(1), θ
′
(−1))

πP(x̃m,xn|θ(1), θ(−1))
πP(θ′(−1)|θ(1))dθ

′
(−1) + lnπP(θ0,(−1)|θ0,(1)) + ρ(η)

≤ ln

∫
Ω(−1)(θ,δ)

e−
m+n

2
(1−η)(θ′−u)T IP(θ)(θ′−u)dθ′(−1) +

m+ n

2(1− η)
[αsP,n(θ) + (1− α)sP,m(θ)]T IP(θ)−1[αsP,n(θ) + (1− α)sP,m(θ)],

where the function ρ(η) is defined in (185). Further, we have∫
Ω(−1)(θ,δ)

e−
m+n

2
(1−η)(θ′−u)T IP(θ)(θ′−u)dθ′(−1) ≤

∫
Rd−1

e−
m+n

2
(1−η)(θ′−u)T IP(θ)(θ′−u)dθ′(−1)

=
(2π)DΘ/2|(1− η)−1IP(θ)−1|1/2

(m+ n)DΘ/2

∫
RDΘ−1

(m+ n)DΘ/2

(2π)DΘ/2|(1− η)−1IP(θ)−1|1/2
e−

m+n
2

(1−η)(θ′−u)T IP(θ)(θ′−u)dθ′(−1)
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Thus, we can obtain∫
Ω(−1)(θ,δ)

e−
m+n

2
(1−η)(θ′−u)T IP(θ)(θ′−u)dθ′(−1)

≤
(2π)DΘ/2

[
detIP(θ)−1

]1/2
(1− η)DΘ/2(m+ n)DΘ/2

(m+ n)1/2

(2π)1/2|(1− η)−1vT IP(θ)−1v|1/2
e
−m+n

2
(1−η)

(
θ′
(1)
−u(1)

)2

vT IP(θ)−1v

=

(
2π

m+ n

)DΘ−1

2
[
detIP(θ)−1

]1/2
|vT IP(θ)−1v|1/2

e
−m+n

2
(1−η)

(
θ′
(1)
−u(1)

)2

vT IP(θ)−1v (1− η)−
DΘ−1

2 .

Therefore,

ln

∫
Ω(−1)(θ,δ)

πP(x̃m,xn|θ(1), θ
′
(−1))

πP(x̃m,xn|θ(1), θ(−1))
πP(θ′(−1)|θ(1))dθ

′
(−1)

≤ DΘ − 1

2
ln

(
2π

m+ n

)
+

1

2
ln

det
[
IP(θ)−1

]
|vT IP(θ)−1v|

− m+ n

2
(1− η)

(
θ′(1) − u(1)

)2

vT IP(θ)−1v

+
m+ n

2(1− η)
[αsP,n(θ) + (1− α)sP,m(θ)]T IP(θ)−1[αsP,n(θ) + (1− α)sP,m(θ)] (187)

+ lnπP(θ0,(−1)|θ0,(1)) + ρ(η)− DΘ − 1

2
ln(1− η), (188)

where ρ(η) is the function defined in (185).

Step 3.2: We find the upper bound for the asymptotically essential term of Ren,3. We take

integrations over θ and x̃m in (180) over each term on the right hand side of the inequality (187).

∫
Ω(θ0,δ0)

πP(θ|xn)

∫
Nm(θ)

πP(x̃m|θ)DΘ − 1

2
ln

(
2π

m+ n

)
dx̃mdθ ≤ DΘ − 1

2
ln

(
2π

m+ n

)
and ∫

Ω(θ0,δ0)
πP(θ|xn)

∫
Nm(θ)

πP(x̃m|θ)1

2
ln

det
[
IP(θ)−1

]
|vT IP(θ)−1v|

dx̃mdθ ≤ 1

2
ln

det
[
IP(θ0)−1

]
|vT IP(θ0)−1v|

+ η
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and

∫
Ω(θ0,δ0)

πP(θ|xn)

∫
Nm(θ)

πP(x̃m|θ)

−m+ n

2

(
θ′(1) − u(1)

)2

vT IP(θ)−1v

dx̃mdθ

=

∫
Ω(θ0,δ0)

πP(θ|xn)

∫
Xm

πP(x̃m|θ)

−m+ n

2

(
θ′(1) − u(1)

)2

vT IP(θ)−1v

dx̃mdθ

−
∫

Ω(θ0,δ0)
πP(θ|xn)

∫
Nm(θ){

πP(x̃m|θ)

−m+ n

2

(
θ′(1) − u(1)

)2

vT IP(θ)−1v

dx̃mdθ

=

∫
Ω(θ0,δ0)

πP(θ|xn)

∫
Xm

πP(x̃m|θ)

−m+ n

2

(
θ′(1) − u(1)

)2

vT IP(θ)−1v

dx̃mdθ + o(1),

and recall the definition of θ′ in (184) which implies that θ
′

(1) ≡ θ(1) and remember the definition of

u in (186), we have

∫
Xm

πP(x̃m|θ)

−m+ n

2

(
θ′(1) − u(1)

)2

vT IP(θ)−1v

dx̃m

= −vT IP(θ)−1

{∫
Xm

πP(x̃m|θ)
[
αsP,n(θ) + (1− α)sP,m(θ)

] [
αsP,n(θ) + (1− α)sP,m(θ)

]T
dx̃m

}
IP(θ)−1v

×
[
2(m+ n)−1(1− η)2vT IP(θ)−1v

]−1

= −
vT IP(θ)−1

{
α2sP,n(θ)sP,n(θ)T + (1− α)2IP(θ)/m

}
IP(θ)−1v

2(m+ n)−1(1− η)2vT IP(θ)−1v

= − α

(1− η)2

vT IP(θ)−1SP,n(θ)SP,n(θ)T IP(θ)−1v

2vT IP(θ)−1v
− 1− α

2(1− η)2
,

Thus,

∫
Ω(θ0,δ0)

πP(θ|xn)

∫
Nm(θ)

πP(x̃m|θ)

−m+ n

2
(1− η)

(
θ′(1) − u(1)

)2

vT IP(θ)−1v

dx̃mdθ

= − α

2(1− η)

∫
Ω(θ0,δ0)

πP(θ|xn)
vT IP(θ)−1SP,n(θ)SP,n(θ)T IP(θ)−1v

vT IP(θ)−1v
dθ − 1− α

2(1− η)
+ o(1)

≤ −α
2
− 1− α

2(1− η)
+ o(1) ≤ −1

2
+ o(1),
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and∫
Ω(θ0,δ0)

πP(θ|xn)

∫
Nm(θ)

πP(x̃m|θ) m+ n

2(1− η)
[αsP,n(θ) + (1− α)sP,m(θ)]T IP(θ)−1[αsP,n(θ) + (1− α)sP,m(θ)]dx̃mdθ

=
α

2(1− η)

∫
Ω(θ0,δ0)

πP(θ|xn)SP,n(θ)T IP(θ)−1SP,n(θ)dθ +
1− α

2(1− η)
DΘ + o(1)

≤ α

2(1− η)

∫
Ω(θ0,δ0)

πP(θ|xn)SP,n(θ)T IP(θ)−1SP,n(θ)dθ +
1− α

2
DΘ +DΘη + o(1)

≤ α(DΘ + η)

2(1− η)
+

1− α
2

DΘ +DΘη + o(1)

≤ DΘ

2
+ (α+DΘ + αDΘ)η + o(1).

and ∫
Ω(θ0,δ0)

πP(θ|xn)

∫
Nm(θ)

πP(x̃m|θ)
[
lnπP(θ0,(−1)|θ0,(1)) + ρ(η)− DΘ − 1

2
ln(1− η)

]
dx̃mdθ

= lnπP(θ0,(−1)|θ0,(1)) + ρ(η)− DΘ − 1

2
ln(1− η) + o(1),

where ρ(η) is defined in (185). Therefore, we know that the asymptotically essential component

(180) of the term Rn,3 is upper bounded by

DΘ − 1

2
ln

(
2π

m+ n

)
+

1

2
ln

det
[
IP(θ0)−1

]
|vT IP(θ0)−1v|

+
DΘ − 1

2
+ lnπP(θ0,(−1)|θ0,(1))

+ ρ(η) + (1 + α+DΘ + αDΘ)η − DΘ − 1

2
ln(1− η) + o(1),

where the function ρ(η) is defined in (185). Because of the fact that limx→0 ρ(x) = 0 and the

arbitrariness of η, we know that R∗n,3 defined in (173) is asymptotically upper bounded by zero.

