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Abstract - This paper proposes the use of a thin-walled primitive for

modeling the geometry of inherently thin objects.  The authors suggest a

topological invariant supporting both manifold and thin-walled non-

manifold objects based on this primitive. The paper establishes a general
topological invariant s + e - v - gnm + m - f = 0 regarding the number of

components, edges, vertices, holes, volumes, and faces, respectively.

Corresponding Euler operators are derived, providing a basis for a

modeling system for thin-walled objects. The validity of the proposed

invariant constitutes a necessary condition for the validity of a

geometrical representation of thin-walled products from a topological

point of view. The paper also discusses merging the proposed general

formula with standard manifold topology.  It specifically proposes the use

of non-integer values in the standard Euler-Poincarp formula for

representing non-manifold components, thus permitting the use of thin-

walled primitives with topological coherence to traditional solid geometry

schemes.

1. INTRODUCTION

Since Requicha formally introduced regularized r-sets [1], solid modeling has

developed rapidly, especially for manifold geometries. Various data structures for

solid modeling exist; most are based internally on manifold topology and manifold

operators. One example is the geometrical representation proposed by Mantyla [2].

However, many real solids do not comply with manifold topology. One such case is

that of a thin-walled object based on the fundamental thin-walled primitive, as

illustrated in Fig. 1. This paper discusses the topological properties of this type of

primitive and proposes a topological invariant which can be used as a basis for

modeling thin-walled constructions in combination with the standard constructive

solid geometry paradigm.
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MOTIVATION

In contrast to boundary representation, thin-walled primitives are used to describe

objects which are inherently thin in reality and not as an alternative means of

representing boundaries of full solids. Thin-walled objects are prevalent in many

engineering disciplines, such as sheet metal, composite materials and injection

molding. Although geometrical models of such products can be represented by full

solid primitives, in many cases a thin-wall representation is more suitable. Thin-

walled representations more closely communicate the essence of the object geometry

as perceived by designers. Dedicated CAD systems often use a thin-walled

representation to describe the main geometry of thin objects, with a thickness

parameter to represent the third dimension as an additional attribute varying along the

main geometry. Shpitalni [3] and Lee [4] have shown that systems based on such a

representation are in general more efficient both for computation and for use.

Most systems support the definition and manipulation of thin-walled objects by

means of surfaces and boundary representation. These are combined with CSG

primitives in an internal hybrid representation. However, a unification of geometrical

representations could be achieved by using a skeletal scheme coherent with standard

topology. The purpose of this paper is to identify this fundamental representation and

propose a topological invariant as a basis for this unification. This invariant can then

be used as a basis for modeling, verifying and classifying geometry of both manifold

and thin-wall type.

 

Fig 1. A schematic thin-walled object

The paper first outlines previous work in the area of modeling non-standard

geometries. Next, it introduces the concept of a basic thin-wall primitive and

discusses the relationships among such primitives within a complex construction.

From these relationships, a topological invariant is derived that is applicable to a

general thin-walled object. The invariant relationship is demonstrated on some

examples. Finally, the paper discusses how this representation can be united with

standard manifold topology using the concept of fractions rather than integers in the

Euler-Poincarp formula.



3

The paper aims to propose the following:

 • A thin-walled primitive for representing thin-walled objects according to the CSG

paradigm.

 • A topological invariant for all thin-walled objects which may be used as a

necessary condition for verifying topological validity and for reasoning about

topological configurations.

 • A set of topological ‘Euler operators’ which may be used as basic building blocks

for constructing and manipulating a thin-walled model representation.

 • A unified basis for merging thin-walled representations with standard manifold

objects, using non-integer topological enumerators.

