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Abstract

As part of overall market architecture, market-wide trading halts, also called

circuit breakers, have been proposed and widely adopted as a measure to stabilize

the stock market when experiencing large price movements. We develop an in-

tertemporal equilibrium model to examine how circuit breakers impact the market

when investors trade to share risk. We show that a downside circuit breaker tends

to lower the stock price and increase its volatility, both conditional and realized.

Due to this increase in volatility, the circuit breaker’s own presence actually raises

the likelihood of reaching the triggering price. In addition, the circuit breaker also

increases the probability of hitting the triggering price as the stock price approaches

it – the so-called “magnet effect.” Surprisingly, the volatility amplification effect

becomes stronger when the wealth share of the relatively pessimistic agent is small.
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1 Introduction

Large stock market swings in the absence of significant macroeconomic shocks often

raise questions about the confidence in the financial market from market participants,

policy makers and general public alike. While the cause of these swings are still not

well understood, various measures have been adopted to intervene in the normal trading

process during these extreme times in the hope to stabilize prices and maintain proper

functioning of the market. These measures, sometimes referred to as throwing sand in

the gears, range from market-wide trading halts, price limits on the whole market or

individual assets, to limits on order flows, positions and margins, even transaction taxes,

just to name a few.1 They have grown to be an important part of the broad market

architecture. Yet, the merits of these measures, either from a theoretical or an empirical

perspective, remain largely unclear (see, for example, Grossman (1990)).

Probably one of the most prominent of these measures is the market-wide circuit

breaker in the U.S., which was advocated by the Brady Commission (Presidential Task

Force on Market Mechanisms, 1988) following the Black Monday of 1987 and subsequently

implemented in 1988. It temporarily halts trading in all stocks and related derivatives

when a designated market index drops by a significant amount. Following this lead, circuit

breakers of various forms have been widely adopted by equity and derivative exchanges

around the globe.2 Table 1 shows the adaptation of market-wide circuit breakers among

the leading stock markets in both the developed and developing world.

Since its introduction, the U.S. circuit breaker was triggered only once on October

27, 1997 (see, e.g., Figure 1, left panel). At that time, the threshold was based on points

movement of the DJIA index. At 2:36 p.m., a 350-point (4.54%) decline in the DJIA led

to a 30-minute trading halt on stocks, equity options, and index futures. After trading

1It is worth noting that contingent trading halts and price limits are part of the normal trading process
for individual stocks or futures contracts. However, their presence there have quite different motivations.
For example, the trading halt of an individual stock prior to major corporate announcements is motivated
by the desire for fair information disclosure, and daily price limits on futures are motivated by the desire
to guarantee the proper implementation of mark to the market as well as to deter market manipulation.
In this paper, we focus on market-wide trading interventions in underlying markets such as stocks as
well as their derivatives, which have very different motivations.

2According to a 2016 report, “Global Circuit Breaker Guide” by ITG, over 30 countries around the
world have rules of trading halts in the form of circuit breakers, price limits and volatility auctions.
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Table 1: Adoption of market-wide circuit breakers among leading stock markets. The
table also reports markets with price limits on individual stocks. Markets with market-
wide circuit breakers as well as individual stock price limits are denoted by Y and
N otherwise. Y/N for China denotes its adaptation of circuit breakers and then the
abandonment.

2017 Market Cap (Tn $) Rank Circuit Breaker Price Limit

Developed markets
United States 32.1 1 Y Y
Japan 6.2 3 N Y
Hong Kong 4.4 4 N N
France 2.7 5 Y N
Canada 2.4 6 Y N

Developing markets
China 8.7 2 Y/N Y
India 2.3 7 Y Y
Brazil 1.0 14 Y N
Russia 0.6 17 Y N

resumed at 3:06 p.m., prices fell rapidly to reach the second-level 550-point circuit breaker

at 3:30 p.m., leading to the early market closure for the day. (For a detailed review of this

event, see Securities and Exchange Commission (1998).) But the market stabilized the

next day. This event led to the redesign of the circuit breaker rules, moving from point

drops of DJIA to percentage drops of S&P 500, with a considerably wider bandwidth.3

After the Chinese stock market experienced extreme price declines in 2015, a market-

wide circuit breaker was introduced in January 2016, with a 15-minute trading halt when

the CSI 300 Index falls by 5% (Level 1) from previous day’s close, and market closure for

the day after a 7% decline (Level 2).4 On January 4, 2016, the first trading day after the

circuit breaker was put in place, both thresholds were reached (Figure 1, middle panel),

and it took only 7 minutes from the re-opening of the markets following the 15-minute

halt for the index to reach the 7% threshold. Three days later, on January 7, both circuit

3In its current form, the market-wide circuit breaker can be triggered at three thresholds: 7% (Level
1), 13% (Level 2), both of which will halt market-wide trading for 15 minutes when the decline occurs
between 9:30 a.m. and 3:25 p.m. Eastern time, and 20% (Level 3), which halts market-wide trading for
the remainder of the trading day; these triggers are based on the prior day’s closing price of the S&P
500 Index.

4The CSI 300 index is a market-cap weighted index of 300 major stocks listed on the Shanghai Stock
Exchange and the Shenzhen Stock Exchange, compiled by the China Securities Index Company, Ltd.
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Figure 1: Circuit breakers in the U.S. and Chinese stock market. The left panel
plots the DJIA index on Oct 27, 1997, when the market-wide circuit breaker was triggered,
first at 2:36 p.m., and then at 3:30 p.m. The middle and right panels plot the CSI300
index on January 4 and January 7 of 2016. Trading hours for the Chinese stock market
are 9:30-11:30 and 13:00-15:00 (the shaded interval in the panels marks the lunch break).
Level 1 (2) circuit breaker is triggered after a 5% (7%) drop in price from the previous
day’s close. The blue circles on the left (right) vertical axes mark the price on the
previous day’s close (following day’s open).

breakers were triggered again (Figure 1, right panel), and the entire trading session lasted

just 30 minutes. On the same day, the circuit breaker was suspended indefinitely.

These events have revived debates about the circuit breakers and market interventions

in general. What are the theoretical and empirical basis for introducing circuit breakers?

What are the concrete goals they are supposed to achieve? How do they actually impact

the market? How to assess their success or failure? How may their effectiveness depend

on the particular market, the actual design, and the specific market conditions? More

broadly, these questions can be raised about any form of interventions in the trading

process.

In this paper, we develop an intertemporal equilibrium model to capture investors’

most fundamental trading needs, namely to share risk. We then examine how the

introduction of a downside circuit breaker affects investors’ trading behavior and the

equilibrium price dynamics. In addition to welfare loss by reduced risk sharing, which
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can be substantial, we show that a circuit breaker also lowers price levels, increases

conditional and realized volatility, and increases the likelihood of hitting the triggering

point. These consequences are in contrast to the often stated goals of circuit breakers.

Our model not only demonstrates the potential cost of circuit breakers, but also provides

a basic setting to further incorporate market imperfections to fully examine their costs

and benefits.

In our model, two (classes of) investors have log preferences over terminal wealth

and have heterogeneous beliefs about the dividend growth rate, which generates trading.

For simplicity, one investor’s belief is set to be the same as the objective belief while

another investor’s belief is different, who will also be referred to as the irrational investor.5

Without the circuit breaker, the stock price is a weighted average of the prices under the

two investors’ beliefs, with the weights being their respective shares of total wealth.

The introduction of circuit breakers in the market, however, makes the equilibrium

stock price disproportionately reflect the beliefs of the relatively pessimistic investor. To

understand this result, first consider the scenario when the stock price has just reached

the circuit breaker threshold. Immediate market closure is an extreme form of illiquidity,

which forces the relatively optimistic investor to refrain from taking on any leverage due

to the inability to rebalance his portfolio and the risk of default it may entail. As a

result, the pessimistic investor becomes the marginal investor at the closure, and the

equilibrium stock price has to entirely reflect his belief, regardless of his wealth share.

The threat of market closure also affects trading and prices before the circuit breaker

is triggered. Compared to the case without circuit breaker, the relatively optimistic

investor will preemptively reduce his leverage as the price approaches the circuit breaker

limit. For a downside circuit breaker, the price-dividend ratios become lower throughout

the trading interval. Thus, a downside circuit breaker tends to drive down the overall

asset price levels.

In addition, in the presence of a downside circuit breaker, the conditional volatilities

5Interpreting the investor heterogeneity as difference in beliefs is solely for convenience. We can also
interpret it as difference in preferences or endowments. Please see the discussion on the model in Section
2.
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of stock returns can become significantly higher. These effects are stronger when the

price is closer to the circuit breaker threshold, when it is earlier during a trading session.

Surprisingly, the volatility amplification effect of downside circuit breakers is stronger

when the initial wealth share for the irrational investor (who tends to be pessimistic at

the triggering point) is smaller, because the gap between the wealth-weighted belief of

the representative investor and the belief of the pessimist is larger in such cases.

Our model shows that circuit breakers have multifaceted effects on intra-day price

variability. On the one hand, almost mechanically, a (tighter) downside circuit breaker

limit eliminates a possibility of very large downward price movements. Such effects

could be beneficial, for example, in reducing inefficient liquidations due to intra-day

mark-to-market. On the other hand, a (tighter) downside circuit breaker will tend to raise

the probabilities of intermediate and large price ranges, and can significantly increase the

median of daily realized volatilities as well as the probabilities of very large conditional

and realized volatilities. These effects could exacerbate market instability in the presence

of imperfections.

Furthermore, our model demonstrates a “magnet effect.” The very presence of

downside circuit breakers makes it more likely for the stock price to reach the threshold

in a given amount of time than when there are no circuit breakers (the opposite is true

for upside circuit breakers). The difference between the probabilities is negligible when

the stock price is sufficiently far away from the threshold, but it gets bigger as the stock

price gets closer to the threshold. Eventually, when the price is sufficiently close to the

threshold, the gap converges to zero as both probabilities converge to one.

This “magnet effect” is important for the design of circuit breakers. It suggests that

using the historical data from a period when circuit breakers were not implemented can

lead one to severely underestimate the likelihood of future circuit breaker triggers, which

might result in picking a downside circuit breaker limit that is excessively tight.

Prior theoretical work on circuit breakers focuses on their role in reducing excess

volatility and restore orderly trading in the presence of market imperfections such as

limited participation, information asymmetry and market power. For example, Greenwald
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and Stein (1991) argue that, in a market with limited participation and the execution

risk it may cause, circuit breakers can help to better synchronize trading for market

participants and improve the efficiency of allocations (see also Greenwald and Stein

(1988)).6 On the other hand, Subrahmanyam (1994) shows that in the presence of

asymmetric information, circuit breakers can increase price volatility by causing investors

to shift their trades to earlier periods with lower liquidity supply (see also Subrahmanyam

(1995)).

While imperfections are important in providing the basis for interventions, focusing

solely on their influence may understate the fundamental merits of the market mechanism

itself. In addition, to the extent that we are considering circuit breakers for the overall

market, various types of market imperfections may be much less severe as compared to

for individual assets.

By developing a model to capture investors’ first-order trading needs, our work

complements these studies in two important dimensions. First, it captures the cost of

circuit breakers, in welfare, price level and volatility, in a benchmark setting without

imperfections. Second, it provides a basis to further include different forms of market

imperfections if suitable, such as asymmetric information, strategic behavior, cost of

participation and failure of coordination, which are needed to justify and quantify the

benefits of circuit breakers.

