Mixed-integer formulations for piecewise linear functions: Modern approaches
Joey Huchette and Juan Pablo Vielma
M.I.T.

PIECEWISE LINEAR FUNCTIONS

- Piecewise linear (PWL) function:
 \[x \in P \implies f(x) = a^T x + b_i \quad \forall i \in [d] \]
 (Assume continuity for this work)
- Typically \(\{P_i\}_{i=1}^d \) are “simple” polyhedra (intervals, triangles, etc.)
- Applications: Econ., operations, engineering
- Use them to approximate nonlinear functions
- Contributions: host of new, fast formulations

FORMULATING PWL FUNCTIONS

- Want to embed piecewise linear functions in optimization problems
- If \(f \) is convex, exists canonical transformation to linear optimization problem
- If \(f \) is non-convex...
 - Modify simplex algorithm (e.g. Gurobi?)
 - Use tailored algorithm to handle PWL structure directly (e.g. SOS2 branching)
 - MIP formulations!
- Over a dozen MIP formulations for univariate PWL functions! Which do we use?

UNIVARIATE PWL FUNCTIONS

- \(f : D \rightarrow \mathbb{R}, D = [l, u] \subset \mathbb{R} \)
- Each domain piece \(P_i \) is subinterval of \(D \)
- Existing approaches:
 - Apply standard MIP formulations for disjunctive constraints (NC, GC)
 - Incremental (Inc) with good branching
 - Logarithmic independent branching formulation (Log) of Vielma and Nemhauser

BIVARIATE PWL FUNCTIONS

- \(f : D \rightarrow \mathbb{R}, D = [P, u] \times [P, v] \subset \mathbb{R}^2 \)
- Grid \(D \) along \(x \) and \(y \), triangulate subregions
- Each domain piece \(P_i \) is triangle of \(D \)
- Existing approaches highly dependent on structure of triangulation

ZIG-ZAG FORMULATION

- Take \((a^k)_{k=1}^n \leq \{0, 1\}^r \) (r = log_2(d)) as Gray code: adjacent vectors differ in exactly one bit
- Log: graph of \(f \) embedded using Gray code
- Define \(a^k \) as number of times \(v^k \) changes value
- Integer zig-zag (ZZI) formulation: graph of \(f \) embedded using \((a^k)_{k=1}^n \subset \mathbb{Z}^r \):
 \[
 \sum_{j=1}^n a^j \lambda_j \leq z_k \quad \forall k \in [r]
 \]
 \[
 \sum_{j=k+1}^n a^j \lambda_j \geq z_k \quad \forall k \in [r]
 \]
- \(\{a^k\}_{k=1}^n \) is a linear transformation of \(\{0, 1\}^r \), giving zig-zag (ZZ) formulation:
 \[
 \sum_{j=1}^n a^j \lambda_j \leq z_k + \sum_{k=1}^r 2^{r-k} a^k \quad \forall k \in [r]
 \]
 \[
 \sum_{j=k+1}^n a^j \lambda_j \geq z_k + \sum_{k=1}^r 2^{r-k} a^k \quad \forall k \in [r]
 \]
- \((\lambda, z) \in \Delta^d \times \mathbb{Z}^r \)

ZIG-ZAG BRANCHING

- ZZ1: Branching \(z_1 \leq 0 \) (Left) and \(z_1 \geq 1 \) (Right)
 - ZZ1 uses general integer control variables to emulate good incremental branching of Inc
 - ZZ1 branching is more balanced (i.e. volume)
 - Smaller portion of domain attaining worst approximation for concave \(f \)

BINARIAN COMPUTATIONS

- Transportation problem, concave nondecreasing objective function with \(N \) pieces
- CPLEX 12.7.0, using JuMP package for PWL formulation (ask me for a sticker!)

INDEPENDENT BRANCHING (IB)

- Rewrite disjunctive constraint \(\bigcup_{i=1}^d P^i \) as \(\bigcap_{i=1}^d \left(Q(f^i) \cup Q(F^i) \right) \)
 - \(Q(S) = \{ \lambda \in \Delta^d : \lambda(x_{\leq d}, \leq 0) \} \), “face of simplex”
 - Have complete combinatorial characterization in terms of representability, size
 - Construct biclique cover for conflict graph \(\mathcal{E} = \{(u, v) \in \Delta^d : \{u, v\} \text{ do not share triangle}\} \)
 - Log is an IB formulation! (if power of two)
 - Construction idea for grid triangulation:
 1. Apply “aggregated” SOS2 along \(x \) and \(y \)
 2. Enforce “triangle selection” with a constant number of additional levels
 3. Size: \(\log_2(\# \text{ of triangles}) + \text{constant} \)

OPTIMAL IB FORMULATIONS

- Combinatorial characterization \(\implies \) notion of optimality (smallest # of levels)
- Can find smallest MIP formulation with a MIP!
- Vanilla MIP not scalable, but works well for small problems (need specialized algorithm)
- \(4 \times 4 \) arbitrary grid triangulation: