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Abstract -  This paper analyzes the topological properties of sheet metal 
parts represented schematically (zero thickness, zero bend radii). 
Although such parts are usually non-manifold objects, the paper 
establishes a general topological invariant f = s + b + e + w - v - gnm + m 
regarding the number of facets, components, bends, free edges, welds, 
vertices holes and volumes, respectively. Corresponding Euler operators 
are derived, providing a basis for a modeling system for sheet metal parts. 
With this invariant, it is possible to reason about manufacturing processes, 
such as number of components and arrangement of bend lines and weld 
lines, using only a single qualitative model of the product. This capability 
is particularly useful in the preliminary stage of conceptual design. A 
corresponding topological invariant v-e+f=s+m-gnm is also proposed for 
general sheet models and thin walled objects. 

1. INTRODUCTION 

Sheet metal parts are often represented schematically by a structure of zero-thickness 
facets connected with zero-radius bend lines, as illustrated in Fig. 1. While such a 
representation does not always constitute a manifold model, examination of the 
topology of such products does reveal some interesting relationships. Formulation of 
these characteristics makes it possible to draw conclusions about various parameters 
in the manufacturing process of the product, such as minimum number of required 
components, arrangement of bend lines and connecting (weld) lines, flat patterns, etc. 
In addition, this topological invariant can provide a basis for modeling sheet metal 
parts, classifying parts, and detecting errors, both in representation and in design. 
Moreover, since only the topology of the sheet metal part is required to extract this 
information, only a qualitative model is necessary, without accurate dimensions of 
any kind. 

In this paper, previous work in the area of sheet metal design and related topological 
reasoning is reviewed. Next, the basic relationships between the fundamental 
elements of a sheet metal part are described. From these relationships, a topological 
invariant is derived that is applicable to a sheet metal part both in its final form and in 
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intermediate bending stages. This invariant is then used to analyze various 
manufacturing alternatives. The principle of Euler operators for manifold objects is 
then applied to create similar topological operators for sheet metal parts. Finally, the 
proposed topological invariant is adapted to general non-manifold sheet models and 
thin walled objects. 

 

(a)                                                                  (b) 

Fig 1. Schematic sheet metal products 

The paper aims to propose the following: 

¥ A topological invariant for all sheet metal parts and thin walled objects which may 
be used as a necessary condition for topological validity and reasoning about 
topological configurations. 

¥ A set of topological operators which may be used as basic building blocks for a 
model representation of sheet metal parts in a sheet modeling system.  

2. RELATED WORK 

Several CAD/CAM systems have been developed for modeling, process planning and 
manufacturing sheet metal products, including the systems proposed by de Vries et al 
[1], Shpitalni [2], and Inui et al [3]. Lee et al [4] describe the use of sheets for 
efficient modeling of general thin objects. Some systems model the sheet metal 
product, including its thickness and bend fillets, using traditional solid modeling 
techniques. A more recent approach has been to model the sheet metal product in a 
schematic form with zero thickness and zero bend radii, along with manufacturing 
constraints [2]. However, no formal analysis has been made of this kind of 
representation and its underlying topology. 

Sheet metal parts in bent form typically constitute non-manifold objects. A 2-
manifold object is defined as a surface on which every point has a neighborhood that 
is homeomorphic to a 2-disk [5]. A manifold object can be classified as genus zero if 
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it can be deformed continuously into a sphere, that is, if it is homeomorphic to a 
sphere. A manifold object of genus one can be deformed continuously into the shape 
of a torus, and so on. According to the above definition, a manifold does not include 
boundaries. Objects containing any free edges (Figs. 1(a) and 1(b)) or surface forks 
(Fig. 1(b)) are not 2-manifold, and are generally termed non-manifold objects. A 
manifold with a single continuous boundary (homeomorphic to a semi-sphere) is 
sometimes referred to as a manifold with boundary. Since Requicha [6] formally 
introduced regularized r-sets, solid modeling has developed rapidly, especially for 
manifold geometries. Various data structures exist, most based internally on manifold 
topology and manifold operators; one example is Mantyla's approach [5]. 
Generalizing solid modeling schemes to include wireframes and surfaces was 
subsequently explored by Weiler [7], for example. Recently, interest in non-manifold 
topology has grown. Non-manifold extensions to solid modeling are typically 
implemented by using a more general formulation that includes non-manifold 
elements, such as the cusps, disks, zones, regions and walls proposed by Gursoz et al 
[8] or the shells, complexes, cavities and holes of various types suggested by Masuda 
et al [9] and others. Application of Euler characteristics and topology in design is also 
discussed by Lear [10] and Lee [4]. A more detailed taxonomy of geometric and 
topological models is provided by Takala [11], Mortenson [12] and Mantyla [5]. 
While these works tend to provide increasingly general formulations, none has 
concentrated on specific modeling tasks, such as modeling of sheet metal parts. These 
parts are usually non-manifold and thus comply with general formulae such as those 
discussed by Gursoz et al [8] and Masuda et al [9]; nonetheless, they are still confined 
to a relatively narrow topological domain and may therefore use simpler relationships. 
For example, they cannot directly include solids or detached edges and vertices. On 
the other hand, they include special entities such as weldings, which can be treated 
differently than simple free edges. These special conditions are considered in this 
paper. 