Step 4: We then show that the difference R∗n,3 is lower-bounded, asymptotically, by zero.

Step 4.1: We find the lower bound for the log term in the expression of Ren,3 when xn ∈Mn(θ0),

θ ∈ Ω(θ0, δ0) and x̃m ∈ Nm(θ). By Taylor’s expansion, we have

ln

∫
Ω(−1)(θ,δ)

πP(x̃m,xn|θ(1), θ
′
(−1))

πP(x̃m,xn|θ(1), θ(−1))
πP(θ′(−1)|θ(1))dθ

′
(−1)

= ln

∫
Ω(−1)(θ,δ)

e(θ′−θ)T [nsP,n(θ)+msP,m(θ)]− 1
2

(θ′−θ)T [nÎP,n(θ̃)+mÎP,m(θ̃)](θ′−θ)πP(θ′(−1)|θ(1))dθ
′
(−1),
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where θ̃ is between θ′ and θ, and

θ′ ≡

(
θ(1)

θ′(−1)

)
.

Because θ ∈ Ω(θ0, δ0) and θ′(−1) ∈ Ω(−1)(θ, δ) imply that θ′ ∈ Ω(θ0, 2δ), we know that

ln

∫
Ω(−1)(θ,δ)

πP(x̃m,xn|θ(1), θ
′
(−1))

πP(x̃m,xn|θ(1), θ(−1))
πP(θ′(−1)|θ(1))dθ

′
(−1)

≥ ln

∫
Ω(−1)(θ,δ)

e(θ′−θ)T [nsP,n(θ)+msP,m(θ)]− 1
2

(θ′−θ)T [nÎP,n(θ̃)+mÎP,m(θ̃)](θ′−θ)dθ′(−1) + lnπP(θ0,(−1)|θ0,(1))− ρ(δ),

where the function ρ(η) is defined in (185). It is obvious that ρ(·) is increasing a univariate increasing

function. Then,

ρ(δ) ≤ ρ(η) since δ < η.

Thus, we have

ln

∫
Ω(−1)(θ,δ)

πP(x̃m,xn|θ(1), θ
′
(−1))

πP(x̃m,xn|θ(1), θ(−1))
πP(θ′(−1)|θ(1))dθ

′
(−1)

≥ ln

∫
Ω(−1)(θ,δ)

e(θ′−θ)T [nsP,n(θ)+msP,m(θ)]− 1
2

(θ′−θ)T [nÎP,n(θ̃)+mÎP,m(θ̃)](θ′−θ)dθ′(−1) + lnπP(θ0,(−1)|θ0,(1))− ρ(η),

where the function ρ(η) is defined in (185). On the event I1,n(δ, η), we have for all θ ∈ Ω(θ0, δ0)

(θ′ − θ)T ÎP,n(θ̃)(θ′ − θ) ≤ (1 + η)(θ′ − θ)T IP(θ)(θ′ − θ).

On the event I2,m(θ, δ, η), we have

(θ′ − θ)T ÎP,m(θ̃)(θ′ − θ) ≤ (1 + η)(θ′ − θ)T IP(θ)(θ′ − θ).

Thus, it follows that

ln

∫
Ω(−1)(θ,δ)

πP(x̃m,xn|θ(1), θ
′
(−1))

πP(x̃m,xn|θ(1), θ(−1))
πP(θ′(−1)|θ(1))dθ

′
(−1)

≥ ln

∫
Ω(−1)(θ,δ)

e(θ′−θ)T [nsP,n(θ)+msP,m(θ)]− 1
2

(1+η)(θ′−θ)T [nIP(θ)+mIP(θ)](θ′−θ)dθ′(−1) + lnπP(θ0,(−1)|θ0,(1))− ρ(η),

where the function ρ(η) is defined in (185). Denote

α =
n

n+m
.
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Let’s consider the following identities

(θ′ − θ)T [αsP,n(θ) + (1− α)sP,m(θ)]− 1

2
(1 + η)(θ′ − θ)T IP(θ)(θ′ − θ)

= −1 + η

2
(θ′ − v)T IP(θ)(θ − v) +

1

2(1 + η)
[αsP,n(θ) + (1− α)sP,m(θ)]T IP(θ)−1[αsP,n(θ) + (1− α)sP,m(θ)]

where

v ≡ θ +
1

1 + η
IP(θ)−1[αsP,n(θ) + (1− α)sP,m(θ)].

Therefore, we have

ln

∫
Ω(−1)(θ,δ)

πP(x̃m,xn|θ(1), θ
′
(−1))

πP(x̃m,xn|θ(1), θ(−1))
πP(θ′(−1)|θ(1))dθ

′
(−1)

≥ ln

∫
Ω(−1)(θ,δ)

e−
m+n

2
(1+η)(θ′−v)T IP(θ)(θ′−v)dθ′(−1)

+
m+ n

2(1 + η)
[αsP,n(θ) + (1− α)sP,m(θ)]T IP(θ)−1[αsP,n(θ) + (1− α)sP,m(θ)] + lnπP(θ0,(−1)|θ0,(1))− ρ(η),

where the function ρ(η) is defined in (185). Further, we have∫
Ω(−1)(θ,δ)

e−
m+n

2
(1+η)(θ′−v)T IP(θ)(θ′−v)dθ′(−1)

=

∫
RDΘ−1

e−
m+n

2
(1+η)(θ′−v)T IP(θ)(θ′−v)dθ′(−1) −

∫
Ω(−1)(θ,δ)

{
e−

m+n
2

(1+η)(θ′−v)T IP(θ)(θ′−v)dθ′(−1)

and∫
RDΘ−1

e−
m+n

2
(1+η)(θ′−v)T IP(θ)(θ′−v)dθ′(−1)

=
(2π)DΘ/2

[
detIP(θ)−1

]1/2
(1 + η)DΘ/2(m+ n)DΘ/2

∫
RDΘ−1

(m+ n)DΘ/2(1 + η)DΘ/2

(2π)DΘ/2 [IP(θ)−1]1/2
e−

m+n
2

(1+η)(θ′−v)T IP(θ)(θ′−v)dθ′(−1)

=
(2π)DΘ/2

[
detIP(θ)−1

]1/2
(1 + η)DΘ/2(m+ n)DΘ/2

(m+ n)1/2

(2π)1/2|(1 + η)−1vT IP(θ)−1v|1/2
e
−m+n

2
(1+η)

(
θ′
(1)
−u(1)

)2

vT IP(θ)−1v

=

(
2π

m+ n

)DΘ−1

2
[
detIP(θ)−1

]1/2
|vT IP(θ)−1v|1/2

e
−m+n

2
(1+η)

(
θ′
(1)
−u(1)

)2

vT IP(θ)−1v (1 + η)−
DΘ−1

2 .
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Using the definition of v, we know that for any θ′ such that θ′(−1) ∈ Ω(−1)(θ, δ)
{

(θ′ − v)T IP(θ)(θ′ − v)

=

[
θ′ − θ − 1

1 + η
IP(θ)−1sP,n(θ)

]T
IP(θ)

[
θ′ − θ − 1

1 + η
IP(θ)−1sP,n(θ)

]
≥ 1

2
(θ′ − θ)T IP(θ)(θ′ − θ)− 1

(1 + η)2
sP,n(θ)T IP(θ)−1sP,n(θ)

≥ λδ2

2(1 + η)2
− λδ2η

2(1 + η)2
because of Ln(θ0, δ0,

1

2
λδ2η)

=
λδ2(1− η)

2(1 + η)2
.