In this spirit, our paper is closely related to Hong and Wang (2000), who study

the effects of periodic market closures in the presence of asymmetric information. The

liquidity effect caused by market closures as we see here is qualitatively similar to what

they find. By modeling the stochastic nature of a circuit breaker, we are able to fully

capture its impact on market dynamics, such as volatility and conditional distributions.

While our model focuses on circuit breakers, our main results about the impact of

disappearing liquidity on trading and price dynamics is more broadly applicable. Besides

6In Greenwald and Stein (1991), limited participation takes several forms. In particular, value traders,
who act as price stabilizers, enter the market at different times with uncertainty. This uncertainty in
their participation, which is assumed to be exogenous, gives rise to the additional risk in execution
prices. Also, these value traders can only rely on market orders of simple limit orders, rather than limit
order schedules, in their trading.
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market-wide trading halts, other types of market interruptions such as price limits,

short-sale ban, trading speed restrictions (e.g., penalties for HFT), and various forms of

liquidity shocks can all have similar effects on the willingness of some investors to take on

risky positions, which results in depressed prices and amplified volatility. In fact, the set

up we have developed here can be extended to examine the impact of these interruptions.

The empirical work on the impact of market-wide circuit breakers is scarce due to

the fact that their likelihood to be approached, not to mention triggered, is very small

by design. Goldstein and Kavajecz (2004) provide a detailed analysis on the behavior

of market participants in the period around October 27, 1997, the only time the circuit

breaker has been triggered in the U.S. since its introduction. They find that leading up

to the trading halt, market participants accelerated their trades, which is consistent with

the magnet effect. In addition, they show that sellers’ behavior is less influenced when

approaching circuit breaker than the buyers’, who are withdrawing from the market by

canceling their buy limit orders. This is consistent with what our model predicts: sellers

are becoming marginal traders around circuit breaker.7

There is, however, more extensive empirical work on the impact of conditional trading

restrictions on individual assets including futures. For example, Bertero and Mayer (1990)

and Lauterbach and Ben-Zion (1993) study the effects of trading halts based on price

limits imposed on individual stocks around the 1987 stock market crash. Bertero and

Mayer (1990) find that stock indices of countries with price limits imposed on individual

stocks experienced declines in magnitude of up to 9% lower compared to aggregate

indices in countries without circuit breakers. Lauterbach and Ben-Zion (1993) find that

stocks with trading halts experienced smaller decline on the day of the crash, but trading

halts did not have any effect on long run performance. Lee, Ready, and Seguin (1994)

explore behavior of individual stock prices traded at NYSE around times of trading halts.

They find that individual stock volatility and trading volume both increase on the days

following a trading halt. On the other hand, Christie, Corwin, and Harris (2002) find

that for news related trading halts of individual NASDAQ stocks, longer halts tend to

7Ackert, Church, and Jayaraman (2001) study the impact of market-wide circuit breakers through
experiments. They find that circuit breakers do not impact prices significantly but alter market
participants’ trading behavior substantially by accelerating trading when the breakers are approaching.
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reduce post-halt uncertainty.8 Although the focus of our paper is on market-wide circuit

breakers, the results we obtain are broadly compatible with the empirical findings on

the impact of trading halts for individual assets. But the results from individual assets

are in general richer and less robust. In many ways, this is expected given the relative

importance of various type of imperfections in these markets.

In summary, our paper provides a benchmark to demonstrate the potential costs

of circuit breakers, including welfare, price level and volatility. Such a benchmark, in

absence of any imperfections, is valuable for several reasons. First, various forms of

market imperfections such as information asymmetry and strategic behavior are arguably

less important for deep markets, such as the aggregate stock market, than for shallow

markets, such as markets for individual securities. Thus, the results we obtain here should

be more definitive for market-wide circuit breakers, which is our focus in this paper.

Second, we show that even in absence of imperfections, the threat of (future) market

shutdowns can have rich implications such as volatility amplification, self-predatory

trading and surge of liquidity demand, which will remain present in models involving

imperfections. Third, our model sheds light on the importance of properly capturing the

most fundamental trading needs of investors, i.g., risk sharing or liquidity, in analyzing,

understanding and managing financial markets. In models of information asymmetry,

these trading needs are represented by the liquidity demands of “noise traders”, which

are treated as exogenous. In fact, our results suggest that the behavior of these liquidity

traders can be significantly affected by circuit breakers.

The rest of the paper is organized as follows. Section 2 describes the basic model for

our analysis. Section 3 provides the solution to the model. In Section 4, we examine

the impact of a downside circuit breaker on investor behavior and equilibrium prices.

Section 5 discusses the robustness of our results with respect to some of our modeling

8Chen (1993), Santoni and Liu (1993), Kim and Rhee (1997), Corwin and Lipson (2000), Jiang,
McInish, and Upson (2009), Gomber, Haferkorn, Lutat, and Zimmermann (2012), Brugler and Linton
(2014), among others, study the effects of trading halts and price limits on the market behavior individual
stocks. Chen, Gao, He, Jiang, and Xiong (2016) examine the impact of daily price limits on trading
patterns and price dynamics in the Chinese stock market. Kuserk, Locke, and Sayers (1992), Berkman,
Steenbeek, et al. (1998), Coursey and Dyl (1990), Ma, Rao, and Sears (1989b), Ma, Rao, and Sears
(1989a), Chen and Jeng (1996) study effects of trading restrictions related to price fluctuations in futures
markets.
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choices such as continuous-time trading and no default. In Section 6, we consider several

extensions of the basic model to different types of trading halts. Section 7 concludes. All

proofs are given in the appendix.

2 The Model

We consider a continuous-time endowment economy over the finite time interval [0, T ].

Uncertainty is described by a one-dimensional standard Brownian motion Z, defined

on a filtered complete probability space (Ω,F , {Ft},P), where {Ft} is the augmented

filtration generated by Z.

There is a single share of an aggregate stock, which pays a terminal dividend of DT

at time T . The process for D is exogenous and publicly observable, given by:

dDt = µDtdt+ σDtdZt, D0 = 1, (1)

where µ and σ > 0 are the expected growth rate and volatility of Dt.
9 Besides the stock,

there is also a riskless bond with total net supply ∆ ≥ 0. Each unit of the bond yields a

terminal pays off of one at time T .

There are two competitive agents A and B, who are initially endowed with ω and

1 − ω shares of the aggregate stock and ω∆ and (1 − ω)∆ units of the riskless bond,

respectively, with 0 ≤ ω ≤ 1 determining the initial wealth distribution between the

agents. Both agents have logarithmic preferences over their terminal wealth at time T :

ui(W
i
T ) = ln(W i

T ), i = {A,B}. (2)

There is no intermediate consumption.

The two agents have heterogeneous beliefs about the terminal dividend, and they

“agree to disagree” (i.e., they do not learn from each other or from prices). Agent A has

the objective beliefs in the sense that his probability measure is consistent with P (in

9For brevity, throughout the paper we will refer to Dt as “dividend” and St/Dt as the “price-dividend
ratio,” even though dividend will only be realized at time T .
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particular, µA = µ). Agent B’s probability measure, denoted by PB, is different from

but equivalent to P.10 In particular, he believes that the growth rate at time t is:

µBt = µ+ δt, (3)

where the difference in beliefs δt follows an Ornstein-Uhlenbeck process:

dδt = −κ(δt − δ̄)dt+ νdZt, (4)

with κ ≥ 0 and ν ≥ 0. Equation (4) describes the dynamics of the gap in beliefs from the

perspective of agent A (the physical probability measure). Notice that δt is driven by the

same Brownian motion as the aggregate dividend. With ν > 0, agent B becomes more

optimistic (pessimistic) following positive (negative) shocks to the aggregate dividend,

and the impact of these shocks on his belief decays exponentially at the rate κ. Thus, the

parameter ν controls how sensitive B’s conditional belief is to realized dividend shocks,

while κ determines the relative importance of shocks from recent past vs. distant past.

The average long-run disagreement between the two agents is δ̄. In the special case with

ν = 0 and δ0 = δ̄, the disagreement between the two agents remains constant over time.

In another special case where κ = 0, δt follows a random walk.

Heterogeneous beliefs are a simple way to introduce heterogeneity among agents, which

is necessary to generate trading. The heterogeneity in beliefs can easily be interpreted as

heterogeneity in utility, which can be state dependent. For example, time-varying beliefs

could represent behavioral biases (“representativeness”) or a form of path-dependent

utility that makes agent B more (less) risk averse following negative (positive) shocks to

fundamentals. Alternatively, we could introduce heterogeneous endowment shocks to

generate trading (see, e.g., Wang (1995)). In all these cases, trading allows agents to

share risk.

Let the Radon-Nikodym derivative of the probability measure PB with respect to P
10More precisely, P and PB are equivalent when restricted to any σ-field FT = σ({Dt}0≤t≤T ). Two

probability measures are equivalent if they agree on zero probability events. Agents beliefs should be
equivalent to prevent seemingly arbitrage opportunities under any agents’ beliefs.
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be η. Then from Girsanov’s theorem, we get

ηt = exp

(
1

σ

∫ t

0

δsdZs −
1

2σ2

∫ t

0

δ2sds

)
. (5)

Intuitively, since agent B will be more optimistic than A when δt > 0, those paths with

high realized values for
∫ t
0
δsdZs will be assigned higher probabilities under PB than

under P.

Because there is no intermediate consumption, we use the riskless bond as the

numeraire. Thus, the price of the bond is always 1.

Circuit Breaker. To capture the essence of a circuit breaker rule, we assume that the

stock market will be closed whenever the price of the stock St falls below a threshold

(1−α)S0, where S0 is the endogenous initial price of the stock, and α ∈ [0, 1] is a constant

parameter determining the bandwidth of downside price fluctuations during the interval

[0, T ]. Later in Section 6, we extend the model to allow for market closures for both

downside and upside price movements, which represent price limit rules. The closing

price for the stock is determined such that both the stock market and bond market are

cleared when the circuit breaker is triggered. After that, the stock market will remain

closed until time T . The bond market remains open throughout the interval [0, T ].

In practice, the circuit breaker threshold is often based on the closing price from

the previous trading session instead of the opening price of the current trading session.

For example, in the U.S., a cross-market trading halt can be triggered at three circuit

breaker thresholds (7%, 13%, and 20%) based on the prior day’s closing price of the S&P

500 Index. However, the distinction between today’s opening price and the prior day’s

closing price is not crucial for our model. The circuit breaker not only depends on but

also endogenously affects the initial stock price, just like it does for prior day’s closing

price in practice.11

11Other realistic features of the circuit breaker in practice is to close the market for m minutes and
reopen (Level 1 and 2), or close the market until the end of the day (Level 3). In our model, we can
think of T as one day. The fact that the price of the stock reverts back to the fundamental value XT at
T resembles the rationale of CB to “restore order” in the market.
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Finally, we impose usual restrictions on trading strategies to rule out arbitrage.

3 The Equilibrium

3.1 Benchmark Case: No Circuit Breaker

In this section, we solve for the equilibrium when there is no circuit breaker. To distinguish

the notations from the case with circuit breakers, we use the symbol “̂” to denote

variables in the case without circuit breakers.

In the absence of circuit breakers, markets are dynamically complete. The equilibrium

allocation in this case can be characterized as the solution to the following planner’s

problem:

max
ŴA
T , Ŵ

B
T

E0

[
λ ln

(
ŴA
T

)
+ (1− λ)ηT ln

(
ŴB
T

)]
, (6)

subject to the resource constraint

ŴA
T + ŴB

T = DT + ∆. (7)

From the first-order conditions and the budget constraints, we then get λ = ω, and

ŴA
T =

ω

ω + (1− ω)ηT
(DT + ∆), (8a)

ŴB
T =

(1− ω)ηT
ω + (1− ω)ηT

(DT + ∆). (8b)

As it follows from the equations above agent B will be allocated a bigger share of the

aggregate dividend when realized value of the Radon-Nikodym derivative ηT is higher,

i.e., under those paths that agent B considers to be more likely.