3. THE RELATIONSHIP BETWEEN THE FUNDAMENTAL ELEMENTS 
OF A SHEET METAL PART 

A sheet metal product consists of one or more pieces of sheet metal that are bent and 
welded along straight lines. Hence, the product is composed of planar facets joined 
along bend lines or weld lines. The term weld is used in a general context to denote 
any kind of physical bonding. The part also contains free edges. Bend and weld lines 
should be distinguished from touching free edges which happen to meet but do not 
form a physical connection of any type. All line types meet at vertices of the product. 
These terms are illustrated in Fig. 2 below. 
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Fig 2. Basic elements of a sheet metal product 

The existence of a constant relationship among these elements of a sheet metal part 
composed of one or more components is established in the following sections. 

The relationship is developed according to the following steps: 

1. A relationship based on Euler-Poincar� formula is derived for an unbent part. 

2. The concepts of non-manifold genus, weld lines and volumes are defined. 
Corresponding terms are added to the relationship, which retains its validity for 
the flat pattern. 

3. This relationship is shown to remain valid during any bending and welding steps 
through systematic consideration of the possible topological changes.  

3.1 THE FLAT PATTERN 

We start by examining a sheet metal product in its initial unbent form, i.e., its flat 
pattern, as illustrated in Fig. 3. The flat pattern is a special case of a sheet metal 
product in which all of the bends are at zero degrees. We proceed to analyze the 
schematic drawing of a flat pattern as a topological graph consisting of edges 
(corresponding to  unbent bend lines, and free edges), vertices, and faces 
(corresponding to the unbent facets). 

Since, by definition, bend lines and free edges intersect only at vertices and facet 
borders consist of free edges or bend lines, it can be concluded that the graph is planar 
and that each face of the graph corresponds to a facet of the product. This can be seen 
in the correspondence between Figs. 3(a) and 3(b). 
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(a)                                                        (b) 

Fig 3. (a) A flat pattern of a sheet metal part, and (b) the corresponding planar graph 

Euler-Poincar�'s formula for a single component planar graph [5] asserts that  

 f + v - e = 2 (1) 

where f represents the number of faces of the graph (including the exterior face), v the 
number of vertices, and e the number of edges. In a flat pattern of a sheet metal 
product, the exterior face does not represent a facet. (Note that a planar graph object 
without an exterior face is sometimes referred to as a 2-manifold with boundary). The 
corresponding formula for a graph representing a flat pattern of a sheet metal part 
would therefore take the form  

 f + v - e = 1 (2) 

A more general version of Euler-Poincar�'s formula for a multiple component planar 
graph states that 

 f + v - e = 2 s (3) 

where s is the number of graph components (or shells, as often termed in the solid 
modeling context [5]). A graph is said to have several components if it consists of 
disconnected subgraphs. Since each component contains an exterior face which is to 
be ignored for sheet metal products, we arrive at the corresponding relationship for 
sheet metal parts: 

 f + v - e = s (4) 

where s represents the number of disconnected flat patterns, f represents the number 
of facets in the flat patterns, v the number of vertices, and e the number of edges 
(including bend lines and free edges). 
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So far, the term e has denoted the number of all the lines in the flat pattern, both free 
edges and bend lines. To proceed, we must distinguish between the two types. The 
symbol b will denote the number of bend lines, and e will therefore now represent 
only the number of remaining free edges. The term free edge relates to any edge that 
is not a bend line (and, later on, not a weld line). A free edge can be internal in any 
other sense. Accordingly, modifying and reordering Eq. (4) results in: 

 f = s + (b + e) - v (5) 

At this point, the interior loops in the flat pattern should be considered. A flat pattern 
can contain two types of interior loops, as illustrated in Fig. 4. The first type is a ring: 
an edge loop interior to a facet disconnected from the external boundary of the facet. 
Traditionally, rings are considered as special topological elements and are counted 
explicitly in a modified Euler-Poincar� formula for manifold objects [5]. However, 
since a ring is local to its facet and is disconnected from the main component 
topology, it can either be ignored and modeled as a separate component or 
"artificially" connected to the external boundary using a pair of free edges; thus rings 
can be ignored in the discussion. The second type of opening, one that crosses or 
touches one or more of the component's bend lines, is termed a hole. A hole is 
represented by an interior free edge circuit in the graph. The number of such holes is 
the genus of the flat pattern. The original Euler-Poincar� formula uses a definition 
for genus suitable for manifold objects and is often denoted by the symbol g. To make 
the following discussion more clear, we label the non-manifold genus with gnm. Later 
on we will encounter other holes formed as the product is bent and the free edges join; 
they will also be counted in gnm. 