Thus,

−
∫

Ω(−1)(θ,δ)
{
e−

m+n
2

(1+η)(θ′−v)T IP(θ)(θ′−v)dθ′(−1)

≥ −
∫

Ω(−1)(θ,δ)
{
e
− (m+n)(1−η)

8(1+η)
λδ2

e−
m+n

4
(1+η)(θ′−v)T IP(θ)(θ′−v)dθ′(−1)

≥ −e−
(m+n)(1−η)

8(1+η)
λδ2
∫
RDΘ−1

e−
m+n

4
(1+η)(θ′−v)T IP(θ)(θ′−v)dθ′(−1)

= −e−
(m+n)(1−η)

8(1+η)
λδ2

2
DΘ−1

2

(
2π

m+ n

)DΘ−1

2
[
detIP(θ)−1

]1/2
|vT IP(θ)−1v|1/2

e
−m+n

4
(1+η)

(
θ′
(1)
−u(1)

)2

vT IP(θ)−1v (1 + η)−
DΘ−1

2

≥ −e−
(m+n)(1−2η)

8(1+η)
λδ2

2
DΘ−1

2

(
2π

m+ n

)DΘ−1

2
[
detIP(θ)−1

]1/2
|vT IP(θ)−1v|1/2

e
−m+n

2
(1+η)

(
θ′
(1)
−u(1)

)2

vT IP(θ)−1v (1 + η)−
DΘ−1

2

where the last inequality is due to the fact that(
θ′(1) − u(1)

)2

vT IP(θ)−1v
=

1

(1 + η)2

vT IP(θ)−1sP,n(θ)sP,n(θ)T IP(θ)−1v

vT IP(θ)−1v
.

and

vT IP(θ)−1sP,n(θ)sP,n(θ)T IP(θ)−1v

vT IP(θ)−1v
≤ sup
|u|=1

uT IP(θ)−1sP,n(θ)sP,n(θ)T IP(θ)−1u

uT IP(θ)−1u

= λm

[
IP(θ)−1/2sP,n(θ)sP,n(θ)T IP(θ)−1/2

]
≤ tr

[
IP(θ)−1/2sP,n(θ)sP,n(θ)T IP(θ)−1/2

]
= sP,n(θ)T IP(θ)−1sP,n(θ) <

λδ2η

2(1 + η)2
because of Ln(θ0, δ0,

1

2
λδ2η).
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and hence∫
Ω(−1)(θ,δ)

e−
m+n

2
(1+η)(θ′−v)T IP(θ)(θ′−v)dθ′(−1)

≥
[
1− e−

(m+n)(1−2η)
8(1+η)

λδ2

2
DΘ−1

2

](
2π

m+ n

)DΘ−1

2
[
detIP(θ)−1

]1/2
|vT IP(θ)−1v|1/2

× e
−m+n

2
(1+η)

(
θ′
(1)
−u(1)

)2

vT IP(θ)−1v (1 + η)−
DΘ−1

2

≥
(

2π

m+ n

)DΘ−1

2
[
detIP(θ)−1

]1/2
|vT IP(θ)−1v|1/2

e
−m+n

2
(1+η)

(
θ′
(1)
−u(1)

)2

vT IP(θ)−1v (1 + η)−
DΘ
2 , for large n,m.

Therefore,

ln

∫
Ω(−1)(θ,δ)

πP(x̃m,xn|θ(1), θ
′
(−1))

πP(x̃m,xn|θ(1), θ(−1))
πP(θ′(−1)|θ(1))dθ

′
(−1)

≥ DΘ − 1

2
ln

(
2π

m+ n

)
+

1

2
ln

|IP(θ)−1|
|vT IP(θ)−1v|

− m+ n

2
(1 + η)

(
θ′(1) − u(1)

)2

vT IP(θ)−1v

+
m+ n

2(1 + η)
[αsP,n(θ) + (1− α)sP,m(θ)]T IP(θ)−1[αsP,n(θ) + (1− α)sP,m(θ)]

+ lnπP(θ0,(−1)|θ0,(1))− ρ(η)− DΘ

2
ln(1 + η), (189)

where the function ρ(η) is defined in (185).

Step 4.2: We find the lower bound for the asymptotically essential term Ren,3. We take integrations

over θ and x̃m over each term on the right hand side of the inequality (189).∫
Ω(θ0,δ0)

πP(θ|xn)

∫
Nm(θ)

πP(x̃m|θ)DΘ − 1

2
ln

(
2π

m+ n

)
dx̃mdθ

≥ DΘ − 1

2
ln

(
2π

m+ n

)
πP (Ω(θ0, δ0)|xn)

[
1− sup

θ∈Ω(θ0,δ0)
Pmθ Nm(θ)

]

=
DΘ − 1

2
ln

(
2π

m+ n

)
+ o(1), due to An(θ0, δ0, ξ0).

and ∫
Ω(θ0,δ0)

πP(θ|xn)

∫
Nm(θ)

πP(x̃m|θ)1

2
ln

det
[
IP(θ)−1

]
|vT IP(θ)−1v|

dx̃mdθ

≥

[
1

2
ln

det
[
IP(θ0)−1

]
|vT IP(θ0)−1v|

− η

]
πP (Ω(θ0, δ0)|xn)

[
1− sup

θ∈Ω(θ0,δ0)
Pmθ Nm(θ)

]

=
1

2
ln

det
[
IP(θ0)−1

]
|vT IP(θ0)−1v|

− η + o(1), due to An(θ0, δ0, ξ0).
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and

∫
Ω(θ0,δ0)

πP(θ|xn)

∫
Nm(θ)

πP(x̃m|θ)

−m+ n

2

(
θ′(1) − u(1)

)2

vT IP(θ)−1v

dx̃mdθ

=

∫
Ω(θ0,δ0)

πP(θ|xn)

∫
Xm

πP(x̃m|θ)

−m+ n

2

(
θ′(1) − u(1)

)2

vT IP(θ)−1v

dx̃mdθ

−
∫

Ω(θ0,δ0)
πP(θ|xn)

∫
Nm(θ){

πP(x̃m|θ)

−m+ n

2

(
θ′(1) − u(1)

)2

vT IP(θ)−1v

dx̃mdθ

=

∫
Ω(θ0,δ0)

πP(θ|xn)

∫
Xm

πP(x̃m|θ)

−m+ n

2

(
θ′(1) − u(1)

)2

vT IP(θ)−1v

dx̃mdθ + o(1),

and

∫
Xm

πP(x̃m|θ)

−m+ n

2

(
θ′(1) − u(1)

)2

vT IP(θ)−1v

dx̃m

= −vT IP(θ)−1

{∫
Xm

πP(x̃m|θ)
[
αsP,n(θ) + (1− α)sP,m(θ)

] [
αsP,n(θ) + (1− α)sP,m(θ)

]T
dx̃m

}
IP(θ)−1v

×
[
2(m+ n)−1(1 + η)2vT IP(θ)−1v

]−1

= −
vT IP(θ)−1

{
α2sP,n(θ)sP,n(θ)T + (1− α)2IP(θ)/m

}
IP(θ)−1v

2(m+ n)−1(1 + η)2vT IP(θ)−1v

= − α

(1 + η)2

vT IP(θ)−1SP,n(θ)SP,n(θ)T IP(θ)−1v

2vT IP(θ)−1v
− 1− α

2(1 + η)2
,

Thus,

∫
Ω(θ0,δ0)

πP(θ|xn)

∫
Nm(θ)

πP(x̃m|θ)

−m+ n

2
(1− η)

(
θ′(1) − u(1)

)2

vT IP(θ)−1v

dx̃mdθ

= − α

2(1 + η)

∫
Ω(θ0,δ0)

πP(θ|xn)
vT IP(θ)−1SP,n(θ)SP,n(θ)T IP(θ)−1v

vT IP(θ)−1v
dθ − 1− α

2(1 + η)
+ o(1)

≥ −α
2
− 1− α

2(1 + η)
+ o(1) ≥ −1

2
+ o(1).
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and∫
Ω(θ0,δ0)

πP(θ|xn)

∫
Nm(θ)

πP(x̃m|θ) m+ n

2(1 + η)
[αsP,n(θ) + (1− α)sP,m(θ)]T IP(θ)−1[αsP,n(θ) + (1− α)sP,m(θ)]dx̃mdθ

=
α

2(1 + η)

∫
Ω(θ0,δ0)

πP(θ|xn)SP,n(θ)T IP(θ)−1SP,n(θ)dθ +
1− α

2(1 + η)
DΘ + o(1)

≥ α

2(1 + η)

∫
Ω(θ0,δ0)

πP(θ|xn)SP,n(θ)T IP(θ)−1SP,n(θ)dθ +
1− α

2
DΘ −DΘη + o(1)

≥ α(DΘ − η)

2(1 + η)
+

1− α
2

DΘ −DΘη + o(1) ≥ DΘ

2
− (DΘ + αDΘ)η + o(1).

and ∫
Ω(θ0,δ0)

πP(θ|xn)

∫
Nm(θ)

πP(x̃m|θ)
[
lnπP(θ0,(−1)|θ0,(1))− ρ(η)− DΘ

2
ln(1 + η)

]
dx̃mdθ

= lnπP(θ0,(−1)|θ0,(1))− ρ(η)− DΘ

2
ln(1 + η) + o(1),

where the function ρ(η) is defined in (185).

Therefore, we know that the asymptotically essential component (180) of the term Rn,3 is lower

bounded by

DΘ − 1

2
ln

(
2π

m+ n

)
+

1

2
ln

det
[
IP(θ0)−1

]
|vT IP(θ0)−1v|

+
DΘ − 1

2
+ lnπP(θ0,(−1)|θ0,(1))

− ρ(η)− (DΘ + αDΘ)η − DΘ

2
ln(1 + η) + o(1),

where the function ρ(η) is defined in (185). Because of the fact that limx→0 ρ(x) = 0 and the

arbitrariness of η, we know that R∗n,3 defined in (173) is asymptotically lower bounded by zero.

2 Disaster risk model

We first show how to derive the Euler equation, and then we show how to obtain the Fisher fragility

measure %(p, ξ).

2.1 The Euler Equation

The total return of market equity from t to t+ 1 is erM,t+1 which is unknown at t, and the total

interest gain of risk-free bond is erf,t which is known at t. Thus, the excess log return of equity

is rt+1 = rM,t+1 − rf,t. The state-price density is Λt = δtDc
−γD
t , and the inter-temporal marginal

rate of substitution is Λt+1/Λt = δDe
−γDgt+1 . The Euler equations for risk-free rate and the market
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equity return are

1 = Et
[

Λt+1

Λt
erM,t+1

]
and e−rf,t = Et

[
Λt+1

Λt

]
. (190)

Thus, we can obtain the Euler equation for the excess log return:

Et
[

Λt+1

Λt

]
= Et

[
Λt+1

Λt
ert+1

]
. (191)

The left-hand side of (191) can be computed as

Et
[

Λt+1

Λt

]
= Et

[
e−γDgt+1

]
= (1− p)e−γDµ+ 1

2
γ2

Dσ
2

+ pξ
eγDv

ξ − γD

,

and the right-hand side of (191) can be computed as

Et
[

Λt+1

Λt
ert+1

]
= Et

[
e−γDgt+1+rt+1

]
= (1− p)e−γDµ+η+ 1

2
(γ2

Dσ
2+τ2−2γDρστ) + pξ

e
ς2

2
+(γD−b)v

ξ + b− γD

Thus, the Euler equation (191) can be rewritten as

(1− p)e−γDµ+ 1
2
γ2

Dσ
2
[
eη+ 1

2
τ2−γDρστ − 1

]
= p∆(ξ), (192)

where

∆(ξ) = ξ

 eγDv

ξ − γD

− e
ς2

2
+(γD−b)v

ξ + b− γD

 .

Using the Taylor expansion, we have the following approximation:

eη+ 1
2
τ2−γDρστ − 1 ≈ η +

1

2
τ2 − γDρστ. (193)

Combining (192) and the approximation in (193), we have finished proving the approximated Euler

equation in the main text.

2.2 Fisher fragility measure

The joint probability density for rare disasters (z, v) in the baseline model is

fP(z, v|p, ξ) = pz(1− p)1−zδ(v)1−z [1{v > v}ξ exp {−ξ(v − v)}]z , . (194)

where δ(·) is the dirac delta function. The Fisher information matrix is

IP(p, ξ) =

 1
p(1− p) 0

0
p
ξ2

 . (195)
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Next, the probability density function fQ(z, v, r, u|θ) for the structural model is

fQ(z, v, r, u|θ, φ) = pz(1− p)1−z

×

[
1

2πστ
√

1− ρ2
exp

{
− 1

2(1− ρ2)

[
(u− µ)2

σ2
+

(r − η(θ, φ))2

τ2
− 2ρ(u− µ)(r − η(θ, φ))

στ

]}]1−z

×
[
1{v > v}ξ exp {−ξ(v − v)} 1√

2πς
exp

{
− 1

2ς2
(r − bv)

2

}]z
1{η(θ, φ) > η∗, ξ > γD},

where

η(θ, φ) ≡ γDρστ −
τ2

2
+ ln

[
1 + eγDµ−

γ2
Dσ

2

2 ξ

(
eγDv

ξ − γD

− e
1
2
ς2 e(γD−b)v

ξ + b− γD

)
p

1− p

]
. (196)

We can derive the simple intuitive closed-form approximation for the fragility measure, if we consider

the approximated Euler equation. More precisely, we consider the following approximation:

η(θ, φ) ≈ γDρστ −
τ2

2
+ eγDµ−

γ2
Dσ

2

2 ξ

(
eγDv

ξ − γD

− e
1
2
ς2 e(γD−b)v

ξ + b− γD

)
p

1− p
, (197)

Then, we can express the Fisher information for (p, ξ) under the full structural model as

IQ(p, ξ) ≈


1

p(1− p) +
∆(ξ)2

(1− ρ2)τ2
e2γDµ−γ2

Dσ
2

(1− p)3
p

(1− ρ2)τ2
e2γDµ−γ2

Dσ
2

(1− p)2 ∆(ξ)∆̇(ξ)

p
(1− ρ2)τ2

e2γDµ−γ2
Dσ

2

(1− p)2 ∆(ξ)∆̇(ξ)
p
ξ2 +

∆̇ (ξ)2(
1− ρ2

)
τ2 e

2γDµ−γ2
Dσ

2 p2

1− p

 . (198)

where

∆(ξ) = ξ

 eγDv

ξ − γD

− e
ς2

2
+(γD−b)v

ξ + b− γD

 . (199)

and ∆̇(ξ) is the first derivative of ∆(ξ),

∆̇(ξ) = − eγDvγD

(ξ − γD)2 +
e(γD−b)v(γD − b)

(ξ − γD + b)2
eς

2/2. (200)

The worst-case Fisher fragility is the largest eigenvalue of the matrix Π0(IDΘ
) ≡ IQ(θ0)1/2IP(θ0)−1IQ(θ0)1/2.

Important for simplifying the calculation, it is also the largest eigenvalue of IP(θ0)−1/2IQ(θ0)IP(θ0)−1/2.

In this case, the eigenvalues and eigenvectors are available in closed form. This gives us the formula

for %(p, ξ) and %1(p, ξ). The minimum Fisher fragility in this case is 1, which is obtained in the

direction along the deterministic cross-equation restriction.

2.3 Posteriors

Next, we construct the posteriors of the parameters θ = (p, ξ) under the baseline model and the

structural model. We appeal to the Jeffreys prior for (p, ξ) under the model without asset pricing
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constraint as the econometrician’s prior. The structural parameter γD has an independent prior

π(γD). The prior for γD can be delta distributions or the uniform priors. Given the likelihood

function in (194), the parameters are mutually independent under the Jeffreys prior and their

probability density functions (PDFs) are explicitly specified in Table 1.

Table 1: Independent Jeffreys/Reference priors for parameters

Parameters Prior PDF (up to a constant)

p p−1/2(1− p)−1/2

ξ ξ−11(ξ>0)

The constrained likelihood function is “nonstandard” when we impose equality and inequality

constraints on the parameters. Given the independent reference priors specified in Table 1 and the

“nonstandard” likelihood function, not only the analytical form of the posterior density function

becomes inaccessible, but also the traditional Monte Carlo methods designed to draw i.i.d. samples

from the posterior become inefficient. For simulations of posterior based on a “nonstandard”

likelihood function, one of the general methods is the Approximate Bayesian Computation (ABC)

method.6 One issue concerning with applying the conventional ABC method to our disaster risk

model is the lack of efficiency when the priors are flat. Given the specific structure of our problem,

we propose a tilted ABC method to boost the speed of our simulation. The details of the procedure

are in Appendix 2.4.