The state price density under agent A’s beliefs, which is also the objective probability

measure P, is

π̂At = Et
[
ξu′(ŴA

T )
]

= Et
[
ξ(ŴA

T )−1
]
, 0 ≤ t ≤ T (9)

for some constant ξ. Then, from the budget constraint for agent A we see that the
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planner’s weights are equal to the shares of endowment, λ = θ. Using the state price

density, one can then derive the price of the stock and individual investors’ portfolio

holdings.

In the limiting case with bond supply ∆→ 0, the complete markets equilibrium can

be characterized in closed form. We focus on this limiting case in the rest of the section.

First, the following proposition summarizes the pricing results.

Proposition 1. When there are no circuit breakers, the price of the stock in the limiting

case with bond supply ∆→ 0 is:

Ŝt =
ω + (1− ω)ηt

ω + (1− ω)ηtea(t,T )+b(t,T )δt
Dte

(µ−σ2)(T−t), (10)

where

a(t, T ) =

[
κδ − σν
ν
σ
− κ

+
ν2

2
(
ν
σ
− κ
)2
]

(T − t)− ν2

4
(
ν
σ
− κ
)3 [1− e2( νσ−κ)(T−t)]

+

[
κδ − σν(
ν
σ
− κ
)2 +

ν2(
ν
σ
− κ
)3
] [

1− e(
ν
σ
−κ)(T−t)

]
, (11a)

b(t, T ) =
1− e(

ν
σ
−κ)(T−t)

ν
σ
− κ

. (11b)

From Equation (10), we can derive the conditional volatility of the stock σ̂S,t in closed

form, which is available in the appendix.

Next, we turn to the wealth distribution and portfolio holdings of individual agents.

At time t ≤ T , the shares of total wealth of the two agents are:

ω̂At =
ω

ω + (1− ω)ηt
, ω̂Bt = 1− ω̂At . (12)

The number of shares of stock θ̂At and units of riskless bonds φ̂At held by agent A are:

θ̂At =
ω

ω + (1− ω)ηt
− ω(1− ω)ηt

[ω + (1− ω)ηt]
2

δt
σσ̂S,t

= ω̂At

(
1− ω̂Bt

δt
σσ̂S,t

)
, (13)

φ̂At = ω̂At ω̂
B
t

δt
σσ̂S,t

Ŝt, (14)
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and the corresponding values for agent B are θBt = 1− θAt and φBt = −φAt .

As Equation (13) shows, there are several forces affecting the portfolio positions.

First, all else equal, agent A owns fewer shares of the stock when B has more optimistic

beliefs (larger δt). This effect becomes weaker when the volatility of stock return σ̂S,t is

high. Second, changes in the wealth distribution (as indicated by (12)) also affect the

portfolio holdings, as the richer agent will tend to hold more shares of the stock.

We can gain more intuition on the stock price by rewriting Equation (10) as follows:

Ŝt =
1

ω
ω+(1−ω)ηtEt

[
D−1T

]
+ (1−ω)ηt

ω+(1−ω)ηtE
B
t

[
D−1T

] =

(
ω̂At

ŜAt
+
ω̂Bt

ŜBt

)−1
, (15)

which states that the stock price is a weighted harmonic average of the prices of the

stock in two single-agent economies with agent A and B being the representative agent,

ŜAt and ŜBt , where

ŜAt = e(µ−σ
2)(T−t)Dt, (16a)

ŜBt = e(µ−σ
2)(T−t)−a(t,T )−b(t,T )δtDt, (16b)

and the weights (ω̂At , ω̂
B
t ) are the two agents’ shares of total wealth. For example,

controlling for the wealth distribution, the equilibrium stock price is higher when agent

B has more optimistic beliefs (larger δt).

One special case of the above result is when the amount of disagreement between the

two agents is the zero, i.e., δt = 0 for all t ∈ [0, T ]. The stock price then becomes:

Ŝt = ŜAt =
1

Et[D−1T ]
= e(µ−σ

2)(T−t)Dt, (17)

which is a version of the Gordon growth formula, with σ2 being the risk premium for the

stock. The instantaneous volatility of stock returns becomes the same as the volatility of

dividend growth, σ̂S,t = σ. The shares of the stock held by the two agents will remain

constant and be equal to the their endowments, θ̂At = ω, θ̂Bt = 1− ω.

Another special case is when the amount of disagreement is constant over time (δt = δ
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for all t). The results for this case are obtained by setting ν = 0 and δ0 = δ̄ = δ in

Proposition 1. In particular, Equation (10) simplifies to:

Ŝt =
ω + (1− ω)ηt

ω + (1− ω)ηte−δ(T−t)
e(µ−σ

2)(T−t)Dt. (18)

3.2 Circuit Breaker

We start this section by introducing some notation. By θit, φ
i
t, and W i

t we denote stock

holdings, bond holdings, and wealth of agent i at time t, respectively, in the market with

a circuit breaker. Let τ denote the time when the circuit breaker is triggered. It follows

from the definition of the circuit breaker and the continuity of stock prices that τ satisfies

τ = inf{t ≥ 0 : St = (1− α)S0}. (19)

We use the expression τ ∧ T to denote min{τ, T}. Next, we define the equilibrium with

a circuit breaker.

Definition 1. The equilibrium with circuit breaker is defined by an Ft-stopping time τ ,

trading strategies {θit, φit} (i = A,B), and a continuous stock price process S defined on

the interval [0, τ ∧ T ] such that:

1. Taking stock price process S as given, the trading strategies maximize the two agents’

expected utilities under their respective beliefs subject to the budget constraints.

2. For any t ∈ [0, T ], both the stock and bond markets clear,

θAt + θBt = 1, φAt + φBt = ∆. (20)

3. The stopping time τ is consistent with the circuit breaker rule in (19).

One crucial feature of the model is that markets remain dynamically complete until

the circuit breaker is triggered. Hence, we solve for the equilibrium with the following

three steps. First, consider an economy in which trading stops when the stock price
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reaches any given triggering price S ≥ 0. By examining the equilibrium conditions upon

market closure, we can characterize the Ft-stopping time τ that is consistent with Sτ = S.

Next, we can solve for the optimal allocation at τ ∧ T through the planner’s problem

as a function of S, as well as the stock price prior to τ ∧ T , again as a function of S.

Finally, the equilibrium is the fixed point whereby the triggering price S is consistent

with the initial price, S = (1− α)S0. We describe these steps in detail below.

Suppose the circuit breaker is triggered before the end of the trading session, i.e.,

τ < T . We start by deriving the agents’ indirect utility functions at the time of market

closure. Agent i has wealth W i
τ at time τ . Since the two agents behave competitively,

they take the stock price Sτ as given and choose the shares of stock θiτ and bonds φiτ to

maximize their expected utility over terminal wealth, subject to the budget constraint:

V i(W i
τ , τ) = max

θiτ , φ
i
τ

Eiτ
[
ln(θiτDT + φiτ )

]
, (21)

s.t. θiτSτ + φiτ = W i
τ ,

where V i(W i
τ , τ) is the indirect utility function for agent i at time τ < T .

The market clearing conditions at time τ are:

θAτ + θBτ = 1, φAτ + φBτ = ∆. (22)

For any τ < T , the Inada condition implies that terminal wealth for both agents needs

to stay non-negative, which implies θiτ ≥ 0, φiτ ≥ 0. That is, neither agent will take short

or levered positions in the stock. This is a direct result of the inability to rebalance one’s

portfolio after market closure, which is an extreme version of illiquidity.

Solving the problem (21) – (22) gives us the indirect utility functions V i(W i
τ , τ). It

also gives us the stock price at the time of market closure, Sτ , as a function of the

dividend Dτ , the gap in believes δτ , and the wealth distribution at time τ (which is

determined by the Radon-Nikodym derivative ητ ). Thus, the condition Sτ = S translates

into a constraint on Dτ , δτ , and ητ , which in turn characterizes the stopping time τ as a

function of exogenous state variables. As we will see later, in the limiting case with bond
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supply ∆ → 0, the stopping rule satisfying this restriction can be expressed in closed

form. When ∆ > 0, the solution can be obtained numerically.

Next, the indirect utility for agent i at τ ∧ T is given by:

V i(W i
τ∧T , τ ∧ T ) =

 ln(W i
T ), if τ ≥ T

V i(W i
τ , τ), if τ < T

(23)

These indirect utility functions make it convenient to solve for the equilibrium wealth

allocations in the economy at time τ ∧ T through the following planner problem:

max
WA
τ∧T ,W

B
τ∧T

E0

[
λV A(WA

τ∧T , τ ∧ T ) + (1− λ)ητ∧TV
B(WB

τ∧T , τ ∧ T )
]
, (24)

subject to the resource constraint:

WA
τ∧T +WB

τ∧T = Sτ∧T + ∆, (25)

where

Sτ∧T =

 DT , if τ ≥ T

S, if τ < T
(26)

Taking the equilibrium allocation WA
τ∧T from the planner’s problem, the state price

density for agent A at time τ ∧T can be expressed as his marginal utility of wealth times

a constant ξ,

πAτ∧T = ξ
∂V A(W, τ ∧ T )

∂W

∣∣∣
W=WA

τ∧T

. (27)

The price of the stock at any time t ≤ τ ∧ T is then given by:

St = Et
[
πAτ∧T
πAt

Sτ∧T

]
, (28)

where like in Equation (9),

πAt = Et
[
πAτ∧T

]
. (29)

The expectations above are straightforward to evaluate, at least numerically. Having
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obtained the solution for St as a function of S, we can finally solve for the equilibrium

triggering price S through the following fixed point problem,

S = (1− α)S0. (30)

Proposition 2. There exists a solution to the fixed-point problem in (30) for any

α ∈ [0, 1].

To see why Proposition 2 holds, consider S0 as a function of S, S0 = f(S). First

notice that when S = 0, there is essentially no circuit breaker, and f(0) will be the

same as the initial stock price in the complete markets case. Next, there exists s∗ > 0

such that s∗ = f(s∗), which is the initial price when the market closes immediately after

opening. The fact that f is continuous ensures that there exists at least one crossing

between the function f(s) and s/(1− α), which will be a solution for (30).

Below we will show how these steps can be neatly solved in the special case when

riskless bonds are in zero net supply.

Because neither agent will take levered or short positions during market closure, there

cannot be any lending or borrowing in that period. Thus, in the limiting case with

net bond supply ∆→ 0, all the wealth of the two agents will be invested in the stock

upon market closure, and consequently the leverage constraint will always bind for the

relatively optimistic investor in the presence of heterogeneous beliefs. The result is that

the relatively pessimistic investor becomes the marginal investor, as summarized in the

following proposition.

Proposition 3. Suppose the stock market closes at time τ < T . In the limiting case

with bond supply ∆→ 0, both agents will hold all of their wealth in the stock, θiτ = W i
τ

Sτ
,

and hold no bonds, φiτ = 0. The market clearing price is:

Sτ = min{ŜAτ , ŜBτ } =

 e(µ−σ
2)(T−τ)Dτ , if δτ > δ(τ)

e(µ−σ
2)(T−τ)−a(τ,T )−b(τ,T )δτDτ , if δτ ≤ δ(τ)

(31)

where Ŝiτ denotes the stock price in a single-agent economy populated by agent i, as given
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in (16a)-(16b),

δ(t) = −a(t, T )

b(t, T )
, (32)

and a(t, T ), b(t, T ) are given in Proposition 1.

Notice that the market clearing price Sτ only depends on the belief of the relatively

pessimistic agent. This result is qualitatively different from the complete markets case,

where the stock price is a wealth-weighted average of the prices under the two agents’

beliefs. It is a crucial result: the lower stock valuation upon market closure affects both

the stock price level and dynamics before market closure, which we analyze in Section 4.

Notice that having the lower expectation of the growth rate at the current instant is not

sufficient to make the agent marginal. One also needs to take into account the agents’

future beliefs and the risk premium associated with future fluctuations in the beliefs,

which are summarized by δ(t).12

Equation (31) implies that we can characterize the stopping time τ using a stochastic

threshold for dividend Dt, as summarized below.

Lemma 1. Take the triggering price S as given. Define a stopping time

τ = inf{t ≥ 0 : Dt = D(t, δt)}, (33)

where

D(t, δt) =

 Se−(µ−σ2)(T−t), if δt > δ(t)

Se−(µ−σ2)(T−t)+a(t,T )+b(t,T )δt , if δt ≤ δ(t)
(34)

Then, in the limiting case with bond supply ∆ → 0, the circuit breaker is triggered at

time τ whenever τ < T .

Having characterized the equilibrium at time τ < T , we plug the equilibrium portfolio

12Technically, there is a difference between the limiting case with ∆→ 0 and the case with ∆ = 0.
When ∆ = 0, any price equal or below Sτ in (31) will clear the market. At such prices, both agents
would prefer to invest more than 100% of their wealth in the stock, but both will face binding leverage
constraints, which is why the stock market clears at these prices. However, these alternative equilibria are
ruled out by considering a sequence of economies with bond supply ∆→ 0. In each of these economies
where ∆ > 0, the relatively pessimistic agent needs to hold the bond in equilibrium, which means his
leverage constraint cannot not be binding.
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holdings into (21) to derive the indirect utility of the two agents at τ :

V i(W i
τ , τ) = Eiτ

[
ln

(
W i
τ

Sτ
DT

)]
= ln(W i

τ )− ln (Sτ ) + Eiτ [ln(DT )]. (35)

The indirect utility for agent i at τ ∧ T is then given by:

V i(W i
τ∧T , τ ∧ T ) =

 ln(W i
T ), if τ ≥ T

ln(W i
τ )− ln (Sτ ) + Eiτ [ln(DT )], if τ < T

(36)

Substituting these indirect utility functions into the planner’s problem (24) and taking

the first order condition, we get the wealth of agent A at time τ ∧ T :

WA
τ∧T =

ωSτ∧T
ω + (1− ω) ητ∧T

, (37)

where Sτ∧T is given in (26). Then, we obtain the state price density for agent A and the

price of the stock at time t ≤ τ ∧ T as in (27) and (28), respectively. In particular,

St =
(
ωAt Et

[
S−1τ∧T

]
+ ωBt EBt

[
S−1τ∧T

] )−1
. (38)

Here ωit is the share of total wealth owned by agent i, which, in the limiting case with

∆ → 0, is identical to ω̂it in (12) before market closure. Equation (38) is reminiscent

of its complete markets counterpart (15). Unlike in the case of complete markets, the

expectations in (38) are no longer the inverse of the stock prices from the respective

representative agent economies.

From the stock price, we can then compute the conditional mean µS,t and volatility

σS,t of stock returns, which are given by

dSt = µS,tStdt+ σS,tStdZt. (39)

In Appendix A.3, we provide the closed-form solution for St in the special case with

constant disagreements (δt ≡ δ).

Finally, by evaluating St at time t = 0, we can solve for S from the fixed point
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problem (30). Beyond the existence result of Proposition 2, one can further show that

the fixed point is unique when the riskless bond is in zero net supply.13

The case of positive bond supply. When the riskless bond is in positive net supply,

there are four possible scenarios upon market closure: the relatively optimistic agent

faces binding leverage constraint, while the relatively pessimistic agent is either uncon-

strained (i) or faces binding short-sale constraint (ii); the relatively optimistic agent is

unconstrained, while the relatively pessimistic agent is either unconstrained (iii) or faces

binding short-sale constraint (iv). In contrast, only Scenario (i) is possible in the case

where the riskless bond is in zero net supply. The three new scenarios originate from

the fact that when ∆ > 0 the two agents can hold different portfolios without borrowing

and lending; furthermore, when the relatively optimistic agent is sufficiently wealthy, he

could potentially hold the entire stock market without having to take on any leverage.

In particular, Scenario (iv) is the opposite of Scenario (i) in that the relatively

optimistic agent, instead of the pessimistic one, becomes the marginal investor. As a

result, the price level can become higher and volatility lower in the economy with a

circuit breaker. Under Scenarios (ii) and (iii), the equilibrium stock price upon market

closure is somewhere in between the two agents’ valuations.

In Section 5.1, we examine the conditions (wealth distribution, size of bond supply,

and amount of disagreement upon market closure) that determine which of the scenarios

occur in equilibrium. As we show later, which of the scenarios is realized has important

implications for the equilibrium price process.

Circuit breaker and wealth distribution. We conclude this section by examining

the impact of circuit breakers on the wealth distribution. As explained earlier, the wealth

shares of the two agents before market closure (at time t ≤ τ ∧ T ) will be the same as in

the economy without circuit breakers, and take the form in (12) when the riskless bonds

are in zero net supply.

13The uniqueness is due to the fact that S0 will be monotonically decreasing in the triggering price S
in the limiting case when ∆→ 0, which is not necessarily true when ∆ > 0.
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However, the wealth shares at the end of the trading day (time T ) will be affected by

the presence of the circuit breaker. This is because if the circuit breaker is triggered at

τ < T , the wealth distribution after τ will remain fixed due to the absence of trading.

Since irrational traders on average lose money over time, market closure at τ < T will

raise their average wealth share at time T . This “mean effect” implies that circuit

breakers will help “protecting” the irrational investors in this model. How strong this

effect is depends on the amount of disagreement and the distribution of τ . In addition,

circuit breakers will also make the tail of the wealth share distribution thinner as they

put a limit on the amount of wealth that the relatively optimistic investor can lose over

time along those paths with low realizations of Dt.

4 Impact of Circuit Breakers on Market Dynamics

We now turn to the quantitative implications of the model. In Section 4.1 we examine

the special case of constant disagreement, δt ≡ δ. This case helps demonstrate the main

mechanism through which circuit breakers affect asset prices and trading. Then, in

Section 4.2, we examine the general case with time-varying disagreements. Throughout

this section we focus on the case where riskless bonds are in zero net supply (∆→ 0).

We examine the robustness of these results in Section 5.

4.1 Constant Disagreement

For calibration, we normalize T = 1 to denote one trading day. We set µ = 10%/250 =

0.04% (implying an annual dividend growth rate of 10%), and we assume daily volatility

of dividend growth σ = 3%. The circuit breaker threshold is set at α = 5%. For the

initial wealth distribution, we assume agent A (with rational beliefs) owns 90% of total

wealth (ω = 0.9) at t = 0. For the amount of disagreement, we set δ = −2%. This means

agent B is relatively pessimistic about dividend growth, and his valuation of the stock at

t = 0, ŜB0 , will be 2% lower than that of agent A, ŜA0 , which is fairly modest.

In Figure 2, we plot the equilibrium price-dividend ratio St/Dt (left column), the
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Figure 2: Price-dividend ratio, conditional return volatility, and agent A’s
(rational optimist) portfolio holding. Blue solid lines are for the case with circuit
breaker. Red dotted lines are for the case without circuit breaker. The grey vertical bars
denote the circuit breaker threshold D(t).

conditional volatility of returns (middle column), and the stock holding for agent A

(right column). The stock holding for agent B can be inferred from that of agent A, as

θBt = 1− θAt . In each panel, the solid line denotes the solution for the case with circuit

breaker, while the dotted line denotes the case without circuit breaker. To examine the

time-of-the-day effect, we plot the solutions at two different points in time, t = 0.25, 0.75.

Let’s start with the price-dividend ratio. As discussed in Section 3.1, the price of

the stock in the case without circuit breaker is the weighted (harmonic) average of the

prices of the stock from the two representative-agent economies populated by agent A

and B, respectively, with the weights given by the two agents’ shares of total wealth (see

equation (15)). Under our calibration, the price-dividend ratio is close to one for any

t ∈ [0, T ] under agent A’s beliefs (ŜAt /Dt), and it is approximately equal to eδ(T−t) ≤ 1

under agent B’s beliefs (ŜBt /Dt). These two values are denoted by the upper and lower

horizontal dash lines in the left column of Figure 2.
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The price-dividend ratio in the economy without circuit breaker (red dotted line)

indeed lies between ŜAt /Dt and ŜBt /Dt. Since agent A is relatively more optimistic, he

will hold levered position in the stock (see the red dotted line in the middle column), and

his share of total wealth will become higher following positive shocks to the dividend.

Thus, as dividend value Dt rises (falls), the share of total wealth owned by agent A

increases (decreases), which makes the equilibrium price-dividend ratio approach the

value ŜAt /Dt (ŜBt /Dt).

In the case with circuit breaker, the price-dividend ratio (blue solid line) still lies

between the price-dividend ratios from the two representative agent economies, but it is

always below the price-dividend ratio without circuit breaker for a given level of dividend.

The gap between the two price-dividend ratios is negligible when Dt is sufficiently high,

but it widens as Dt approaches the circuit breaker threshold D(t).

The reason that stock price declines more rapidly with dividend in the presence of a

circuit breaker can be traced to how the stock price is determined upon market closure.

As explained in Section 3.2, at the instant when the circuit breaker is triggered, neither

agent will be willing to take on levered position in the stock due to the inability to

rebalance the portfolio. With bonds in zero net supply, the leverage constraint always

binds for the relatively optimistic agent (agent A), and the market clearing stock price

has to be such that agent B is willing to hold all of his wealth in the stock, regardless

of his share of total wealth. Indeed, we see the price-dividend ratio with circuit breaker

converging to ŜBt /Dt when Dt approaches D(t), instead of the wealth-weighted average

of ŜAt /Dt and ŜBt /Dt. The lower stock price at the circuit breaker threshold also drives

the stock price lower before market closure, with the effect becoming stronger as Dt

moves closer to the threshold D(t). This explains the accelerated decline in stock price

as Dt drops.

The higher sensitivity of the price-dividend ratio to dividend shocks due to the circuit

breaker manifests itself in elevated conditional return volatility, as shown in the middle

column of Figure 2. Quantitatively, the impact of the circuit breaker on the conditional

volatility of stock returns can be quite sizable. Without circuit breaker, the conditional

volatility of returns (red dotted lines) peaks at about 3.2%, only slightly higher than the
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fundamental volatility of σ = 3%. This small amount of excess volatility comes from the

time variation in the wealth distribution between the two agents. With circuit breaker,

the conditional volatility (blue solid lines) becomes substantially higher as Dt approaches

D(t). For example, when t = 0.25, the conditional volatility reaches 6% at the circuit

breaker threshold, almost twice as high as the return volatility without circuit breaker.

We can also analyze the impact of the circuit breaker on the equilibrium stock price

by connecting it to how the circuit breaker influences the equilibrium portfolio holdings

of the two agents. Let us again start with the case without circuit breaker (red dotted

lines in right column of Figure 2). The stock holding of agent A, θ̂At , continues to rise

as Dt falls to D(t) and beyond. This is the result of two effects: (i) with lower Dt, the

stock price is lower, implying higher expected return under agent A’s beliefs; (ii) lower

Dt also makes agent B (who is shorting the stock) wealthier and thus more capable of

lending to agent A, who then takes on a more levered position.

With circuit breaker, while the stock holding θAt takes on similar values as θ̂At , its

counterpart in the case without circuit breaker, for large values of Dt, it becomes visibly

lower than θ̂At as Dt approaches the circuit breaker threshold, and it eventually starts to

decrease as Dt continues to drop. This is because agent A becomes increasingly concerned

with the rising return volatility at lower Dt, which eventually dominates the effect of

higher expected stock return. Finally, θAt takes a discrete drop when Dt = D(t). With

the leverage constraint binding, agent A will hold all of his wealth in the stock, which

means θAt will be equal to his wealth share ωAt . The preemptive deleveraging by agent A

can be interpreted as a form of “self-predatory” trading. The stock price in equilibrium

has to fall enough such that agent A has no incentive to sell more of his stock holding.

Time-of-the-day effect. Comparing the cases with t = 0.25 and t = 0.75, we see that

the impact of circuit breaker on the price-dividend ratio and return volatility weakens as

t approaches T . For example, at t = 0.25, the price-dividend ratio with circuit breaker

can be as much as 1.2% lower than the level without circuit breaker, and the conditional

return volatility peaks 6%. In contrast, at t = 0.75, the gap in price-dividend ratio is at

most 0.3%, and the peak return volatility is 4.5%.
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The reason is that a shorter remaining horizon reduces the potential impact of agent

B’s pessimistic beliefs on the equilibrium stock price, as reflected in the shrinking gap

between ŜAt /Dt and ŜBt /Dt (the two horizontal dash lines) from the top left panel to the

bottom left panel in Figure 2. Thus, this “time-of-the-day” effect really reflects the fact

that the potential impact of circuit breaker is larger when there is more disagreement.

Notice also that the circuit breaker threshold D(t) becomes lower as t increases. That

is, the dividend needs to drop more to trigger the circuit breaker later in the day. This is

because the price-dividend ratio for any given Dt becomes higher as t increases.

Circuit breaker vs. pre-scheduled trading halt. Like the price-based circuit

breaker, pre-scheduled trading halts, such as daily market closures, will also prevent

investors from rebalancing their portfolios for an extended period of time. However, the

implications of such pre-scheduled trading halts on trading behavior and price dynamics

are quite different from those of circuit breakers. The key difference is that, in the case

of a circuit breaker, the trigger of trading halt endogenously depends on the dividend.

A negative shock to fundamentals not only reduces the price-dividend ratio through its

impact on the wealth distribution (as in the case without circuit breakers), but drives

the price-dividend ratio closer to the level based on the pessimist’s beliefs by moving the

markets closer to the trading halt threshold.

This second effect is absent in the case of a pre-scheduled trading halt. As t approaches

the pre-scheduled time of market closure T , the price-dividend ratio converges to the

pessimist valuation for all levels of dividend (which only occurs when Dt approaches D(t)

in the case with circuit breaker). Away from T , the price level is lower for all levels of

dividend due to the expectation of trading halt, but there is no additional sensitivity of

the price-dividend ratio to fundamental shocks, hence no volatility amplification.

To illustrate these differences, Figure 3 plots the price-dividend ratio, the conditional

return volatility, and agent A’s portfolio holding in the case when the market is scheduled

to close at T = 0.5 and remains closed until T = 1 (red dotted lines). We then compare

these results against the case with a 5% circuit breaker (blue solid lines) as well as the

case without any trading halts (grey dotted lines).
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Figure 3: Circuit breaker vs. pre-scheduled trading halt. Blue solid lines are for
the case with circuit breaker. Red dotted lines are for the case with pre-scheduled trading
halt at T = 0.5. Grey dotted lines are for the case without trading halts. The grey
vertical bars denote the circuit breaker threshold D(t). The purple dotted line in the
last panel denotes θAt for t = 0.49.

Among the three cases, the price-dividend ratio has the most sensitivity to changes in

dividend in the case of a circuit breaker; consequently, the conditional return volatility

is the highest in that case. Interestingly, the conditional return volatility is the lowest

with the pre-scheduled trading halt, and it almost does not change with the dividend.

Moreover, unlike in the circuit breaker case, there is no preemptive deleveraging with

pre-scheduled trading halt – agent A continues to take levered positions in the stock

market as t approaches T , and only delevers at the instant of market closure (see the

purple dotted line – agent A’s stock holding at t = 0.49 – and the red dotted line – stock

holding at t = 0.5 – in the bottom right panel).
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4.2 Time-varying Disagreement

In the previous section, we use the special case of constant disagreement to illustrate the

impact of circuit breakers on trading and price dynamics. We now turn to the full model

with time-varying disagreement, where the difference in beliefs δt follows a random walk.

We do so by setting κ = 0, ν = σ, and δ0 = 0. Thus, there is neither initial nor long-term

bias in agent B’s belief.

Under this specification, Agent B’s beliefs resemble the “representativeness” bias in

behavioral economics. As a form of non-Bayesian updating, he extrapolates his belief

about future dividend growth from the realized path of dividend.14 As a result, he

becomes overly optimistic following large positive dividend shocks and overly pessimistic

following large negative dividend shocks. An alternative interpretation of such beliefs is

that they capture in reduced form the behavior of constrained investors, who effectively

become more (less) pessimistic or risk averse as the constraint tightens (loosens).

In Figure 4, we plot the price-dividend ratio, conditional return volatility, conditional

expected returns under the objective probability measure, and agent A’s stock holding.

Unlike the constant disagreement case, dividend Dt and time of the day t are no longer

sufficient to determine the state of the economy. Thus, we plot the average values of the

variables conditional on t and Dt.
15

Let’s start with the price-dividend ratio, shown in the first column of Figure 4. Since

agent A’s belief about the dividend growth rate is constant over time, the price-dividend

ratio under his beliefs is constant over different values of Dt (the horizontal grey dash

line). However, due to the variation in δt which is perfectly correlated with Dt, the

price-dividend ratio under agent B’s beliefs now increases with Dt (the upward-sloping

grey dash line). The price-dividend ratio in the equilibrium without circuit breaker (red

dotted line) is still a wealth-weighted average of the price-dividend ratios under the

14Specifically, δt = ln
(
Dt
D0
e−(µ−σ2/2)t

)
, which is a mean-adjusted nonannualized realized growth rate.

15Given our calibration of δt process as a random walk, the one additional state variable besides t and
Dt is the Radon-Nikodym derivative ηt, or equivalently,

∫ t
0
Z2
sds (which together with Dt determines

ηt). There is no need to keep track of δt separately because of the one-to-one mapping between δt and

Dt. Thus, we plot the variables of interest while setting the integral
∫ t

0
Z2
sds equal to its expected value

conditional on Dt.
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Figure 4: Price-dividend ratio and agent A’s portfolio in the case of time-
varying disagreements. Blue solid lines are for the case with circuit breaker. Red
dotted lines are for the case without circuit breaker. The grey vertical bars denote the
circuit breaker threshold D(t).

two agents’ beliefs. In the presence of a circuit breaker, for any given level of dividend

Dt above the circuit breaker threshold, the price-dividend ratio is lower than the value

without circuit breaker, and the difference becomes more pronounced as Dt approaches

the threshold D(t).16 These properties are qualitatively the same as in the case of

constant disagreement.

The circuit breaker does rule out extreme low values for the price-dividend ratio

during the trading session, which could have occurred at extreme low dividend values had

trading continued. This could be one of the benefits of circuit breakers. When there are

intra-day mark-to-market requirements for some of the market participants, a narrower

range for the price-dividend ratio can help reduce the chances of inefficient liquidations

that could further destabilize the market. Formally modeling such frictions will be an

16In general cases, the threshold D(t, δt) depends on both t and δt. Since our calibration of the δ
process implies a one-to-one mapping between δt and Dt, the threshold becomes unique for any t.
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interesting direction for future research.

Next, the circuit breaker generates significant volatility amplification when Dt is close

to D(t) (see Figure 4, second column). The conditional return volatility with time-varying

disagreement can reach as high as 10% at t = 0.25, compared to the peak volatility of

6% in the constant disagreement case and the fundamental volatility of 3%. Like in the

constant disagreement case, the volatility amplification effect weakens as t approaches T

(“time-of-the-day effect”), which is because the effective amount of disagreement between

the two agents is falling with t.

The third column of Figure 4 plot the conditional expected returns under the agent

A’s (objective) beliefs. Even when there is no circuit breaker, the conditional expected

return rises as dividend falls. This is because the irrational agent B is both gaining

wealth share and becoming more pessimistic as Dt falls, driving prices lower and expected

returns higher for agent A higher. The presence of the circuit breaker accelerates the

increase in the conditional expected return as Dt approaches the threshold D(t). Despite

the higher expected returns, agent A still becomes more and more conservative when

investing in the stock (see Figure 4, last column) due to the concern of market closure.

In fact, the preemptive deleveraging by agent A is again evident as Dt approaches D(t).

Unconditional distributions of price and volatility. So far we have been analyzing

the conditional effects of the circuit breaker on prices, volatilities, and portfolio holdings.

Next, in Figure 5, we examine the impact of circuit breakers on the distribution of daily

average price-dividend ratios, daily price ranges, and daily return volatilities. Daily price

range is defined as daily high minus low prices, while daily return volatility is defined as

the square root of the quadratic variation of log(St) over the period [0, τ ∧ T ] and scaled

back to daily value.

The top panel of Figure 5 shows that the distribution of daily average price-dividend

ratio is shifted to the left in the presence of a circuit breaker, and the left tail of the

distribution becomes fatter. The magnitude of the price distortion is small on average,

because the large price distortions (when Dt approaches D(t)) occur infrequently.

The middle and bottom panels illustrate the impact of the circuit breaker on volatility.
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Figure 5: Distributions of price-dividend ratio, daily price range, and realized
volatility. Blue solid lines are for the case with circuit breaker. Red dotted lines are for
the case without circuit breaker.

Theoretically, when it comes to the daily price range, a commonly used measure of

volatility in market microstructure studies, the circuit breaker, by limiting stock price

from below, has a potential to reduce daily price ranges for certain paths of the dividend

process. As the middle panel shows, however, statistically this effect is dominated by

an increased price ranges for other realizations of the dividend process. So the presence

of the circuit breaker shifts the whole distribution of the daily price range to the right.

One gets a similar message when it comes to daily realized volatilities. The presence of

a circuit breaker generates a significantly fatter right tail for the distribution of daily

realized volatilities.
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Figure 6: The “magnet effect”. Conditional probabilities for the stock price to reach
the circuit breaker limit within the next 10 minutes. Blue solid lines are for the case
with circuit breaker. Red dotted lines are for the case without circuit breaker. The grey
vertical bars denote the circuit breaker threshold D(t).

The “magnet effect”. The “magnet effect” is a popular term among practitioners

that refers to the changes in price dynamics as the price moves closer to the limit.

While there is no formal definition, we try to formalize this notion in our model by

computing the conditional probability that the stock price, currently at St, will reach the

circuit breaker threshold (1− α)S0 within a given period of time h (which we refer to as

conditional hitting probability), and comparing these probabilities to their counterparts

in the case without a circuit breaker.