Rings 
(local)

Hole

 

Fig 4. A flat pattern with holes and rings. 

The following definition for non-manifold genus is proposed: 

Definition. The non-manifold genus gnm of a single component is the 
maximum number of non-intersecting closed curves that can be drawn on the 
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part surface before partitioning its surface into two previously connected 
disconnected regions. 

For a multi-component part, the genus is the sum of the genuses of the individual 
components. Note that for the purpose of this definition, a surface is considered two-
sided, and the sides meet at free edges. For example, a flat plate has one surface that 
spans both sides of the plate, since the two sides are connected along the free edges. If 
it has no holes, then no closed curve may be drawn on it without partitioning the 
surface into two disconnected regions. A hollow sheet metal sphere, on the other 
hand, has two surfaces, internal and external, which are separate because they have no 
common edge. However, in the case of the sphere as well, no non-partitioning curve 
can be drawn, and hence its non-manifold genus gnm is zero. By the above definition, 
the genus of an object corresponds to the connectivity of its surface, where 
connectivity is a topological quality which measures the number of topologically 
different paths connecting any two regions on a surface. It is easy to verify, using this 
criterion, that gnm=1 in the flat pattern shown in Fig. 5 (a), (ignoring the local rings); 
in Fig. 5 (b), gnm=1 as well, but in the flat pattern in Fig. 5 (c), gnm=0 . Similarly, for 
a torus, gnm would be 2, because one closed curve could be drawn on the external 
surface and another on the internal surface and still no previously connected surface 
points would be partitioned. (See Section 5 for further discussion of general 
geometry). 

(a) (b) (c)

Non-
partitioning 
closed 
curve

Non-partitioning 
closed curve

 

Fig 5. Determining the genus of a sheet metal part. 

Any hole is a face of the graph but does not represent a facet in the unbent part; 
therefore, it is not counted as a facet, and hence 

 f = s + b + e - v - gnm (6) 
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3.2 BENDING AND WELDING 

The analysis so far has applied to a flat layout. We now proceed to bend the flat 
pattern into a full product, showing that Eq. (6) can be modified to include terms for 
weld lines and volumes and still hold true. 

As the bend lines are folded, some free edges and vertices may join together to form 
so-called weld lines. (If they are not welded together, they remain two distinct free 
edges, and the topology is not changed.) The following definition of a weld line is 
used: 

Definition. A weld line is a continuous line which is a common boundary of 
two or more facets. 

The number of weld lines is denoted by w. Note that according to this definition, a 
bend line is interchangeable with a weld line. This is true both from a manufacturing 
point of view and from a mathematical standpoint, as will become apparent below. 

Additional loops (holes) may be created and some volumes may be sealed off when 
bend lines are bent. Define a volume as follows: 

Definition. A volume corresponds to a closed surface from which no curve 
can be cast to the exterior (infinity or another exterior surface). 

Volumes are counted using the term m. Initially, in the flat pattern, there are no weld 
lines, i.e. w=0, and no volumes, i.e. m=0. Hence Eq. 6 can be modified to include 
weld lines and volumes. Since m≡ 0 and w≡ 0 for the flat pattern, Eq. (7) holds true 
for a flat pattern 

 f = s + b + e + w - v - gnm + m (7) 

We will now show that this relationship also holds true for bent and welded parts.  

During the bending and welding of a flat pattern into a final product, free edges join 
together in various ways. The bending operation itself does not change the topology 
or the count of the fundamental elements. The welding operation, however, joins free 
edges, vertices and bend lines, causing the topology to change. We denote the changes 
in f, s, b, e, w, v, gnm and m by ֶf, ֶs, ֶb, ֶe, ֶw, ֶv, ֶgnm and ֶm, respectively. 

1. During the weld operation, two lines merge into one. Each of the two lines 
may be either a free edge, a weld line or a bend line. The overall joining effect 
is that ֶb+ֶe+ֶw = -1 always. 
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2. The two joining lines may originally have no common vertices, may share one 
vertex, or may share both vertices. We shall consider each case separately 
(refer to Figure�6). 

2.1 No common vertices: If the lines share no common vertices, then merging the 
two lines causes two vertices to vanish, thus ֶv = -2. The two original lines 
may have belonged either to one component or to two separate components.  

2.1.1 If the two lines belonged to two separate components (Fig 6(a)), then the 
merge united them so that ֶs = -1. Any partitioning curve across the joint 
will partition the component back into two parts, and therefore cannot 
contribute to the genus. Thus ֶgnm = 0. 

2.1.2 If the two lines belong to the same component (Fig 6(b)), then ֶs=0 but the 
genus is increased because, according to the definition of gnm, a single 

closed partitioning-curve can now be traced round the two-sided merged 
line without partitioning the component; thus ֶgnm = +1.  