2.4 ABC Method and Implementation

Given the special structure of our problem, we propose a tilted ABC method in the hope of boosting

the speed of our simulation. The algorithm described here is for the case of joint estimation with

the risk aversion coefficient γD. We illustrate the case where γD has the prior π(γD). The algorithm

can be adapted easily for the special case where the value of γD is fixed (i.e. delta prior for γD).

The posterior for (p, ξ, γD) under the baseline model satisfies

p, ξ, γD | r,g, z ∼ Beta (p|0.5 + n− κn, 0.5 + κn) (201)

⊗Gamma

(
ξ|n− κn,

n∑
t=1

zt(gt − v)

)
⊗ π(γD),

6For general introduction to the ABC method, see Blum (2010) and Fearnhead and Prangle (2012), among others.
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where

xt = (gt, rt)
T , µn =

n∑
t=1

(1− zt)xt/
n∑
t=1

(1− zt), κn =
n∑
t=1

(1− zt), νn = κn − 1,

Sn =

n∑
t=1

(1− zt)(xt − µn)(xt − µn)T , sn =

n∑
t=1

zt(rt − bgt)2.

Define

g =
n∑
t=1

(1− zt)gt/κn and r =
n∑
t=1

(1− zt)rt/κn.

The posterior for (p, ξ, γD) under the structural model satisfies:

πQ(p, ξ, γD|gn, rn, zn) ∝ pn−κn+1/2−1(1− p)κn+1/2−1 (202)

× 1(ξ>γD)ξ
n−κn−1 exp

{
−ξ

n∑
t=1

zt(−gt − v)

}

× τ−1(1− ρ2)−1/2 × exp

{
− κn

2(1− ρ2)τ2

[
η(p, ξ, γD)− r − ρτ

σ
(µ− g)

]2
}

× 1{η(p,ξ,γD)>η∗} × π(γD).

Then, the posterior distribution will not change if we view the model in a different way as

follows:

r ∼ N
(
η(p, ξ, γD) + ρ

τ

σ
(g − µ), τ2(1− ρ2)

)
where η(p, ξ, γD) > η∗,

with priors

γD ∼ π(γD),

p ∼ Beta(n− κn + 1/2, κn + 1/2),

ξ ∼ Gamma

(
ξ|n− κn,

n∑
t=1

zt(gt − v), ξ > γD

)
.

The tilted ABC method is implemented as follows.

Algorithm We illustrate the algorithm for simulating samples from the posterior (202) based

ABC method. We choose the threshold in ABC algorithm as ε = τ̂ /n/100, where τ̂ is the sample

standard deviation of the observations r1, · · · , rn. Our tilted ABC algorithm can be summarized as

follows:

For step i = 1, · · · , N :

Repeat the following simulations and calculations:

(1) simulate γ̃D ∼ π(γD),

(2) simulate p̃ ∼ Beta(n− κn + 1/2, κn + 1/2),
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Figure 1: The 95% Bayesian confidence regions for (p, ξ). In the left panel, the posterior under the
structural model (i.e. constrained posterior) sets γD = 3. In the right panel, the posterior under the
structural model sets γD = 24. Both are compared with the posterior under the baseline model (i.e.
unconstrained posterior).

(3) simulate ξ̃ ∼ Gamma (ξ|n− κn,
∑n

t=1 zt(gt − v)),

(4) calculate η̃ = η(θ̃, ψ̃) with

θ̃ = (p̃, ξ̃) and ψ̃ = γ̃D,

(5) simulate r̃ ∼ N
(
η̃ + ρ̃ τ̃σ̃ (g − µ̃), τ̃2(1− ρ̃2)

)
,

Until (i) |r̃ − r| < ε and (ii) η̃ > η∗, we record

θ(i) = θ̃

ψ(i) = ψ̃

Set i = i+ 1, if i < N ; end the loop, if i = N .

Using this algorithm, we shall get simulated samples θ(1), · · · , θ(N) from the posterior (202).

2.5 Results

Now, we show some examples of posteriors for (p, ξ) when γ has delta priors. In Figure 1 we

illustrate their differences by plotting the 95% Bayesian confidence regions for (p, ξ) according to

the two posteriors. The 95% Bayesian region for (p, ξ) under the baseline posterior distribution is

similar to the 95% confidence region for (p, ξ) under the baseline model.

The shape of the 95% Bayesian region for the constrained posterior depends on the coefficient of

relative risk aversion γ. When γ is high (e.g, γ = 24), the constrained posterior is largely similar to

the unconstrained posterior (see Panel B), except that it assigns lower weight to the lower right

region, because these relatively frequent and large disasters are inconsistent with the equity premium
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constraint. For a lower level of risk aversion, γ = 3, the constrained posterior is drastically different.

The only parameter configurations consistent with the equity premium constraint are those with

large average disaster size, with ξ close to its lower limit γ.

3 Long-run Risk Model: Solutions and Moment Conditions

3.1 The Model Solution

We consider a long-run risk model similar to Bansal and Yaron (2004) and Bansal, Kiku, and

Yaron (2012). The log growth rate of aggregate consumption ∆ct, the long-run risk component in

consumption growth xt, and stochastic volatility σt follow the joint processes

∆ct+1 = µc + xt + σtεc,t+1 (203a)

xt+1 = ρxt + ϕxσtεx,t+1 (203b)

σ̃2
t+1 = σ2 + ν(σ̃2

t − σ2) + σwεσ,t+1 (203c)

σ2
t+1 = max(σ2, σ̃2

t+1), (203d)

where the shocks εc,t, εx,t, and εσ,t are i.i.d. standard normal variables and they are mutually

independent. Similar to Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012), we adopt

the local approximation method to linearize the model and hence the solution. In the local-linear

approximation system, it is fair to assume that σ2
t = σ̃2

t .

The preference of the representative agent is assumed to be Epstein-Zin-Weil preference:

Vt =

[
(1− δL)C

1−γL
ϑ

t + δL

(
Et
[
V 1−γL
t+1

]) 1
ϑ

] ϑ
1−γL

(204)

where ϑ = (1 − γL)/(1 − ψ−1
L ). Define the wealth process and the gross return on consumption

claims:

Wt+1 = (Wt − Ct)Rc,t+1. (205)

Therefore, the stochastic discount factor (SDF) can be expressed as follows:

Mt+1 = δϑL

(
Ct+1

Ct

)−ϑ/ψL

Rϑ−1
c,t+1. (206)

The log SDF can be written as

mt+1 = ϑ log δL −
ϑ

ψL

∆ct+1 + (ϑ− 1)rc,t+1. (207)

The state variables in long-run risk models are (xt, σ
2
t ). The log consumption growth rate ∆ct+1

can be expressed in terms of xt and σ2
t . In contrast, the dependence of rc,t+1 on the state variables
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are endogenous. To turn the system into an affine model, we first exploit the Campbell-Shiller

log-linearization approximation:

rc,t+1 = κ0 + κ1zt+1 + ∆ct+1 − zt, (208)

where zt = log(Wt/Ct) is log wealth-consumption ratio where wealth is the price of consumption

claims. The log-linearization constants are determined by long-run steady state:

κ0 = log(1 + ez)− κ1z (209)

κ1 =
ez

1 + ez
, (210)

where z is the mean of the log price-consumption ratio.

Given the log-linearization approximation (208 – 210), we can search the equilibrium characterized

by

zt = A0 +A1xt +A2σ
2
t , (211)

where the constants A0, A1 and A2 are to be determined by the equilibrium conditions.