In Figure 6, we plot the conditional hitting probabilities for the horizon of h = 10

minutes. When St is sufficiently far from (1 − α)S0 (say St > 0.98), the conditional

hitting probabilities with and without circuit breaker are both essentially zero. The

gap between the two hitting probabilities quickly widens as the stock price moves closer

to the threshold. By the time St reaches 0.96, the conditional hitting probability with

circuit breaker has risen above 20%, while the hitting probability without circuit breaker

is still close to 0. (The gap eventually narrows as both hitting probabilities will converge

to 1 as St reaches (1− α)S0.)

This is our version of the “magnet effect”: the very presence of a circuit breaker raises

the probability of the stock price reaching the threshold; moreover, the pace at which
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the hitting probability increases as the stock price moves closer to the threshold will be

much faster with a circuit breaker than what a “normal price process” would imply. The

“magnet effect” is caused by the significant increase in conditional return volatility in

the presence of a circuit breaker. Combined with the “time-of-the-day” effect, it is not

surprising to see that the “magnet effect” is stronger earlier during the trading day.

Welfare implications In the absence of other frictions, trading halts would reduce

investors’ abilities to share risks. When the reason to trade is heterogeneous beliefs and

the social planner respects the beliefs of individual investors, then any such trading halts

will inevitably reduce welfare. The amount of welfare loss depends on the initial wealth

distribution (it will be higher when wealth is more evenly distributed). Based on our

calibration, the certainty equivalent losses in consumption peak at close to 3%.

Alternatively, if the planner takes a paternalistic view by evaluating welfare under

the correct probability measure, then circuit breakers could protect those investors with

irrational beliefs from hurting themselves by trading too much. Such calculations yield

certainty equivalent gains in consumption that peak at about 1%. While this result

might appear to provide some justification for implementing circuit breaker rules, its

implication is that we should prevent trading by irrational investors altogether.

While our framework provides a neoclassical benchmark that highlights some of the

negative effects of circuit breakers, it is not well suited for welfare analysis or the design

of optimal circuit breaker rules. To do so requires one to properly take into account the

frictions such as coordination problems and information frictions, which we leave for

future research.

5 Robustness

Our analysis in Section 4 has focused on the case where riskless bonds are in zero net

supply (∆→ 0). In this section, we examine the robustness of these results when riskless

bonds are in positive supply. In addition, we also discuss the differences between the

continuous-time and discrete-time settings.
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5.1 Positive Bond Supply

In the model with positive riskless bond supply, we first consider the problem at the

instant before market closure, which will provide us with much of the intuition of the

effect of positive bond supply. Suppose the stock market will close at some arbitrary

time τ with fundamental value Dτ . There is still trading at time τ , but the agents have

to hold onto their portfolios afterwards until time T . The equilibrium conditions are

already given in Section 3.2.

For illustration, in Figure 7 we plot the equilibrium stock price as a function of the

wealth share of agent A for τ = 0.25 and Dτ = 0.97 (blue solid line), and compare it to

the stock price under complete markets (red dotted line). The bond supply is assumed

to be ∆ = 0.17. Notice that because of the one-to-one mapping between Dt and δt, we

know that agent A is relatively more optimistic for this value of Dτ .

As before, the stock price without circuit breaker is a weighted average of the optimist

and pessimist valuations in the case with positive bond supply, with the weight depending

on their respective wealth shares. Since agent A is more optimistic, the stock price

without circuit breaker is linearly increasing in her wealth share.

We have seen that, when riskless bonds are in zero net supply, the stock price with a
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circuit breaker will always be equal to the pessimistic valuation at the time of market

closure. However, this is no longer the case with ∆ > 0. As Figure 7 shows, when agent

A’s wealth share is not too high, the stock price with circuit breaker is lower than its

complete markets counterpart, but the opposite occurs when agent A’s wealth share is

sufficiently high.

The intuition is as follows. When agent A’s wealth share ωAτ is not too high, he

invests all of his wealth into the stock, but that is still not enough to clear the stock

market. In this case, agent A’s leverage constraint will be binding, agent B will hold all

the riskless bonds and the remaining stock not held by agent A, and the market clearing

price has to agree with agent B’s (the pessimist) valuation.

This scenario is similar to the case where riskless bonds are in zero net supply, where

the pessimist is also the marginal investor. One difference is that the pessimist valuation

here increases with ωAτ instead of remaining constant. This is because as agent A gets

wealthier, agent B’s portfolio will become less risky (he is required to hold less stock

relative to the riskless bonds), which makes him value the stock more. However, this

effect is quantitatively small.

When agent A’s wealth share becomes sufficiently high, he will be able to hold the

entire stock market without borrowing. This is possible because not all of the wealth

in the economy is in the stock. In such cases, agent A will hold all of the stock and

potentially some bonds, while agent B will invest all of his wealth in the bonds. As

long as the stock price is above agent B’s private valuation, he would want to short

the stock, but the short-sales constraint would be binding (an arbitrarily small short

position can lead to negative wealth). Consequently, agent A (the optimist) becomes the

marginal investor, and the market clearing price has to agree with his valuation.17 This

equilibrium is qualitatively different. The switch of the marginal investor from pessimist

to optimist means that the price-dividend ratio will be higher and conditional return

volatility lower with circuit breaker.

17There is also a knife-edge case where agent A does not hold any bonds, the stock price is below
his valuation, but he faces binding leverage constraint. In this case, the stock price and the wealth
distribution have to satisfy the condition ωAτ = Sτ

Sτ+∆ .
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Figure 8: Heat map: ratio of realized volatilities. Heat map for the ratio of average
daily volatilities in the economies with and without circuit breakers.

The above analysis highlights the key differences between the economies with positive

and zero bond supply. For a given amount of bond supply ∆, the circuit breaker

equilibrium will be similar to what we have seen in the zero bond supply case as long

as agent A’s wealth share is not too high. However, if agent A’s wealth share becomes

sufficiently high, the property of the equilibrium changes drastically. Price level will

become higher and volatility lower with circuit breaker. Moreover, the region for which

this alternative equilibrium occurs will become wider as bond supply ∆ increases (relative

to the net supply of the stock).

Figure 8 shows a heat map for the ratio of average daily return volatilities in the

economies with and without circuit breaker. It is done for a wide range of net bond

supply (∆) and initial wealth share for agent A (ω). The red region indicates volatility

amplification by the circuit breaker, while the blue region indicates the opposite. Quanti-

tatively, the volatility amplification effect is stronger when net bond supply is small, and

when agent A’s initial wealth share is not too low or too high.

In the data, the net supply of riskless bonds relative to the stock market is likely

small. For example, the total size of the U.S. corporate bond market is about $8 trillion
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in 2016, while the market for equity is about $23 trillion. If we assume a recovery rate of

50%, the relative size of the market for riskless bonds would be 0.17. Even if one counts

the total size of the U.S. market for Treasuries, federal agency securities, and money

market instruments (about $16.8 trillion in 2016) together with corporate bonds, the

relative size of riskless bonds will be less than 1, and we still get volatility amplification

for most values of ω.

5.2 Bounded Stock Prices

Our model is set in continuous time with the dividend following a geometric Brownian

motion. In a finite time interval (t, t + s), the dividend can in theory take any value

on the interval (0,∞), as does the stock price, no matter how small s is. This feature

together with a utility function that satisfies the Inada condition implies that the agents

in our model cannot take any levered or short positions in the stock upon market closure.

This is why the pessimist has to become the marginal investor upon market closure when

bonds are in zero net supply.

In the previous section, we have already seen how the equilibrium could change

qualitatively when riskless bonds are in positive supply. Similar changes could occur if

the stock price has a non-zero lower bound during the period of market closure. With

bounded prices, the optimistic agent will be able to maintain some leverage when the

market closes. Like in the case with positive bond supply, this agent will then be able to

hold the entire stock market by himself if his wealth share is sufficiently high, and he

might become the marginal investor when the pessimistic agent faces binding short-sales

constraint.

Why might the stock price be bounded from below? One reason could be government

bailout. It would also effectively capture the fact that bankruptcy is not infinitely costly.

In unreported results, we study a discrete-time version of the model where the dividend

process is modeled as a binomial tree. We find that when the share of wealth owned by

the optimist is not too high, the presence of a circuit breaker lowers prices and increases

conditional volatility. The magnitude of the effects is also similar to what we see in the

37



continuous-time model.

6 Extensions

In this section, we extend the model to two-sided circuit breakers. We also discuss how

the model can be extended to allow for multi-tier circuit breakers as well as circuit

breakers triggered by variables other than price levels.

Two-sided circuit breakers. In some markets, the circuit breaker is triggered when

the stock price reaches either the lower bound (1−αD)S0 or the upper bound (1+αU )S0,

whichever happens first. This is straightforward to model in our framework. For

simplicity, we consider the two-sided circuit breakers in the constant disagreement case,

with αD = αU = 5%.

Figure 9 shows the results. With the two-sided circuit breaker, the price-dividend

ratio is no longer monotonically increasing in Dt; instead, it takes an inverse U-shape. As

in the downside circuit breaker case, the price-dividend ratio converges to the pessimist

valuation as Dt approaches the downside threshold D(t). As Dt rises, the price-dividend

ratio also rises and approaches the level in the economy without circuit breaker. The

key difference is that as Dt keeps increasing, the price-dividend ratio starts to decline,

and eventually converges to the pessimist valuation again as Dt approaches the upside

threshold D(t).

The reason that the price-dividend ratio converges to the pessimist valuation at the

upside circuit breaker threshold D(t) is the same as at the downside threshold D(t).

Since the leverage constraint starts to bind for the optimistic agent upon market closure,

the pessimistic agent has to become the marginal investor regardless of whether it is the

upside or downside circuit breaker.

While the price-dividend ratio converges to the same value for downside and upside

circuit breakers, the implications for conditional return volatility are quite different. As

Figure 9 shows, while the conditional return volatility is amplified (relative to the case

without circuit breaker) when Dt is low, the opposite is true when Dt is high, with the
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Figure 9: Price-dividend ratio, conditional return volatility, and agent A’s
(rational optimist) portfolio holdings in the two-sided circuit breaker case.
Blue solid lines are for the case with circuit breaker. Red dotted lines are for the case
without circuit breaker. The grey vertical bars denote the downside threshold D(t) and
upside threshold D(t).

volatility dropping to as low as 1% (compared to the fundamental volatility of 3%) at

t = 0.25. Intuitively, when Dt is high, the direct impact of a positive fundamental shock

on the stock price is partially offset by the negative impact due to the increase in the

probability of market closure. Thus, the stock price becomes less sensitive to fundamental

shocks, which results in lower volatility.

In summary, like the downside circuit breaker, the upside circuit breaker also causes

the leverage constraint to bind for the optimistic investor and the pessimistic investor to

become the marginal investor. Their impacts on volatility are quite different: conditional

return volatility is amplified near the downside circuit breaker threshold but reduced

near the upside threshold.
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Multi-tier circuit breakers. Circuit breakers implemented on exchanges often have

more than one trigger threshold. For example, market-wide circuit breaker in the U.S.

stock market can be triggered at three different downside thresholds: 7%, 13%, and 20%.

One can solve the model with multi-tier circuit breakers using backward induction, with

the starting point being the state when only the highest threshold remains un-triggered

(this is identical to the single-tier circuit breaker problem).

To gain some intuition on the effects of multi-tier circuit breakers, consider an example

with two downside thresholds, α1 and α2, with α1 < α2, and assume bonds are in zero

net supply. Whenever the stock price reaches (1− α1)S0 during the trading day, trading

is suspended for a period δ (e.g., 10 minutes) if there is more than δ remaining in the

trading day; otherwise the market is closed for the rest of the day. After reopening, if

the price reaches (1− α2)S0, the market will be closed till the end of the trading day.

When market reopens following the first trading halt, the price dynamics are isomor-

phic to the case of single-tier circuit breaker. Suppose the first threshold is reached at τ1

(and we will focus on the interesting case where τ1 + δ < T ). Even though the duration

of trading halt will be relatively short, both agents will still avoid taking on levered or

short positions upon the first trading halt. This again means that the pessimist (agent B)

has to become the marginal investor at τ1. However, a key difference between multi-tier

and single-tier circuit breakers is that agent B’s valuation of the stock at time τ1 now

depends on his beliefs about the stock price at the time when the market reopens, Sτ1+δ.

There are two possible scenarios here. First, if agent B’s private valuation at the time

of reopening (which depends on Dτ1+δ) is higher than the second circuit breaker threshold,

ŜBτ1+δ > (1− α2)S0, then the market will reopen, and the participation of the optimistic

agent will raise the market price above agent B’s private valuation, Sτ1+δ > ŜBτ1+δ.

Second, if agent B’s private valuation at the time of reopening is lower than the second

circuit breaker threshold, the second-tier circuit breaker will be triggered immediately

when market reopens. In this case, Sτ1+δ = ŜBτ1+δ. Thus, the stock price at the time

of reopening following the first trading halt will be on average higher than agent B’s

private valuation, which means the closing price upon the first trading halt will also be

higher than agent B’s private valuation, Sτ1 > ŜBτ1 .
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The above result suggests that the dynamics of the two agents’ portfolio holdings

will be similar as the market approaches earlier versus later trading halts. However, the

impact of trading halt on the price level and return volatility will be weaker near earlier

trading halts due to the expectation of market reopening, more so when the duration of

trading halt δ is shorter.

Circuit breakers based on non-price variables. An appealing property of the

solution strategy presented in Section 3.2 is that so long as market closure is characterized

by an Ft-stopping time τ , we can determine the stock price upon and prior to market

closure in the same way. This means we can use the same solution strategy to study any

other types of circuit breakers where the circuit breaker trigger criterion is determined by

the history of (Dt, δt, ηt) (we will need to search for the stopping rule that is consistent

with the circuit breaker criterion, a fixed point problem). For example, we can use this

method to solve for models where trading halts are based on conditional return volatility

or measures of trading volume (see e.g., Yan and Xiong 2012).

7 Conclusion

In this paper, we build a dynamic model to examine the mechanism through which

market-wide circuit breakers affect trading and price dynamics in the stock market. As

we show, circuit breakers tends to lower the price-dividend ratio, reduce daily price

ranges, but increase conditional and realized volatilities. They also raise the probability

of the stock price reaching the circuit breaker limit as the price approaches the threshold

(a “magnet” effect). The effects of circuit breakers can be further amplified when some

agents’ willingness to hold the stock is sensitive to recent shocks to fundamentals, which

can be due to behavioral biases, institutional constraints, etc.

Our results demonstrate some of the negative impacts of circuit breakers even without

any other market frictions, and they highlight the source of these effects, namely the

tightening of leverage constraint when levered investors cannot rebalance their portfolios

during trading halts. These results also shed light on the design of circuit breaker
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rules. Using historical price data from a period when circuit breakers have not been

implemented can lead one to drastically underestimate the likelihood of triggering a

circuit breaker, especially when the threshold is relatively tight.
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Appendix

A Proofs

A.1 Proof of Proposition 1

When there are no circuit breakers, the stock price is

Ŝt = Et

[
π̂ATDT

Et
[
π̂AT
]] =

Et [θ + (1− θ) ηT ]

Et
[
D−1T (θ + (1− θ) ηT )

] =
θ + (1− θ) ηt

θEt
[
D−1T

]
+ (1− θ)Et

[
D−1T ηT

] , (A.1)

where

Et
[
D−1T

]
= D−1t e−(µ−σ2)(T−t), (A.2)

and

Et
[
D−1T ηT

]
= ηtEt

[
D−1T

ηT
ηt

]
= ηtEBt

[
D−1T

]
. (A.3)

Define the log dividend xt = logDt. Under measure PB, the processes for xt and δt are

dxt =

(
µ− σ2

2
+ δt

)
dt+ σdZBt , (A.4a)

dδt =
(
κδ +

(ν
σ
− κ
)
δt

)
dt+ νdZBt . (A.4b)

Define Xt = [xt δt]
′, then Xt follows an affine process,

dXt = (K0 +K1Xt) dt+ σXdZ
B
t , (A.5)

with

K0 =

µ− σ2

2

κδ

 , K1 =

0 1

0 ν
σ − κ

 , σX =

σ
ν

 . (A.6)

We are interested in computing

g (t,Xt) = EBt
[
eρ
′
1XT

]
, with ρ1 = [−1 0]′ . (A.7)

By applying standard results for the conditional moment-generating functions of affine processes
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(see, .e.g., Singleton 2006), we get

g (t,Xt) = exp
(
A (t, T ) +B (t, T )′Xt

)
, (A.8)

where

0 = Ḃ +K ′1B, B (T, T ) = ρ1 (A.9a)

0 = Ȧ+B′K0 +
1

2
tr
(
BB′σXσ

′
X

)
, A (T, T ) = 0 (A.9b)

Solving for the ODEs gives:

B(t, T ) =

[
−1

1− e(
ν
σ
−κ)(T−t)

ν
σ − κ

]′
, (A.10)

and

A(t, T ) =

[
µ− σ2 − κδ − σν

ν
σ − κ

− ν2

2
(
ν
σ − κ

)2
]

(t− T )− ν2

4
(
ν
σ − κ

)3 [1− e2( νσ−κ)(T−t)]
+

[
κδ − σν(
ν
σ − κ

)2 +
ν2(

ν
σ − κ

)3
] [

1− e(
ν
σ
−κ)(T−t)

]
. (A.11)

After plugging the above results back into (A.1) and reorganizing the terms, we get

St =
θ + (1− θ)ηt

θ + (1− θ)ηtH(t, δt)
Dte

(µ−σ2)(T−t), (A.12)

where

H(t, δt) = ea(t,T )+b(t,T )δt , (A.13a)

a(t, T ) =

[
κδ − σν
ν
σ − κ

+
ν2

2
(
ν
σ − κ

)2
]

(T − t)− ν2

4
(
ν
σ − κ

)3 [1− e2( νσ−κ)(T−t)]
+

[
κδ − σν(
ν
σ − κ

)2 +
ν2(

ν
σ − κ

)3
] [

1− e(
ν
σ
−κ)(T−t)

]
, (A.13b)

b(t, T ) =
1− e(

ν
σ
−κ)(T−t)

ν
σ − κ

. (A.13c)
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Finally, to compute the conditional volatility of stock returns, we have

dŜt = µ̂S,tŜtdt+ σ̂S,tŜdZt

= o(dt) + Ŝt
dDt

Dt
+ ηtDte

(µ−σ2)(T−t) θ(1− θ)[1−H(t, δt)]

[θ + (1− θ)ηtH(t, δt)]
2

dηt
ηt

−Dte
(µ−σ2)(T−t) [θ + (1− θ)ηt](1− θ)ηtH(t, δt)b(t, T )

[θ + (1− θ)ηtH(t, δt)]
2 dδt.

After collecting the diffusion terms, we get

σ̂S,t = σ +
Dte

(µ−σ2)(T−t)

Ŝt

{
θ(1− θ) [1−H(t, δt)]

[θ + (1− θ)ηtH(t, δt)]
2

δtηt
σ

− [θ + (1− θ)ηt] (1− θ)ηtb(t, T )H(t, δt)

[θ + (1− θ)ηtH(t, δt)]
2 ν

}
. (A.14)

A.2 Proof of Proposition 3

Suppose market closes at time τ . Since bonds are zero net supply,

W1,τ +W2,τ = Sτ .

Then the agents’ problems at time τ are:

V 1 (W1,τ ) = maxθ1,b1 E1
τ [ln (θ1DT + b1)]

s.t. θ1Sτ + b1 ≤W1,τ

θ1 ≥ 0, b1 ≥ 0

and

V 2 (W2,τ ) = maxθ2,b2 E2
τ [ln (θ2DT + b2)]

s.t. θ2Sτ + b2 ≤W2,τ

θ2 ≥ 0, b2 ≥ 0.

The Lagrangian:

L = E1
τ [ln (θ1DT + b1)] + ζ1 (W1,τ − θ1Sτ − b1) + ξ1aθ1 + ξ1b b1.
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FOC:

0 = Eiτ

[
DT

θiDT + bi

]
− ζiSτ + ξia

0 = Eiτ

[
1

θiDT + bi

]
− ζi + ξib.

Suppose agent 1 is less optimistic than agent 2. Then we can quickly examine following

three cases:

1. It could be an equilibrium when the price is sufficiently low such that both agents want

to take levered positions (putting more than 100% of their wealth in the stock) but are

constrained from borrowing. In this case, both agents submit demands proportional to

their wealth:

θ∗i =
Wi,τ

Sτ

ξ1a = ξ2a = 0

ξ1b > 0, ξ2b > 0

and the market for the stock clears. In this case,

Sτ =
E1
τ

[
DT

θ1DT+b1

]
E1
τ

[
1

θ1DT+b1

]
+ ξ1b

=
1

E1
τ

[
1
DT

]
+ ξ1b θ1

<
1

E1
τ

[
1
DT

] = S∗τ .

2. It could be an equilibrium when agent 1 (pessimist) finds it optimal to hold all his wealth

in the stock, while agent 2 (optimist) is constrained from borrowing:

θ∗i =
Wi,τ

Sτ

ξ1a = ξ2a = 0

ξ1b = 0, ξ2b > 0.
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Then from agent 1,

0 = E1
τ

[
DT

θ1DT + b1

]
− ζ1Sτ

0 = E1
τ

[
1

θ1DT + b1

]
− ζ1.

This implies:

Sτ =
E1
τ

[
DT

θ∗1DT+b
∗
1

]
E1
τ

[
1

θ∗1DT+b
∗
1

] =
E1
τ

[
1
θ∗1

]
E1
τ

[
1

θ∗1DT

] =
1

E1
τ

[
1
DT

] = Dτe
(µ−σ2)(T−τ) = S∗τ .

The latter follows from the fact that market clearing for bonds implies that b∗1 = b∗2 = 0,

and θ∗1 > 0 as long as W1,τ > 0. Let’s check whether this is this consistent with agent 2:

0 = E2
τ

[
DT

θ2DT + b1

]
− ζ2Sτ

0 = E2
τ

[
1

θ2DT + b2

]
− ζ2 + ξ2b

Sτ =
E2
τ

[
DT

θ∗2DT+b
∗
2

]
E2
τ

[
1

θ∗2DT+b
∗
2

]
+ ξ2b

=
E2
τ

[
1
θ∗2

]
E2
τ

[
1

θ∗2DT

]
+ ξ2b

=
1

E2
τ

[
1
DT

]
+ ξ2b θ

∗
2

.

Since agent 2 is more optimistic, we have:

E1
τ

[
1

DT

]
> E2

τ

[
1

DT

]
,

which implies:

ξ2b =
E1
τ

[
1
DT

]
− E2

τ

[
1
DT

]
θ∗2

> 0.

3. For any Sτ > S∗τ , agent 1 will prefer to hold less than 100% of the wealth in the stock.

This would require agent 2 to take levered position, which cannot be an equilibrium.

We will restrict our attention to equilibriums of type 2.

A.3 Special Case: Constant Disagreement

The stock price can be computed in closed form in the case of constant disagreement, δt = δ.

Without loss of generality, we focus on the case where agent B is relatively more optimistic,
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δ ≥ 0. The results are summarized below.