 The number of volumes is left unmodified in this case, because any ray cast 
out between the two original lines can still be cast out between their adjacent 
continuations; thus ֶm = 0. Collectively, ֶs-ֶv-ֶgnm+ֶm = +1. 

2.2. One common vertex: If the lines share one common vertex (Fig 6(c)), then 
merging the two lines causes one vertex to vanish; thus ֶv = -1. The two 
original lines must have originated from the same component because they 
shared a vertex; therefore ֶs=0. Also the genus does not change because 
connectivity is not modified, i.e. no existing paths removed or new paths 
formed; therefore ֶgnm = 0. The number of volumes is also left unmodified in 
this case because any ray cast out between the two original lines can still be 
cast out between their adjacent continuations on the side of the vanishing 
vertex; thus ֶm = 0. Collectively, ֶs-ֶv-ֶgnm+ֶm = +1. 

2.3. Two common vertices: If the lines share two common vertices, then they 
originally formed a hole. Merging the two lines causes no vertex to vanish; 
thus ֶv = 0. The two original lines must have originated from the same 
component because they shared vertices; therefore ֶs=0. Any partitioning 
curves on the surface can be arranged so that not more than one passes 
through the hole created by the two lines (for proof see Appendix A.)  Two 
cases must be distinguished: 

2.3.1 If a closed curve on the surface passed between the lines once (Fig 6(d)), 
then joining the lines would eliminate that curve; therefore by the 
definition of non-manifold genus, ֶgnm = -1. In this case, the number of 
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volumes does not change because if a ray is cast through, it can still be 
cast by following the curve continuation and ֶm = 0.  

2.3.2 If, on the other hand, no closed curve on the surface could pass once 
between the lines (Fig 6(e)) then the two lines must have formed a single 
entry into a volume. Therefore, joining the lines did not change the genus, 
ֶgnm = 0, but did create a volume, ֶm = +1. 

 Collectively, ֶs-ֶv-ֶgnm+ֶm = +1.  

3. The number of facets does not change by joining the lines; therefore ֶf = 0.  

Combining ֶf = 0 with ֶb+ֶe+ֶw = -1 and t ֶs-ֶv-ֶgnm+ֶm = 1 yields no overall 

change in the value of Eq. (7). 

Joining Two 
Entities

From Same 
Component

From Different 
Components

Two common 
vertices

No common 
vertices One common 

vertex

(a)

(c)

(b)

(d)

(e)

 

Fig 6. Alternatives in joining two lines. 

It can therefore be concluded that Eq. (7) holds true both for final products and 
products at intermediate bending stages. Moreover, from the preceding analysis it is 
evident that a collection of objects composed of facets, bends, welds, free edges, 
vertices and volumes can form a valid schematic model of a sheet metal part if and 
only if the number of these elements satisfies Eq. (7). Hence, Eq. (7) can be 
considered as a necessary integrity criterion for such schematic models. Evidently, 
additional criteria regarding entity configuration and metric considerations must also 
be satisfied to ensure full geometrical validity. These additional criteria are not treated 
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in this paper; however some are provided to illustrate the utility of the topological 
invariant. 

3.3 EXAMPLES 

An additional constraint requires that the minimum number of bends or welds 
required to keep the f facets of a component together is f-1. Consequently, the number 
of bends/welds required to construct s components is at least f-s. Hence,  

 b + w ³ f - s (8) 

Combining Eqs. (7) and (8) yields the difference d between the actual number of 
bend/weld lines in a product (Eq. 7) and the required number of bend/weld lines for 
construction (holding the component together) (Eq. 8):  

 d = v - e + gnm - m (9) 

The following examples show how this difference d can be used in analyzing a 
schematic sheet metal product. 

3.3.1 EXAMPLE 1 

First, consider the product illustrated in Fig. 1(a). Ignoring the four elliptic holes at 
the front (local "rings" that do not touch any bend/weld lines), there are 26 vertices, 
24 free edges, 12 bend/weld lines and 11 faces. There is one component, so that s=1, 
and there are no holes, so that gnm=0, and no closed volumes, so m=0. Substituting 
into (Eq. 7), we obtain 

 b + w = f - s - e + v + gnm - m = 11 - 1 - 24 + 26 + 0 - 0 =  12; 

thus, (Eq. 7) holds true for this product. Notice also that according to (9) 

 d = v - e + gnm - m = 26 - 24 + 0 - 0 = 2  

which implies that of these 12 bend/weld lines, two are not strictly required for the 
product to be in one piece.  The formula does not indicate which of the 12 bend/welds 
are redundant but it can readily be seen that, for example, the two vertical "welds" at 
the left side of the product can be undone without the product falling apart.  