2. PRIOR WORK

Thin-walled objects typically constitute non-manifold objects. A 2-manifold object is

defined as a surface on which every point has a neighborhood that is homeomorphic

to a 2-disk [2]. A manifold object can be classified as genus zero if it can be

deformed continuously into a sphere, that is, if it is homeomorphic to a sphere. A

manifold object of genus one can be deformed continuously into the shape of a torus,

and so on. Hence, objects containing any surface ‘forks’, as illustrated in Fig. 1, are

not 2-manifold and are generally termed non-manifold objects. A manifold with a

continuous boundary (homeomorphic to a semi-sphere) is referred to as a manifold

with boundary.

In the last two decades, solid modeling has developed rapidly, especially for manifold

geometries. Recently, interest in non-manifold topology has grown. Weiler [5], for

example, explored and generalized solid modeling schemes to include wireframes

and surfaces. Non-manifold extensions to solid modeling are usually considered in

the scope of new data structures or more general invariant formulae, with both these

topics usually yielding new sets of corresponding topological operators. Non

manifold data structures and operators, first introduced by Baugmart [6], are

reviewed in Hoffman et al [7] and recently represented in Lopes et al [8] using Morse

operators. In this paper we focus on a new invariant property, rather than data

structures. Invariant formulae are typically implemented by using a more general

formulation that includes non-manifold elements, such as the cusps, disks, zones,

regions and walls proposed by Gursoz et al [9] or the shells, complexes, cavities and

holes of various types suggested by Masuda et al [10] and others. Application of

Euler characteristics and topology in design is also discussed by Lear [11] and Lee et
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al [4]. A more detailed taxonomy of geometric and topological models is provided by

Hoffmann [7], Mantyla [2] and Takala [12]. While works on invariants tend to

provide increasingly general formulations, none has concentrated on specific

modeling tasks, such as modeling of thin-walled parts. These parts are usually non-

manifold and thus comply with general formulae such as those discussed by Gursoz

et al [9] and Masuda et al [10]; nonetheless, they are still confined to a relatively

narrow topological domain and may therefore use simpler relationships. For example,

they cannot directly include detached (‘dangling’) edges and vertices. In particular,

this relationship can be simplified by use of non-integer topology. Recently, we have

investigated the effect of these special conditions on the modeling of sheet metal

products [13] in a dedicated modeling environment. In this paper, we attempt to

generalize those findings to allow modeling of general thin-walled objects in

conjunction with standard CSG primitives on a unified topological basis. This

attempt introduces non-integer topological properties.

3. THE FUNDAMENTAL THIN -WALLED PRIMITIVE

A thin-walled object can be considered as consisting of one or more thin elements

that are joined together. Hence, the product is composed of basic thin-wall primitives.

A thin-walled primitive, as illustrated in Fig. 2, can be planar or curved. However, its

topology always consists of a single facet with a continuous single boundary. The

boundary is composed of edges, linear or curved, joined at vertices, as shown in Fig.

2(a). The primitive also possesses metric attributes, such as thickness (variable),

curvature, and size, as illustrated in Fig. 2(b).

 

facet

vertex

edge Thickness

(a)                                               (b)

Fig 2. Thin-walled primitives, (a) topological elements, (b) metric attributes

Thin-wall primitives join along common edges. The edges of the primitives can

always be arranged so that the junction occurs along a complete edge, between two

distinct vertices, by appropriately splitting or joining edges along the contour.
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The following sections establish the existence of a constant relationship among these

three elements of a thin-wall primitive (facet, edges and vertices) within a model

composed of one or more primitives.

The relationship is developed according to the following steps:

1. A relationship based on Euler-Poincarp formula is derived for a single primitive

and a set of separate primitives.

2. The concepts of non-manifold genus and volumes are defined. Corresponding

terms are added to the relationship, which retains its validity for a set of single

primitives.

3. This relationship is shown to remain valid during construction of a model by

assembling primitives and components together through systematic consideration

of the possible topological changes.

TOPOLOGICAL PROPERTIES OF THE PRIMITIVE

We proceed to analyze a single thin-wall primitive as a topological graph consisting

of edges (corresponding to free edges), vertices, and faces (corresponding to the

facets).