Proposition 4. Take S0 as given. With δ ≥ 0, the stock price time t ≤ τ ∧ T is

St =
(
ωAt Et[S−1τ∧T ] + ωBt EBt [S−1τ∧T ]

)−1
, (A.15)

where

Et[S−1τ∧T ] =
1

αS0

{
N

[
dt − σ(T−t)

2√
T − t

]
+ eσdtN

[
dt + σ(T−t)

2√
T − t

]}

+D−1t e−(µ−σ2)(T−t)

{
N

[
−
dt + σ(T−t)

2√
T − t

]
− e−σdtN

[
dt − σ(T−t)

2√
T − t

]}
, (A.16)

EBt [S−1τ∧T ] =
1

αS0

{
N

[
dt −

(
δ
σ + σ

2

)
(T − t)

√
T − t

]
+ e(σ+

2δ
σ )dtN

[
dt +

(
δ
σ + σ

2

)
(T − t)

√
T − t

]}

+D−1t e−(µ−σ2+δ)(T−t)

{
N

[
−
dt −

(
δ
σ −

σ
2

)
(T − t)

√
T − t

]

−e(
2δ
σ
−σ)dtN

[
dt +

(
δ
σ −

σ
2

)
(T − t)

√
T − t

]}
, (A.17)

and

dt =
1

σ

[
log

(
αS0
Dt

)
−
(
µ− σ2

)
(T − t)

]
. (A.18)

Proof. As show in Section 3.2, the stock price at time t ≤ τ ∧ T is

St =
Et
[
πAτ∧TSτ∧T

]
πAt

=
θ + (1− θ)ηt

Et
[
θ+(1−θ)ητ∧T

Sτ∧T

]
=

1

θ
θ+(1−θ)ηtEt

[
S−1τ∧T

]
+ (1−θ)ηt

θ+(1−θ)ηtEt
[
ητ∧T
ηt

S−1τ∧T

]
=

1
θ

θ+(1−θ)ηtEt
[
S−1τ∧T

]
+ (1−θ)ηt

θ+(1−θ)ηtE
B
t

[
S−1τ∧T

] . (A.19)

The second equality follows from Doob’s Optional Sampling Theorem, while the last equality

follows from Girsanov’s Theorem.

Now consider the case when δt = δ. Taking S0 as given and imposing the condition for
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stock price at the circuit breaker trigger, we have

Et
[
S−1τ∧T

]
=

1

αS0
Pt (τ ≤ T ) + Et

[
D−1T 1{τ>T}

]
, (A.20)

EBt
[
S−1τ∧T

]
=

1

αS0ηt
Et
[
ητ1{τ≤T}

]
+

1

ηt
Et
[
ηTD

−1
T 1{τ>T}

]
. (A.21)

The following standard results about hitting times of Brownian motions are helpful for

deriving the expressions for the expectations in (A.20)-(A.21) (see e.g., Jeanblanc, Yor, and

Chesney, 2009, chap 3). Let Zµ denote a drifted Brownian motion, Zµt = µt+ Zt, with Zµ0 = 0.

Let T µy = inf {t ≥ 0 : Zµt = y} for y < 0. Then:

Pr
(
Tµy ≤ t

)
= N

(
y − µt√

t

)
+ e2µyN

(
y + µt√

t

)
, (A.22)

E
[
e−λT

µ
y 1{Tµy ≤t}

]
= e(µ−γ)yN

(
y − γt√

t

)
+ e(µ+γ)yN

(
y + γt√

t

)
, (A.23)

where γ =
√

2λ+ µ2.

Recall the definition of the stopping time τ in Equation (33), which simplifies in the case

with constant disagreement,

τ = inf
{
t ≥ 0 : Dt = αS0e

−(µ−σ2)(T−t)
}
. (A.24)

Through a change of variables, we can redefine τ as the first hitting time of a drifted Brownian

motion for a constant threshold. Specifically, define:

yt =
1

σ
log
(
e−(µ−σ2)tDt

)
, (A.25)

then y0 = 0, and

yt = Z
σ
2
t =

σ

2
t+ Zt. (A.26)

Moreover,

T
σ
2
d = inf {t ≥ 0 : yt = d} a.s.= τ, (A.27)

where the threshold is constant over time,

d =
1

σ
log
(
αS0e

−(µ−σ2)T
)
. (A.28)
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Conditional on yt and the fact that the circuit breaker has not been triggered up to time t,

the result from (A.22) implies

Pt (τ ≤ T ) = Pt

(
T

σ
2
dt
≤ T − t

)
= N

[
dt − σ(T−t)

2√
T − t

]
+ eσdtN

[
dt + σ(T−t)

2√
T − t

]
, (A.29)

where

dt = d− yt =
1

σ

[
log

(
αS0
Dt

)
−
(
µ− σ2

)
(T − t)

]
. (A.30)

The threshold dt is normalized with respect to yt so as to start the drifted Brownian motion

Z
σ2

2 from 0 at time t.

Next,

Et
[
D−1T 1{τ>T}

]
= D−1t e

−
(
µ−σ

2

2

)
(T−t)Et

[
e−σ(ZT−Zt)1{τ>T}

]
= D−1t e−(µ−σ2)(T−t)Et

[
e−σ(ZT−Zt)−

σ2

2
(T−t)

1{τ>T}

]
= D−1t e−(µ−σ2)(T−t)EQ

t

[
1{τ>T}

]
= D−1t e−(µ−σ2)(T−t)

{
N

[
−
dt + σ(T−t)

2√
T − t

]
− e−σdtN

[
dt − σ(T−t)

2√
T − t

]}
. (A.31)

The third equality follows from Girsanov’s Theorem, and the fourth equality again follows from

(A.22). Under Q, Zσt = Zt + σt is a standard Brownian motion, and

yt = −σ
2
t+ Zσt . (A.32)

Next, it follows from (A.25) and the definition of τ that

yτ = yt +
σ

2
(τ − t) + (Zτ − Zt) = d. (A.33)

Thus,

Zτ − Zt = dt −
σ

2
(τ − t). (A.34)
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With these results, we can evaluate the following expectation:

Et
[
ητ1{τ≤T}

]
= Et

[
ηte

δ
σ
(Zτ−Zt)− δ2

2σ2
(τ−t)

1{τ≤T}

]
= ηte

δdt
σ Et

[
exp

(
−
(
δ

2
+

δ2

2σ2

)
(τ − t)

)
1{τ≤T}

]
= ηt

{
N

[
dt −

(
δ
σ + σ

2

)
(T − t)

√
T − t

]
+ e(σ+

2δ
σ )dtN

[
dt +

(
δ
σ + σ

2

)
(T − t)

√
T − t

]}
,

where the last equality follows from an application of (A.23).

Finally,

Et
[
ηTD

−1
T 1{τ>T}

]
= Et

[
ηte

δ
σ
(ZT−Zt)− δ2

2σ2
(T−t)D−1t e

−
(
µ−σ

2

2

)
(T−t)−σ(ZT−Zt)

1{τ>T}

]
= ηtD

−1
t e−(µ−σ2+δ)(T−t)Et

[
e(

δ
σ
−σ)(ZT−Zt)−

( δσ−σ)
2

2
(T−t)

1{τ>T}

]
= ηtD

−1
t e−(µ−σ2+δ)(T−t)EQ̃

t

[
1{τ>T}

]
= ηtD

−1
t e−(µ−σ2+δ)(T−t)

{
N

[
−
dt −

(
δ
σ −

σ
2

)
(T − t)

√
T − t

]

−e(
2δ
σ
−σ)dtN

[
dt +

(
δ
σ −

σ
2

)
(T − t)

√
T − t

]}
.

The third equality follows from Girsanov’s Theorem, and the fourth equality follows from

(A.22). Under Q̃, Z
σ− δ

σ
t = Zt +

(
σ − δ

σ

)
t is a standard Brownian motion, and

yt =

(
δ

σ
− σ

2

)
t+ Z

σ− δ
σ

t . (A.35)

B Numerical Solution

Now we outline the numerical algorithm used to solve the model for the ∆ > 0 case. Time

interval [0, T ] is discretized using a grid {t0, t1, ..., tn}, where t0 = 0 and tn = T . For every

point ti on the time grid we construct grids for a set of state variables which uniquely determine
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fundamental value Dti , Radon-Nikodym derivative ηti and disagreement δti
18. We will denote

by Θi,k = (ti,Ξk) a tuple (which we will call a “node”) that summarizes the state of the

economy at time ti and k here indexes a particular point of the discretized state-space. We

assign probabilities of the transition Θi,k → Θi+1,j for all i, j, k to match expected value

and dispersion of one-step changes in state variables with their continuous time counterparts,

namely, drifts and diffusions.

Using this structure we can solve for the equilibrium in complete markets in the following

way.

1. For time point tn = T : use equations (8a)—(9) to calculate consumption allocations and

state-price density in all nodes Θn,k; set stock price equal to DT .

2. For time point tn−1: use transition probabilities and the fact that πtSt, πtŴ
A
t , πt are

martingales to calculate the state-price density, stock price and wealth of agent A in

nodes Θn−1,k for all k.

3. Proceding backwards repeat the above step n− 1 times to obtain the state-price density,

stock price and wealth of agent A in every point Θi,k.

4. Using transition probabilities calculate drift and diffusion of the stock price process and

portfolio holdings of each agent.

In the case with circuit breakers we want to use the algorithm similar to the one above

initialized it at time [τ ∧ T ] instead of time T . The problem is that τ is endogenous itself. The

following steps show how we solve the problem:

1. In every node Θi,k: pick a grid for ωti = WA
ti /(W

A
ti + WB

ti ) spanning the interval [0, 1]

and solve the problem (21)—(22) for every point of the grid19. Solution to this problem

yields “stop” prices Si,k,j and marginal utilities of wealth of agents which we will denote

18One obvious potential choice of state variables is Dt, ηt and δt. However, depending on specific
assumptions of the model the state-space dimensionality can be reduced, e.g. in the case of constant
disagreement one need to keep track of t and Dt only since they uniquely determine disagreement δt
and the Radon-Nikodym derivative.

19In equilibrium given initial wealth distribution the value WA
ti /(W

A
ti +WB

ti ) is uniquely pinned down
by the Radon-Nikodym derivative ηti and fundamental value Dti . Since this relationship is endogenous
and is not known before the model is solved our algorithm requires solving the problem for a wide range
of wealth distributions.
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by V A′
i,k,j and V B′

i,k,j , where j indexes grid points for ωti . Using the planner’s problem (24)

first order condtion we can define,

λi,k,j =
ηV B′

i,k,j

V A′
i,k,j + ηV B′

i,k,j

.

2. Now pick an initial guess for the planner’s weight λg and price threshold S. In every node

Θi,k using the values λi,k,j and Si,k,j from the previous step find the “stop” price Si,k in

point λg by interpolation. If Si,k ≤ S then the node Θi,k will be either a “stop” node or

a node that will never be reached in the equilibrium with circuit breakers. For “stop”

nodes we define stock price to be equal to Si,k and state-price density to be proportional

to V A′
i,k (which is also obtained by interpolation of V A′

i,k,j in point λ).

The above procedure effectively defines the stopping time rule τ corresponding to the economy

with threshold S and planner’s weight λg. Now we can use the backward procedure described

for the case of complete markets to obtain the state-price density, stock price and wealth of

every agent in every node Θi,k. Note that initial wealth share of agent A in this economy will

be different from both λg and ω. The final step is to find λg and S so that initial wealth share

in the resulting economy is equal to ω and S = (1−α)S0. This can be done using the standard

bisection method.
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