3.3.2 EXAMPLE 2 

Consider the product illustrated in Fig. 7, a schematic sheet metal product in the shape 
of an extruded "Y". This product in its final form should be one piece, implying that s 
= 1. There are 3 faces, 8 vertices and 9 free edges. The genus of the product is 0 
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because any closed curve drawn on this part will result in partitioning its surface into 
two. There are no closed volumes, so m=0. 

a
A

B

C

 

Fig 7. A Y-shaped sheet metal product 

Applying Eq. (7), it can be seen that 

 b + w = f - s - e + v + gnm - m = 3 - 1 - 9 + 8 + 0 - 0 =  1 

Examination of the product illustration reveals that indeed there is only one 
bend/weld line, labeled a. However, using Eq. (9)  

 d = v - e + gnm - m = 8 - 9 + 0 - 0 = -1 

There is one line less than the number required to hold the product together. It can 
thus be concluded that the single bend/weld line will have to play two roles, i.e., it 
actually represents two weld lines, or two bend lines, or one weld line and one bend 
line. Of course, two bends are not feasible, as a bend line connects exactly two faces 
and both of these faces cannot be connected to any other face along that same bend 
line. Therefore, the number of bends that can be "loaded" on one bend/weld line is 
limited by half the number of the faces connected to it. Rounding down that number 
yields 

 bline ≤ fline
2

ℜ
ℜ�ℜ

ℜ
ℜ�ℜ

 (10) 

The subindex line indicates that this relation holds locally for a specific bend/weld 
line. Using this relationship, (Eq.14), we find that line a in  Fig. 7 cannot represent 
two bends; therefore, it represents either a bend and a weld or two welds. Indeed this 
interpretation corresponds to the manufacturing alternatives. Eq. (7) also reveals other 
combinations, for instance, if we demand that line a represent only one operation 
(bend or weld, but not both), then Eq. (7) will be satisfied only if s is increased to 2, 
i.e., the product will not be assembled and will consist of two separate components. 
Other such combinations can be derived. It should be noted that Eqs. (7), (9) and (10) 
do not uniquely determine the bend/weld/component setup. They only constrain the 
allowed combinations.  
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3.3.3 EXAMPLE 3 

Consider now a slightly different arrangement of 3 facets, as shown in Fig. 8 below. 

A

C

B

a

b
c

 

Fig 8. A schematic sheet metal corner 

This product is composed of one component, i.e., s=1, has 6 free edges, 7 vertices, 3 
faces, 0 volumes and genus 0. According to Eq. (7), 

 b + w = f - s - e + v + gnm - m = 3 - 1 - 6 + 7 + 0 - 0 =  3 

An examination of the product reveals that indeed there are 3 bend/weld lines, labeled 
a, b and c. According to Eq. (9), 

 d = v - e + gnm - m = 7 - 6 + 0 - 0 = 1 

implying that there is one excessive bend/weld in this product from a constructive 
point of view. Indeed, only two bends/welds are strictly required to hold the three 
facets together as one object. 

3.3.4 EXAMPLE 4 

Let us now examine a more complicated arrangement of facets, as illustrated in Figure  
9 (a).   
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(a)                                                     (b) 

Fig 9. A schematic sheet metal object, (a) three holes, (b) four holes. 

The object shown in Fig 9(a) is one unit, i.e. s=1, but its non-manifold genus is 3. It 
has 10 faces, 20 free edges, no volumes and 16 vertices. Thus, according to Eq. (7), 

 b + w = f - s - e + v + gnm - m = 10 - 1 - 20 + 16 + 3 - 0 =  8 

An examination of the product reveals that indeed there are 8 bend/weld lines. 
According to Eq. (9), 

 d = v - e + gnm - m = 16 - 20 + 3 - 0 = -1 

implying that, from a constructive point of view, at least one of the bend/weld lines 
represents more than just one weld or bend. Indeed, such a configuration is inevitable. 
Also, Eq. (10) shows that this model satisfies a necessary condition for construction 
from one piece (i.e. 9 bends). Fig. 10 below shows how the product shown in Figure 9 
(a) can be assembled using (a) 8 bends and one weld, (b) 9 bends, and (c) a different 
configuration of 8 bends and one weld. Here again we see that the constraints only 
provide a lower bound on the sum of bends and welds but do not enforce a specific 
configuration. Also note that some of the resulting bends are flat, i.e. span 180 
degrees; such bend lines can be ignored during manufacturing but still constitute a 
topological entity. A similar analysis of the product shown in Figure 9 (b) shows that 
this product does not satisfy the necessary conditions and cannot be constructed from 
one piece (all bends).  



  15 

Bend + Weld Bend + Bend

Bend + Bend 
+ Weld

No Bend 
No Weld

 

 

Fig 10. Alternative bend/weld configurations 

3.3.5 EXAMPLE 5 

Finally, consider the sheet metal product shown in Fig. 11, representing a rectangular 
box with an internal partition. This box has 11 faces, one component, no free edges, 
12 vertices, genus 0 and 2 volumes. 