Since, by definition, the single primitive contains a single facet surrounded by a

single boundary of edges, it obeys the Euler-Poincarp formula for a single component

planar graph [2], which asserts that

f + v - e = 2 (1)

where f represents the number of faces of the graph (including the exterior face), v

the number of vertices, and e the number of edges. In a single primitive, the exterior

face does not represent a facet. The corresponding formula for a graph representing a

single primitive would therefore take the form

f + v - e = 1 (2)

We now consider a set of detached primitives. A more general version of the Euler-

Poincarp formula for a multiple component planar graph states that

f + v - e = 2 s (3)

where s is the number of graph components (or shells, as often termed in the solid

modeling context [2]). A graph is said to have several components if it consists of
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disconnected subgraphs. Since each component contains an exterior face which is to

be ignored for thin-walled components, we arrive at the corresponding relationship:

f + v - e = s (4)

where s represents the number of disconnected primitives, f the total number of facets

in the primitives, v the total number of vertices, and e the total number of edges.

HOLES AND VOLUMES

Assembly of the individual primitives into structures gives rise to holes and volumes.

These holes and volumes must be defined before discussing assembly.

A primitive can contain two types of interior loops, as illustrated in Fig. 3. The first

type is a ring: an edge loop interior to a primitive facet disconnected from the

external boundary of the facet. Traditionally, rings are considered as special

topological elements and are counted explicitly in a modified Euler-Poincarp formula

for manifold objects [2].  Since a ring is local to its facet and is disconnected from the

main component topology, it can either be ignored and modeled as a separate

component or "artificially" connected to the external boundary using a pair of free

edges; thus, rings can be ignored in the discussion. The second type of opening, one

that crosses or touches one or more of the component's edges, is generated when two

or more primitives are joined together, leaving a ‘gap’ between them. This type of

hole is represented by an interior edge circuit in the graph. The number of such holes

is the genus of the structure. The original Euler-Poincarp formula uses a definition

for genus suitable for manifold objects and is often denoted by the symbol g. To
make the following discussion more clear, we label the non-manifold genus with gnm.

Later on we will encounter other holes formed as edges join during assembly of the
primitives; they will also be counted in gnm.

 

Ring
(Local)

Hole
(Genus)

Fig 3. An assembly of two thin-wall primitives with a hole and a ring.

The following definition for non-manifold genus is proposed:
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Definition. The non-manifold genus gnm of a single component is the

maximum number of non-intersecting closed curves that can be drawn on the

part surface before partitioning its surface into two previously connected

disconnected regions.

For a multi-component part, the genus is the sum of the genuses of the individual

components. Note that for the purpose of this definition, a surface is considered two-

sided, and the sides meet at free edges. For example, a flat plate has one surface that

spans both sides of the plate, since the two sides are connected along the free edges.

If it has no holes, then no closed curve may be drawn on it without partitioning the

surface into two disconnected regions. Its genus is therefore zero. A hollow sphere,

on the other hand, has two surfaces, internal and external, which are separate because

they have no common edge. Consequently, in the case of the sphere as well, no non-
partitioning curve can be drawn, and hence its non-manifold genus gnm is zero as

well. By the above definition, the genus of an object corresponds to the connectivity

of its surface, where connectivity is a topological quality which measures the number

of topologically different paths connecting any two regions on a surface. Using this
criterion, it is easy to verify that for a torus, gnm would be 2, because one closed

curve could be drawn on the external surface and another on the internal surface and

still no previously connected surface points would be partitioned.

Any hole is a face of the graph but does not represent a facet of the part; therefore, it

is not counted as a facet, and hence

f = s + e - v - gnm (5)

When thin-wall primitives are joined, some volumes may be sealed off. We define a

volume as follows:

Definition. A volume corresponds to a closed surface from which no curve

can be cast to the exterior (infinity or another interior surface).

Volumes are counted using the term m.

Initially, in the set of detached primitives, there are no weld holes, i.e. gnm≡0, and no

volumes, i.e. m≡0. Hence, Eq. (5) can be modified to include volumes and Eq. (6)

holds true for a flat pattern

s + e - v - gnm + m - f = 0 (6)
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ASSEMBLING THIN -WALLED PRIMITIVES TOGETHER

Our analysis so far has applied to a set of detached primitives. We now proceed to

join the primitives into a full structure, following [13] to show that Eq. (6), including

terms for holes and volumes, still holds true.

As the primitives are assembled, some edges and vertices may join together and unite

in various ways, causing the topology to change. We denote the changes in f, s, e, v,

gnm and m by •∆f, ∆•s, •∆e, •∆v, •∆gnm and •∆m, respectively. Any assembly

operation can be decomposed into a sequential set of operations in which exactly two

edges at a time are joined together.

1. During the joining operation, two lines merge into one. The joining effect is

that •∆e = -1 always.

2. The two joining lines may have originally had no common vertices, shared

one vertex, or shared both vertices. We shall consider each case separately

(refer to Fig. 4).

2.1 No common vertices: If the lines shared no common vertices, then merging

the two lines causes two vertices to vanish, thus ∆v = -2. The two original

lines may have belonged either to one component or to two separate

components.

2.1.1 If the two lines belonged to two separate components (Fig 4(a)), then the

merge united them, so that ∆s = -1. Any partitioning curve across the joint

will partition the component back into two parts and therefore cannot
contribute to the genus; thus, ∆gnm = 0.

2.1.2 If the two lines belong to the same component (Fig 4(b)), then ∆s=0 but
the genus is increased because, according to the definition of gnm, a single

closed partitioning-curve can now be traced around the two-sided merged
line without partitioning the component; thus ∆gnm = +1.

The number of volumes is left unmodified in this case, because any ray cast

out between the two original lines can still be cast out between their adjacent
continuations; thus ∆m = 0. Collectively, ∆s-∆v-∆gnm+∆m = +1.

2.2. One common vertex: If the lines shared one common vertex (Fig 4(c)), then

merging the two lines caused one vertex to vanish; thus ∆v = -1. The two

original lines must have originated from the same component because they

shared a vertex; therefore ∆s=0. Also, the genus does not change because

connectivity is not modified, i.e. no existing paths were removed or new paths
formed; therefore ∆gnm = 0. The number of volumes is also left unmodified
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in this case because any ray cast out between the two original lines can still be

cast out between their adjacent continuations on the side of the vanishing
vertex; thus ∆m = 0. Collectively, ∆s-∆v-∆gnm+∆m = +1.

2.3. Two common vertices: If the lines shared two common vertices, then they

originally formed a hole. Merging the two lines causes no vertex to vanish;

thus ∆v = 0. The two original lines must have originated from the same

component because they shared vertices; therefore ∆s=0. Any partitioning

curves on the surface can be arranged so that not more than one passes

through the hole created by the two lines.  Two cases must be distinguished:

2.3.1 If a closed partitioning curve on the surface passed between the lines once

(Fig 4(d)), then joining the lines would eliminate that curve; therefore by
the definition of non-manifold genus, ∆gnm = -1. In this case, the number

of volumes does not change because if a ray is cast through, it can still be

cast by following the curve continuation and ∆m = 0.

2.3.2 If, on the other hand, no closed curve on the surface could pass once

between the lines (Fig. 4(e)) then the two lines must have formed a single

entry into a volume. Therefore, joining the lines did not change the genus,
∆gnm = 0, but did create a volume, ∆m = +1.

Collectively, ∆s-∆v-∆gnm+∆m = +1.

3. The number of facets does not change by joining the lines; therefore ∆f = 0.

Combining ∆f = 0 with ∆e = -1 and ∆s-∆v-∆gnm+∆m = 1 yields no overall change in

the value of Eq. (6).
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Fig 4. Alternatives in joining two lines.

It can therefore be concluded that Eq. (6) holds true both for final assembly and

intermediate stages. Moreover, from the preceding analysis it is evident that a

collection of objects composed of facets, edges, vertices and volumes can form a

valid schematic model if and only if the number of these elements satisfies Eq. (6).

Hence, Eq. (6) can be considered as a necessary integrity criterion for such schematic

models.

EXAMPLES

First, consider the product illustrated in Fig. 1. It has 12 vertices, 17 edges and 6
faces. It has one component, so that s=1, no holes, so that gnm=0, and no closed

volumes, so m=0. Substituting into Eq. (6), we obtain

s + e - v - gnm + m - f = 1 + 17 - 12 - 0 + 0 - 6 = 0

thus, Eq. (6) holds true for this product.
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Fig 5. A schematic sheet object with three holes

The object shown in Fig 5 is one unit, i.e. s=1, and its non-manifold genus is 3. It has

10 faces, 28 edges, no volumes and 16 vertices. Thus, according to Eq. (6),

s + e - v - gnm + m - f = 1 + 28 - 16 - 3 + 0 - 10 = 0

 

Fig 6 A rectangular box with an internal partition

Finally, consider the assembly of primitives shown in Fig. 6, representing a

rectangular box with an internal partition. This box has 11 faces, one component, 20

edges, 12 vertices, genus 0 and 2 volumes. Applying Eq. (6), it can be verified that

s + e - v - gnm + m - f = 1 + 20 - 12 - 0 + 2 - 11 = 0

4. EULER OPERATORS FOR THIN -WALLED PARTS

The existence of a topological invariant for thin-walled structures lays the foundation

for defining sets of ‘Euler operators’. A necessary condition for a valid topological

operation is to maintain the validity of Eq. (6). However, this only ensures that the

number of topological entities is correct; their specific configuration must also satisfy

additional criteria, such as non-existence of dangling edges, incomplete boundaries

and faces without boundaries. In general additional criteria for validity, such as

completeness of cycles and various restrictions on operators, as well as metric criteria

such as collisions and continuity, depend on the data structure used to describe the

model.  However, these criteria are often local and cannot be formulated into a global

invariant, and are therefore beyond the scope of this paper. See [8] and [14] for a

discussion of some of these local topological restrictions.
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In the original Euler-Poincarp equation for manifold solids, the basic topological

manipulations complying with the equation are termed Euler operators.  They were

originally introduced by Baumgart [6] and are discussed in detail by Mantyla [2] and

Braid et al [15]. The same notion can be carried over to analyze thin-walled parts

using Eq. (7).

By historical convention, the operators are denoted by mnemonic names. The key to

the names used here is as follows:

M  = Make V = Vertex G = Genus (Non-Manifold)

K  = Kill E = Edge U = Volume (7)

F = Facet

C = Component

For example, the operator MEV is translated as "Make Edge and Vertex". These

operators can be implemented on top of a data structure describing a thin-walled part.

Numerous valid operators can be established. However, only a few of them are

essential in that they are sufficient to allow any manipulation or creation leading to

construction of a part. A fundamental set of operators provides the basic tools in an

implementation of a thin-walled modeling system in the same way that the original

manifold operators provided the basis for solid modeling.

There are many possible sets of operators; the following is a description of one such

set. The most basic operation is creation of a primitive. The operation MCV creates a

new component comprised of one vertex. Here we adopt a more abstract definition of

a thin-walled product, one also allowing for null creations, such as a product with

zero facets. Fig.7 (a) shows how a vertex is created by the MCV operator. Fig. 7(b)

shows the split operator also realized by the MCV operation. The operator KCV is

the reverse operator, undoing any effects of MCV.

 

                 (a)                                  (b)

Fig 7. The MCV operator (a) vertex from nil, (b) split operation

The next two operators are MEV and MEF (with the corresponding undo's, KEV and

KEF). These operators correspond exactly to polygon and vertex splitting operations

for plane models [2]. In essence, MEV "splits" a vertex into two vertices joined with
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an edge. The MEF operator joins two vertices while creating an additional facet.