Thus, the log return on consumption claim can be written as

rc,t+1 = κ0 + κ1

(
A0 +A1xt+1 +A2σ

2
t+1

)
+ ∆ct+1 −

(
A0 +A1xt +A2σ

2
t

)
. (212)

Therefore, the log SDF can be re-written in terms of state variables and exogenous shocks

mt+1 = Γ0 + Γ1xt + Γ2σ
2
t − λcσtεc,t+1 − λxσtϕxεx,t+1 − λσσwεσ,t+1, (213)

where predictive coefficients are

Γ0 = log δL − ψ−1
L µc −

1

2
ϑ(ϑ− 1) (κ1A2σw)2 (214)

Γ1 = −ψ−1
L (215)

Γ2 = (ϑ− 1)(κ1ν − 1)A2 =
1

2
(γL − 1)(ψ−1

L − γL)

[
1 +

(
κ1ϕx

1− κ1ρ

)2
]

(216)

and the market price of risk coefficients are

λc = γL (217)

λx =
(
γL − ψ−1

L

) κ1ϕx
1− κ1ρ

(218)

λλ = −(γL − 1)
(
γL − ψ−1

L

) κ1

2(1− κ1ν)

[
1 +

(
κ1ϕx

1− κ1ρ

)2
]

(219)

It can be seen that as ρ or ν approaches to unit, the risk premium goes to infinity. The coefficients
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Aj ’s are determined by equilibrium condition (i.e. Euler Equation for price of consumption claim –

pure intertemporal first-order condition of consumption decision), which is

1 = Et [Mt+1Rc,t+1] = Et
[
emt+1+rc,t+1

]
(220)

It leads to the equilibrium conditions:

A0 =
1

1− κ1

[
log δL + κ0 +

(
1− ψ−1

L

)
µc + κ1A2(1− ν)σ2 +

ϑ

2
(κ1A2σw)2

]
(221)

A1 =
1− ψ−1

L

1− κ1ρ
(222)

A2 = −(γL − 1)(1− ψ−1
L )

2(1− κ1ν)

[
1 +

(
κ1ϕx

1− κ1ρ

)2
]

(223)

The long-run mean z is also determined endogenously in the equilibrium. More precisely, given

all parameters fixed, we have Aj = Aj(z) in Equations (221 – 223) because κ0 and κ1 are functions

of z. In the long-run steady state, we have

z = A0(z) +A2(z)σ2. (224)

Thus, in the equilibrium, the long-run mean z is a function of all parameters in the model, according

to (224) and Implicit Function Theorem,

z = z
(
µc, ρ, ϕx, σ

2, ν, σw, · · ·
)
. (225)

And hence, we can also solve out κ0 and κ1 based on (225) as follows, whose explicit forms are

usually not available

κ0 = κ0(µc, ρ, ϕx, σ
2, ν, σw, · · · ) and κ1 = κ1(µc, ρ, ϕx, σ

2, ν, σw, · · · ). (226)

The gradients κ0 and κ1 with respect to the parameters, such as ρ and ν, can be calculated using

Implicit Function Theorem in (224).

Given the pricing kernel in the equilibrium, we can price assets. We specify the joint distribution of

the exogenous state variables and the log dividend growth ∆dt, these joint distributional assumptions

are part of the structural component of the model. More precisely, we assume that the log dividend

growth process is

∆dt+1 = µd + φdxt + ϕd,cσtεc,t+1 + ϕd,dσtεd,t+1. (227)

Market Return. Using the Campbell-Shiller decomposition and linearization, we can represent

the return in terms of log price-dividend ratio and log dividend growth:

rm,t+1 = κm,0 + κm,1zm,t+1 + ∆dt+1 − zm,t, (228)
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where

κm,0 = log(1 + ezm)− κm,1zm (229)

and

κm,1 =
ezm

1 + ezm
(230)

and zm is long-run mean of market log price-dividend ratio. We search for the equilibrium where

the log market price-dividend ratio is a linear function of the states:

zm,t = Am,0 +Am,1xt +Am,2σ
2
t , (231)

where the constants Am,0, Am,1 and Am,2 are to be determined by equilibrium condition (i.e. Euler

equation for market returns). Thus, we have

rm,t+1 − Et [rm,t+1] = ϕd,cσtεc,t+1 + κm,1Am,1ϕxσtεx,t+1

+ κm,1Am,2σwεσ,t+1 + ϕd,dσtεd,t+1, (232)

where

Et [rm,t+1] = µd + κm,0 + (κm,1 − 1)Am,0 + κm,1Am,2(1− ν)σ2 (233)

+ [φd + (κm,1ρ− 1)Am,1]xt + (κm,1ν − 1)Am,2σ
2
t . (234)

Plugging the equation above into the Euler Equation

1 = Et
[
emt+1+rm,t+1

]
, (235)

we can derive the coefficients

Am,0 =
1

1− κm,1

[
Γ0 + κm,0 + µd +

1

2
σ2
d,u + κm,1Am,2(1− ν)σ2 +

1

2
(κm,1Am,2 − λw)2σ2

w

]

Am,1 =
φd − ψ−1

L

1− κm,1ρ
(236)

and

Am,2 =
1

1− κm,1ν

[
Γ2 +

1

2

(
ϕ2
d,d + (ϕd,c − λc)2 + (κm,1Am,1ϕx − λx)2

)]
(237)

In sum, according to (232), the market return can be re-written as the following beta representation

for the priced aggregate shocks:

rm,t+1 − Et [rm,t+1] = βcσtεc,t+1 + βxσtεx,t+1 + βσσwεε,t+1 + ϕd,dσtεd,t+1. (238)
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where the betas are

βc = ϕd,c, βx = κm,1Am,1ϕx, and βσ = κm,1Am,2 (239)

Excess Market Return and Equity Premium. The Euler Equations for market return and

riskfree rate can be written in one equation

Et [emt+1 ] = Et
[
emt+1+rem,t+1

]
. (240)

The risk premium is given by the beta pricing rule:

Et
[
rem,t+1

]
= λcσ

2
t βc + λxσ

2
t βx + λσσ

2
wβσ −

1

2
σ2
rm,t, (241)

where σ2
rm,t = β2

cσ
2
t + β2

xσ
2
t + β2

σσ
2
w + ϕ2

d,dσ
2
t . (242)

Similarly, the long-run mean of log market price-dividend ratio is

zm = Am,0(zm) +Am,2(zm)σ2. (243)

Based on (238), the excess log return of market portfolio rem,t+1 = rm,t+1 − rf,t has the following

expression:

rem,t+1 − Et
[
rem,t+1

]
= βcσtεc,t+1 + βxσtεx,t+1 + βσσwεε,t+1 + ϕd,dσtεd,t+1. (244)

In sum, the equilibrium excess return follows the dynamics:

rem,t+1 = µer,t + βcσtεc,t+1 + βxσtεx,t+1 + βσσwεσ,t+1 + ϕd,dσtεd,t+1, (245)

where µer,t = λcβcσ
2
t +λxβxσ

2
t +λσβσσ

2
w− 1

2

(
β2
cσ

2
t + β2

xσ
2
t + β2

σσ
2
w + ϕ2

d,dσ
2
t

)
. To avoid the stochastic

singularity, we assume that the underlying marginal distribution of (∆ct+1, xt, σ
2
t ,∆dt+1), denoted

by Q, has some features not captured by the structural model Q. More precisely, we assume that

the excess log return’s true distribution is characterized by

rem,t+1 = µer,t + βcσtεc,t+1 + βxσtεx,t+1 + βσσwεσ,t+1 + ϕd,dσtεd,t+1 + ϕrσtεr,t+1, (246)

which augments (245) by a normal shock ϕrσtεr,t+1.

3.2 Calibrations: Simulated and Empirical Moments

The benchmark parametrization (Model 1) follows Bansal, Kiku, and Yaron (2012) and is summarized

in Table 2. As Bansal, Kiku, and Yaron (2012) (Table 2, p. 194) show, the simulated first and

second moments match the set of key asset pricing moments in the data reasonably well. The same
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is true for the alternative parametrization (Model 2) in Table 2. The alternative parametrization

(Model 2) has ν = 0.98 and γL = 27 with other parameters unchanged. The simulated moments and

sample moments are listed in Table 3. The sample moments are based annual data from 1930 to

2008, and the simulated moments are 80-year annual data aggregated from monthly simulated data.

Table 2: Parameters of the Long-Run Risk Models

Model 1

Preferences δL γL ψL

0.9989 10 1.5
Consumption µc ρ ϕx σ ν σw

0.0015 0.975 0.038 0.0072 0.999 2.8e− 6
Dividends µd φd ϕd,c ϕd,d

0.0015 2.5 2.6 5.96
Returns ϕr

3.0

Note: The long-run model 2 (Model 2) has ν = 0.98 and γL = 27, with other parameters unchanged
relative to the long-run risk model 1 with benchmark parametrization (Model 1) above.

Table 3: Simulated and Sample Moments.