 

Fig 11 A rectangular box with an internal partition 

Applying Eq. (7), it can be seen that 

 b + w = f - s - e + v + g - m = 11 - 1 - 0 + 12 + 0 - 2 =  20 
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An examination of the product reveals that indeed there are 20 bend/weld lines. Using 
Eq. (9)  

 d = v - e + gnm - m = 12 - 0 + 0 - 2 = 10 

it is clear that 10 out of the 20 bend/weld connections are redundant.  

4. EULER OPERATORS FOR SHEET METAL PARTS 

The topology of sheet metal products can be manipulated in a sheet modeler by 
adding and removing facets, bends, welds, edges, vertices, etc. If the starting topology 
corresponds to a valid schematic sheet metal part and the manipulations consists only 
of valid topological operations, then the product's topological integrity is maintained. 
First, a necessary condition for a valid topological operation is to maintain the validity 
of Eq. (7). However, this only ensures that the number of topological entities is 
correct; their specific configuration must also satisfy additional criteria. 

We first consider a set of elementary operators, similar to the classic Euler operators 
for manifold objects. Then, we consider more complex operators for modeling 
realizable manufacturing operations used in sheet metal part fabrication. 

4.1 ELEMENTARY OPERATORS 

In the original Euler-Poincar� equation for manifold solids, the basic topological 
manipulations complying with the equation are termed Euler operators.  They were 
originally introduced by Baumgart [13] and are discussed in detail by Mantyla [5], 
Braid et al [14], and Morenson [12]. The same notion can be carried over to analyze 
sheet metal parts using Eq. (7). 

By historical convention, the operators are denoted by mnemonic names. The key to 
the (new and old) names used here is as follows: 

 M = Make  V = Vertex  G = Genus (Non-Manifold) 

 K = Kill E = free Edge W = Weld (11) 

    F = Facet  B = Bend 

    C = Component U = Volume 

For example, the operator MEV is translated as "Make Edge and Vertex". These 
operators can be implemented on top of a data structure describing a schematic sheet 
metal part. Numerous valid operators can be established. However, only a few of 
them are essential in that they are sufficient to enable any manipulation or creation 
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leading to construction of a sheet metal part. A fundamental set of operators provides 
the basic tools in an implementation of a sheet metal modeling system in the same 
way that the original manifold operators provided the basis for solid modeling.  

There are many possible sets of operators; the following is a description of one such 
set. The most basic operation is skeletal primitive creation. The operation MCV 
creates a new component comprised of one vertex. Here we adopt a more abstract 
definition of a sheet metal product, one also allowing for null creations, such as a 
product with zero facets. Fig. 12 (a) shows how a vertex is created by the MCV 
operator. Fig. 12 (b) shows the split operator also realized by the MCV operation. The 
operator KCV is the reverse operator, undoing any effects of MCV. 

 

                 (a)                                                                     (b) 

Fig 12. The MCV operator (a) vertex from nil, (b) split operation 

The next two operators are MEV and MEF (with the corresponding undo's, KEV and 
KEF). These operators correspond exactly to polygon and vertex splitting operations 
for plane models [5]. In essence, MEV "splits" a vertex into two vertices joined with 
an edge. The MEF operator joins two vertices while creating an additional facet. Their 
effect is demonstrated in Fig. 13. 

f

 

(a)                                                                     (b) 

Fig 13. The operator (a) MEV, (b) MEF 

The next operator, MGB (KGB), provides a means for manipulating the non-manifold 
genus of a product and for joining and merging circuits. In Fig. 14, a single 
component composed of a face with a local ring is transformed to single component 
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with a genus. This operator provides the mechanism for handling local rings and 
incorporating them into the main topology, as discussed in section 3.1.  

 

Fig 14. The operator MGB 

The MUKE (KUME) operator allows sealing off volumes by merging edges, as 
illustrated in Fig. 15. The remaining edge can be changed to a weld or bend using the 
next operators. 

 

Fig 15 Merging two edges to seal off a volume 

Finally, two operators allow interchanging between bend lines, weld lines and free 
edges:  MBKE (KBME) and MWKB (KWMB). Their effect is demonstrated in Fig. 
16 below. Note that free edges, bend lines and weld lines are interchangeable both 
mathematically (in Eq. 7 and in the proof) and during manufacture, as a bend can be 
replaced by a welding or a unification of two free edges. These operators are the 
consequence of this interchangeability. 

 

(a)                                                                     (b) 

Fig 16. The operator (a) MBKE, (b) MWKB 

More complex operators can be devised by combining the basic operators. For 
instance, the operation illustrated below in Fig. 17, bending and welding two flanges, 
can be performed using the operators KEV + MBKE + MWKE. In fact, any valid 
product can be created using a sequence of these operators. The following discussion 
shows one way in which to determine this sequence. 
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KEV MBKE MWKB
 

Fig 17. A sequence of Euler operators  

Braid et al [14] analyzed the Euler operators for manifold objects. We follow their 
analysis for sheet metal parts which are, in general, non-manifold. Consider an eight-
dimensional discrete space, spanned by the axis s, b, e, w, v, gnm, m and f. Within this 
space, Eq. (7) defines a seven-dimensional hyperplane E. 

 E:  s + b + e + w - v - gnm + m - f = 0 (7) 

Each schematic model of a sheet metal part is represented by a point P on hyperplane 
E 

 P = (s, b, e, w, v, gnm, m, f) (12) 

The hyperplane itself can be spanned by seven linearly independent base vectors, each 
lying on E . Since the space and the vectors are discrete, these vectors form the basis 
of a seven-dimensional lattice L. The Euler operators are one possible set of basis 
vectors. The operator coefficients can be arranged as shown in Table 1. 

Operator s b e w v gnm m f 

MCV 1 0 0 0 1 0 0 0 
MEV 0 0 1 0 1 0 0 0 
MEF 0 0 1 0 0 0 0 1 
MGB 0 1 0 0 0 1 0 0 
MBKE 0 1 -1 0 0 0 0 0 
MUKE 0 0 -1 0 0 0 1 0 
MWKB 0 -1 0 1 0 0 0 0 

Table 1:  Coefficients of Euler operators for sheet metal parts. 

The reverse operator use negated coefficients, as shown in Table 2 below: 

KCV -1 0 0 0 -1 0 0 0 
KEV 0 0 -1 0 -1 0 0 0 
KEF 0 0 -1 0 0 0 0 -1 
KGB 0 -1 0 0 0 -1 0 0 
KBME 0 -1 1 0 0 0 0 0 
KUME 0 0 1 0 0 0 -1 0 
KWMB 0 1 0 -1 0 0 0 0 

Table 2:  Coefficients of reverse Euler operators for sheet metal parts. 
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These basis vectors, along with the vector normal to E (last row in the matrix below), 
can be arranged in a matrix M which allows transformation between the topological 
space and the Euler operator space. 

 M =

1 0 0 0 1 0 0 0
0 0 1 0 1 0 0 0
0 0 1 0 0 0 0 1
0 1 0 0 0 1 0 0
0 1 −1 0 0 0 0 0
0 0 −1 0 0 0 1 0
0 −1 0 1 0 0 0 0
1 1 1 1 −1 −1 1 −1

�
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��
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��
��
��
��
��
��

 (13) 

Since the Euler operators form the basis of the Euler space, the matrix M has an 
inverse. The inverse matrix M−1, given below, can be used to determine the Euler 
operators required to construct a specific sheet metal topology. 

 M−1 =
1
8

7 −6 1 1 −3 −1 −1 1
−1 2 1 1 5 −1 −1 1
−1 2 1 1 −3 −1 −1 1
−1 2 1 1 5 −1 7 1
1 6 −1 −1 3 1 1 −1
1 −2 −1 7 −5 1 1 −1

−1 2 1 1 −3 7 −1 1
1 −2 7 −1 3 1 1 −1
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��

 (14) 

For example, the product shown in Fig. 1(a) had 26 vertices, 24 free edges, 10 bend 
lines, 2 weld lines, and 11 faces. There is one product, so that s=1; no holes, thus 
gnm=0; and no volumes, hence m=0. Hence, the point in Euler space describing this 
sheet metal product is: 

 P = (s, b, e, w, v, gnm, m, f) = (1, 10, 24, 2, 26, 0, 0, 11) 

The value  

 P ⋅M−1= 1 25 11 0 12 0 2 0[ ]  

indicates that the model can be constructed using 1 MCV operation, 25 MEV's, 11 
MEF's, 12  MBKE's and  2  MWKB's.  It should be noted, however, that any point P 
on the lattice does not necessarily correspond uniquely to a certain product; rather, 
different products that happen to have the same counts of edges, faces, etc. will share 
the same point in Euler coordinates.  
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Other sets of basis vectors exist. However, in order to ensure that the basis spans all 
of the points on the lattice  L, the vectors must be a reduced set. Indeed, the set we 
have chosen consists only of one's and zero's and is therefore reduced in the discrete 
domain. 

5. GENERAL NON-MANIFOLD TOPOLOGY 

The formulation presented in this paper consists of 8 topological element types, 
namely vertex, free edge, bend, weld, face, genus, volume and component. Of these 
elements, bends and welds are strictly related to sheet metal parts. Since free edges, 
bends and welds are interchangeable in the formula, they can be combined into a 
single "general edge" entity, denoted by e. Consequently, we can introduce a simpler, 
six element formula applicable to representations of non-manifold geometry for 
general sheet models. We propose this general formulation since, as noted by Lee [4], 
sheet modeling can provide an efficient means for modeling general solid objects.  