Data Model 1 Model 2
Moment Estimate 5% Median 95% 5% Median 95%

E [rM − rf ] 7.09 2.33 5.88 10.58 3.65 6.78 10.05
E [rM ] 7.66 2.91 6.66 11.20 4.42 7.75 11.20
σ (rM ) 20.28 12.10 20.99 29.11 15.01 17.55 20.33
E [rf ] 0.57 -0.20 0.77 1.45 0.47 0.96 1.46
σ (rf ) 2.86 0.64 1.07 1.62 0.73 0.94 1.23
E [p− d] 3.36 2.69 2.99 3.30 2.77 2.81 2.85
σ (p− d) 0.45 0.13 0.18 0.28 0.09 0.11 0.13
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3.3 Generalized Methods of Moments

The likelihood function of the baseline statistical model Pθ,n can be seen clearly when re-arrange

the terms

∆ct+1 − µc − xt
σt

= εc,t+1 (247a)

xt+1 − ρxt
ϕxσt

= εx,t+1 (247b)

(σ2
t+1 − σ2)− ν(σ2

t − σ2)

σw
= εσ,t+1 (247c)

where εc,t, εx,t and εσ,t are i.i.d. standard normal variables and they are mutually independent. The

dividend growth process is

∆dt+1 = µd + φdxt + ϕd,c (∆ct+1 − µc − xt) + ϕd,dσtεd,t+1. (248)

We consider the GMM where the moments functions are identical to the score functions of the

likelihood function. Denote the set of moment functions to be gP(∆ct+1, xt+1, xt, σ
2
t+1, σ

2
t ,∆dt+1; θ).

More precisely, gP(∆ct+1, xt+1, xt, σ
2
t+1, σ

2
t ,∆dt+1; θ) includes ten moment conditions. The moment

conditions that only involve ∆ct+1, xt, and σ2
t are the following six moment conditions:

0 =
1

T − 1

T−1∑
t=1

∆ct+1 − µc − xt
σ2
t

0 =
1

T − 1

T−1∑
t=1

(xt+1 − ρxt)xt
ϕ2
xσ

2
t

1 =
1

T − 1

T−1∑
t=1

(xt+1 − ρxt)2

ϕ2
xσ

2
t

0 =
1

T − 1

T−1∑
t=1

[
(σ2
t+1 − σ2)− ν(σ2

t − σ2)
]

(σ2
t − σ2)

σ2
w

1 =
1

T − 1

T−1∑
t=1

[
(σ2
t+1 − σ2)− ν(σ2

t − σ2)
]2

σ2
w

0 =
1

T − 1

T−1∑
t=1

(σ2
t+1 − σ2)− ν(σ2

t − σ2)

σ2
w

The six moment conditions above captures the distribution characterized by (247a – 247c). The

joint distribution of fundamental variables (∆ct+1, xt, σ
2
t ) and dividend growth ∆dt+1 is captured
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by the following four additional moment conditions:

0 =
1

T − 1

T−1∑
t=1

∆dt+1 − µd − φdxt − ϕd,c(∆ct+1 − µc − xt)
ϕ2
d,dσ

2
t

0 =
1

T − 1

T−1∑
t=1

xt [∆dt+1 − µd − φdxt − ϕd,c(∆ct+1 − µc − xt)]
ϕ2
d,dσ

2
t

0 =
1

T − 1

T−1∑
t=1

(∆ct+1 − µc − xt) [∆dt+1 − µd − φdxt − ϕd,c(∆ct+1 − µc − xt)]
ϕ2
d,dσ

2
t

1 =
1

T − 1

T−1∑
t=1

[∆dt+1 − µd − φdxt − ϕd,c(∆ct+1 − µc − xt)]2

ϕ2
d,dσ

2
t

In the long-run risk model, the major focus is to understand the stock excess return’s dynamics

explained by the consumption process and dividend process specified in (247a – 247c) and (248).

The joint distribution of the excess log return rem,t+1 and the consumption and dividend variables

can be seen clearly from the following formula:

ϕrσtεr,t+1 = rem,t+1 − µer,t − (βc − ϕd,c)(∆ct+1 − µc − xt)− βx
xt+1 − ρxt

ϕx

− βσ
[
σ̂2
t+1 − νσ̂2

t

]
− (∆dt+1 − µd − φdxt) (249)

where σ̂2
t ≡ σ2

t − σ2 and

µer,t = ληβησ
2
t + λeβeσ

2
t + λwβwσ

2
w −

1

2

(
β2
ησ

2
t + β2

eσ
2
t + β2

wσ
2
w + ϕ2

d,dσ
2
t

)
. (250)

Because βc = ϕd,c, (249) can be rewritten as

ϕrσtεr,t+1 = rem,t+1 − µer,t − βx
xt+1 − ρxt

ϕx
− βσ

[
σ̂2
t+1 − νσ̂2

t

]
− (∆dt+1 − µd − φdxt) . (251)

We choose the over-identification moment constraints ḡQ(∆ct+1, xt+1, xt, σ
2
t+1, σ

2
t ,∆dt+1, r

e
m,t+1; θ, ψ)

to include the score functions of the conditional likelihood of rem,t+1 above. Thus, the moment

conditions for the optimal GMM setup to assess the fragility of the benchmark version of long-run

risk model are

gQ(∆ct+1, xt+1, xt, σ
2
t+1, σ

2
t , r

e
t+1,∆dt+1; θ, ψ) ≡

[
gP(∆ct+1, xt+1, xt, σ

2
t+1, σ

2
t ,∆dt+1; θ)

ḡQ(∆ct+1, xt+1, xt, σ
2
t+1, σ

2
t ,∆dt+1, r

e
m,t+1; θ, ψ)

]
.

Intuitively, the over-identification moment conditions imposed by the long-run risk model on the

dynamic parameter θ is through the cross-equation restrictions on the beta coefficients βc, βx, βσ and

the pricing coefficients λc, λx, λσ. Because the shocks εc,t+1, εx,t+1, εσ,t+1, and εr,t+1 are mutually

independent, the GMM setup is actually first-order asymptotically equivalent to the MLE for

the joint distribution of (∆ct+1, xt, σ
2
t ,∆dt+1, r

e
m,t+1). It should be noted that the whole joint
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distribution of the variables, including (∆ct+1, xt, σ
2
t ,∆dt+1, r

e
m,t+1) and many other variables such

as price-dividend ratios, may have more stochastic singularities and many features that are not the

targets of the long-run risk model to explain at the first place. Following the spirits of GMM-based

estimation and hypothesis testing for structural models, we focus on the moments targeted by the

particular long-run risk model.

The analytical formulas of the over-identification moment conditions are quite complicated,

since how the beta coefficients and market price of risk coefficients depend on model parameters in

equilibrium is extremely complicated for the long-run risk model. We ignore the formulas here and,

in fact, we calculate them numerically in obtaining the fragility measures. Moreover, we compute

the Fisher Information matrices for the moments in gP and gQ based on simulated stationary time

series using the Monte Carlo method.

4 Information-Theoretic Interpretation for Model Fragility Based

on Chernoff Rates

Chernoff Information. Our Fisher fragility measures are based on the information matrices

from the baseline model and the full structural model. We show that by comparing the information

matrices, the Fisher fragility measure quantifies the informativeness of the cross-equation restrictions

in the structural model under the Chernoff information metric.

We start by introducing the concept of Chernoff information. Chernoff information gives the

asymptotic geometric rate (Chernoff rate) at which the detection error probability (the weighted

average of the error probabilities in selection between two alternative models) decays as the sample

size increases. Intuitively, Chernoff information measures the difficulty of discriminating among

alternative models.7

Consider a model with density p(x|θ0) and an alternative model with density p(x|θ). Assume

the densities are absolutely continuous relative to each other. The Chernoff information between

the two models is defined as (see, e.g., Cover and Thomas (1991)):

C∗(p(x|θ) : p(x|θ0)) ≡ − ln min
α∈[0,1]

∫
X

p(x|θ0)αp(x|θ)1−αdx. (252)

The cross-equation restrictions imposed by the structural model increase efficiency of parameter

estimation, which makes it is easier to distinguish model πQ(xn,yn|θ0) from local alternatives,

πQ(xn,yn|θ0 + n−
1
2u) (u is a vector), compared to distinguishing πP(xn|θ0) from πP(xn|θ0 + n−

1
2u).