After reordering Eq. (7) and substituting e for e + b + w, we obtain 

 v - e + f =  s + m - gnm (15) 

Compared with related formulations [8, 9], Eq. (15) constitutes a shorter and simpler 
formula for surface models, although it does not support local rings. Note that Eq. 
(15) resembles the general Euler-Poincar� formula for manifold geometry [5] 

 v - e + f = 2(s - g) (16) 

The difference between the proposed general (manifold and non-manifold) formula, 
Eq. (15), and the manifold formula, Eq. (16), is in the right hand side of the equality 
and can be explained as follows. First, in a manifold object, each component 
corresponds to a single volume, whereas in a non-manifold object, a component can 
correspond to an arbitrary number of volumes, (including 0 volumes). Hence the term  
2s in Eq. (16) corresponds to s+m in Eq. (15). Second, the terms g and gnm (genus) 
are defined differently in the two equations. Each genus unit of a manifold object (g) 
corresponds to two genus units in the non-manifold definition (gnm). For example, a 
torus has genus 1 under the classical manifold definition of genus. However, the 
genus of a torus is 2 in the non-manifold (general) sense because two closed curves 
can be drawn on its surface, one on the internal side and another on the external side, 
and still no previously connected points will be partitioned. However, an open 
cylinder has one surface on which only one closed curve can be drawn (in the 
longitudinal direction). Such situations cannot be captured by the original manifold 
definition of genus. This fundamental difference in the meaning of genus is rooted in 
the concept that a manifold object has an inner side and an outer side, whereas a non-
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manifold object has no "sides". Therefore for strictly manifold objects, c=m and 
g=2gnm, and Eq. (15) is reduced to Euler's formula. 

The following two examples illustrate this point. 

Non-partitioning 
closed curves  

(a)                                            (b) 

Fig 18. Three general objects 

The object illustrated in Fig. 18(a), (a squared torus), consists of 16 vertices, 28 edges, 
12 faces, one volume and one component, and a genus of 2 (two non-partitioning 
curves). For this object, according to Eq. (15), 

 16 - 28 + 12 = 1 + 1 - 2 

Eq. (16) handles this object correctly because s=m, and the traditional meaning of 
genus applies to this object. 

Figure 18(b) illustrates a non-manifold object, an extruded hexagon with three 
alternating longitudinal facets removed. This object consists of 12 vertices, 18 edges, 
5 faces, 1 component but 0 volumes, and a genus gnm=2. Consequently, according to 
Eq. (15), 

 12 - 18 + 5 = 1 + 0 - 2 

which is correct. On the other hand, Eq. (16)  for manifold objects cannot describe 
this object correctly, because 

 12 - 18 + 5 - 2(1 - g) 

no matter how g is counted.  If, however, the object in Figure 18(b) is "inflated" to 
include thickness, then a manifold of genus 2 would result, and the relation to the 
proposed Eq. (15) would be apparent. 
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6. CONCLUSIONS AND FURTHER RESEARCH 

This paper has proposed a topological invariant for all schematic sheet metal parts. 
The proposed invariant was then generalized to support general manifold and non-
manifold sheet models. The validity of proposed invariant constitutes a necessary 
condition for the validity of a schematic representation of a sheet metal product from 
a topological point of view. Based on this invariant, a reduced basis of Euler operators 
for sheet metal products has been defined which can serve as the fundamental tool set 
required in managing the topological representation of a product in a sheet metal 
modeling system.  In particular, these operations can be used as the basis for 
developing improved CAD/CAM systems for sheet metal based on schematic 
representation. The derived relationship has been simplified to support general non-
manifold surface models, without rings. 

This paper also leads to the understanding that although sheet metal products typically 
constitute general non-manifold objects, they do conform to some basic topological 
behavior. Furthermore, this behavior can be employed to analyze various 
manufacturing aspects of a sheet metal product based on its topology alone, without 
the need for accurate information. This, in turn, implies that the proposed tools can be 
used for preliminary planning in the conceptual design stage when accurate 
dimensions are not yet available. We intend to pursue this concept in analyzing 
freehand sketches of sheet metal products. Since these sketches convey the topology 
of a product, such an interpretation system can furnish useful insight into the 
manufacturing process of a product based on a sketch alone and thus provide 
assistance at the very early stages of conceptual design and process planning. 
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APPENDIX A. 

A construction proof that any partitioning curves on the surface can be arranged so 
that not more than one curve passes through a specified hole. 

Given is a surface of genus V (with V holes, including the exterior). The arrangement 
of V partitioning curves that cover all holes without partitioning the surface into 
regions is given by any non-intersecting spanning tree of the complete graph spanned 
by V. (e.g., Fig (a) below). The spanning tree of curves can be rearranged so that only 
one partitioning curve will pass through a particular hole. This requires rearranging 
the spanning tree so that hole v is a leaf, as follows. Select one of the curves 
connected to hole v.  This curve connects hole v to another hole, say v'. Create a new 
non-intersecting curve joining v' with any other hole in the graph except v. By 
definition of the spanning tree, the added curve will close a circuit in which curve vv' 
is a link. Now remove curve vv' to regain a spanning tree. Repeat the above procedure 
until only one curve passes through v. (e.g., through hole B in Fig (b) below). 
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(a)                                                     (b) 