Informativeness of cross-equation restrictions for discrimination between alternative models can be

captured asymptotically by the ratio of two Chernoff rates, computed with and without imposing the

cross-equation restrictions. The following proposition connects such ratio to the asymptotic fragility

measure %a(θ0), and then the one-dimensional case as a corollary will be presented afterwards.

7Anderson, Hansen, and Sargent (2003) use Chernoff rate to motivate a measure of model mis-specification in their
analysis of robust decision making.
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Proposition 23. Assume the regularity conditions in Section 1.4 hold. Then, there exist DΘ

linearly independent DΘ−dimensional vectors u1, · · · , uDΘ
such that

%(θ0) = lim
n→∞

DΘ∑
i=1

C∗(πQ(xn,yn|θui) : πQ(xn,yn|θ0))

C∗(πP(xn|θui) : πP(xn|θ0))
, (253)

where θui = θ0 + n−
1
2ui and n is the sample size.

Proof of Proposition 23. In the proof, we consider a mathematically more general case where

the matrix v for %v(θ0) is not necessarily a DΘ×DΘ identity matrix. We assume that v is a full-rank

Dv ×DΘ matrix with 1 ≤ Dv ≤ DΘ. We can show that there exists a system of orthonormal basis

[ṽ1, · · · , ṽDv ] of the linear space spanned by the column vectors of IQ(θ0)−1/2v such that

%v(θ0) =

Dv∑
i=1

ṽTi IQ(θ0)1/2IP(θ0)−1IQ(θ0)1/2ṽi =

Dv∑
i=1

v̂Ti IP(θ0)−1v̂i

v̂Ti IQ(θ0)−1v̂i
, (254)

where v̂i = IQ(θ0)1/2ṽi. Because IQ(θ0)1/2IP(θ0)−1IQ(θ0)1/2 has exactly the same eigenvalues as

IP(θ0)−1/2IQ(θ0)IP(θ0)−1/2, there exist unit vectors ũ1, · · · , ũDv such that

ṽTi IQ(θ0)1/2IP(θ0)−1IQ(θ0)1/2ṽi = ũTi IP(θ0)−1/2IQ(θ0)IP(θ0)−1/2ũi. (255)

Define ui = IP(θ0)−1/2ũi/|IP(θ0)−1/2ũi|, we have

%v(θ0) =

Dv∑
i=1

uTi IQ(θ0)ui

uTi IP(θ0)ui
. (256)

Now, let’s consider the Chernoff rates for the “perturbed” parameters

θui ≡ θ0 + n−1/2ui, for i = 1, · · · , Dv.

First, we have the following identity∫
[πP(xn|θ0)]1−α [πP(xn|θui)]

α dxn =

∫
πP(xn|θ0)eα[lnπP(xn|θui )−lnπP(xn|θ0)]dxn. (257)

According to Lemma 7.6 in van der Vaart (1998), we know that the condition of differentiability

in quadratic mean holds for density functions in our case. Then, the Local Asymptotic Normality

(LAN) condition holds, i.e.,

lnπP(xn|θui)− lnπP(xn|θ0)

= uTi

[
1√
n

n∑
t=1

∂

∂θ
lnπP(xt; θ0)

]
− 1

2
uTi IP(θ0)ui +Rn, (258)
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where EP0 |Rn|2 → 0 because of the Assumption F. Under the regularity conditions, the following

CLT holds, according to Theorem 2.4 of White and Domowitz (1984),

1√
n

n∑
t=1

∂

∂θ
lnπP(xt; θ0) N (0, IP(θ0)) . (259)

Define the Moment Generating Function (MGF) of lnπP(xn|θui)− lnπP(xn|θ0):

Mn(α) ≡ EP0

{
eα[lnπP(xn|θui )−lnπP(xn|θ0)]

}
= e−α

1
2
uTi IP(θ0)uiEP0

{
e
αuTi

[
1√
n

∑n
t=1

∂
∂θ

lnπP(xt;θ0)
]}

+ εn(α),

where εn(α) = o(1) for each α ∈ [0, 1]. Therefore, as n goes large,

Mn(α, ui)→ e−
1
2
α(1−α)uTi IP(θ0)ui , ∀ α ∈ [0, 1]. (260)

We denote the Cumulant Generating Function (CGF) as

Λn(α, ui) = lnMn(α, ui).

The CGF Λn(α, ui) is convex in α. Because the pointwise convergence for a sequence of convex

functions implies their uniform convergence to a convex function(see e.g., Rockafellar, 1970), we

know that

Λn(α, ui)→ −
1

2
α(1− α)uTi IP(θ0)ui. (261)

Based on the definition of Chernoff information in (252) and the identity in (257), we know that

C∗(πP(xn|θui) : πP(xn|θ0))

≡ max
α∈[0,1]

− ln

∫
[πP(xn|θ0)]α [πP(xn|θui)]

1−α dxn

= max
α∈[0,1]

−Λn(α, ui)→ max
α∈[0,1]

1

2
α(1− α)uTi IP(θ0)ui =

1

8
uTi IP(θ0)ui. (262)

In Equation (262) above, the convergence of maxima of −Λn(α, ui) to the maximum of 1
2α(1 −

α)uTi I(θ0)ui is guaranteed by the uniform convergence of Λn(α, ui).

Similarly, we can show that

C∗(πQ(xn,yn|θui) : πQ(xn,yn|θ0)) =
1

8
uTi IQ(θ0)ui + o(1). (263)

86



Therefore, we have

lim
n→∞

C∗(πQ(xn,yn|θui) : πQ(xn,yn|θ0))

C∗(πP(xn|θui) : πP(xn|θ0))
=

1
8u

T
i IQ(θ0)ui

1
8u

T
i IP(θ0)ui

=
uTi IQ(θ0)ui

uTi IP(θ0)ui

Combining with (256), we obtain

%v(θ0) = lim
n→∞

Dv∑
i=1

C∗(πQ(xn,yn|θui) : πQ(xn,yn|θ0))

C∗(πP(xn|θui) : πP(xn|θ0))
. (264)

Corollary 6. Assume the regularity conditions in Section 1.4 hold. Suppose DΘ = 1, then for any

v ∈ R it holds that

%(θ0) = lim
n→∞

C∗(πQ(xn,yn|θv) : πQ(xn,yn|θ0))

C∗(πP(xn|θv) : πP(xn|θ0))
, (265)

where θv = θ0 + n−
1
2 v and n is the sample size.

Proof of Proposition 6. For the scalar case, it has the following convenient equality:

%(θ0) =
vT IP(θ0)−1v

vT IQ(θ0)−1v
=

IP(θ0)−1

IQ(θ0)−1
=

IQ(θ0)

IP(θ0)
=
vT IQ(θ0)v

vT IP(θ0)v
. (266)

The the rest of the derivations are the same as the proof of Proposition 23.

Detection Error Probability. This subsection is mainly based on Section 12.9 in Cover and

Thomas (1991). Assume X1, · · · , Xn i.i.d. ∼ Q. We have two hypothesis or classes: Q = P1 with

prior π1 and Q = P2 with prior π2. The overall probability of error (detection error probability) is

Pne = π1E
(n)
1 + π2E

(n)
2 ,

where E
(n)
1 is the error probability when Q = P1 and E

(n)
2 is the error probability when Q = P2.

Define the best achievable exponent in the detection error probability is

D∗ = lim
n→∞

min
An∈Xn

− 1

n
log2 P

(n)
e , where An is the acceptance region.

The Chernoff’s Theorem shows that D∗ = C∗(P1 : P2). More precisely, Chernoff’s Theorem states

that the best achievable exponent in the detection error probability is D∗, where

D∗ = DKL(Pα∗ ||P1) = DKL(Pα∗ ||P2),

with

Pα =
Pα1 (x)P 1−α

2 (x)∫
X
Pα1 (x)P 1−α

2 (x)dx
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and α∗ is the value of α such that

DKL(Pα∗ ||P1) = DKL(Pα∗ ||P2) = C∗(P1 : P2).

According to the Chernoff’s Theorem, intuitively, the best achievable exponent in the detection

error probability is

P (n)
e

.
= π12−nDKL(Pα∗ ||P1) + π22−nDKL(Pα∗ ||P2) = 2−nC

∗(P1:P2). (267)
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