Their effect is demonstrated in Fig. 8.

f

(a)                                    (b)

Fig 8. The operator (a) MEV, (b) MEF

The next operator, MGE (KGE), provides a means for manipulating the non-

manifold genus of a model and for joining and merging circuits. In Fig. 9, a single

component composed of a face with a local ring is transformed to single component

with a genus. This operator provides a mechanism for handling local rings and

incorporating them into the main topology, as discussed previously.

 

Fig 9. The operator MGB

The MUKE (KUME) operator allows sealing off volumes by merging edges, as

illustrated in Fig. 10.

 

Fig 10.  Merging two edges to seal off a volume

It is possible to analyze a given structure and determine the sequence of operators

necessary to reach that topology. This is achieved by noting that within a six-

dimensional topological space, Eq. (6) defines a five-dimensional hyperplane E.

E: s + e - v - gnm + m - f = 0 (6)

Each schematic model of a thin-walled part is represented by a point P on hyperplane

E, and the set of operators span a lattice on the plane E. Determining a sequence of

operators to construct a particular topology is thus equivalent to finding a path on the
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lattice leading from the origin to the point P. This can be done by representing point

P in terms of the lattice basis, following the technique discussed by Braid et al [15].

5. UNIFICATION WITH STANDARD MANIFOLD TOPOLOGY BY NON-
INTEGER ENUMERATORS

The general manifold topology used as the underlying basis of geometrical modeling

data structures is given by the Euler-Poincarp invariant

v - e + f = 2(s - g) (8)

whereas the proposed invariant, for both manifold and non-manifold topologies, is

given by Eq.(6)

v - e + f = s + m - gnm (6)

The difference between Eq. (6) and Eq. (8) is in the right hand side of the equality

and can be explained as follows. First, in a manifold object, each component

corresponds to a single volume, whereas in a non-manifold object, a component can

correspond to an arbitrary number of volumes (including 0 volumes). Hence the term
2s in Eq. (8) corresponds to s+m in Eq. (8). Second, the terms g and gnm (genus) are

defined differently in the two equations. Each genus unit of a manifold object (g)

corresponds to two genus units in the non-manifold definition (gnm). For example, a

torus has genus 1 under the classical manifold definition of genus. However, the

genus of a torus is 2 in the non-manifold (general) sense because two closed curves

can be drawn on its surface, one on the internal side and another on the external side,

and still no previously connected points will be partitioned. However, an open

cylinder has one surface on which only one closed curve can be drawn (in the

longitudinal direction). Such situations cannot be captured by the original manifold

definition of genus. This fundamental difference in the meaning of genus is rooted in

the concept that a manifold object has an inner side and an outer side, whereas a non-

manifold object has no "sides". Therefore for strictly manifold objects, s+m=2s and
gnm=2g, and Eq. (6) is reduced to the Euler-Poincarp formula.

The following two examples illustrate this point.
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Non�partitioning
closed curves

(a)                                          (b)

Fig 11. Two general objects

The object illustrated in Fig. 11(a) (a squared torus) consists of 16 vertices, 28 edges,

12 faces, one volume and one component, and a genus of 2 (two non-partitioning

curves). For this object, according to Eq. (8),

16 - 28 + 12 = 1 + 1 - 2

Eq. (8) handles this object correctly because s=m, and the traditional meaning of

genus applies to this object.

Fig. 11(b) illustrates a non-manifold object, an extruded hexagon with three

alternating longitudinal facets removed. This object consists of 12 vertices, 18 edges,
5 faces, 1 component but 0 volumes, and a genus gnm=2. Consequently, according to

Eq. (16),

12 - 18 + 5 = 1 + 0 - 2

which is correct. On the other hand, Eq. (8)  for manifold objects cannot describe this

object correctly, because

12 - 18 + 5 ≠ 2(1 - g)

no matter how g is counted.

Based on these observations, there are two approaches to unifying the topological

representations of standard manifold and thin-walled objects. The first approach is
simply adopting the more general formula, Eq. (6), and substituting m≡s and gnm≡2g

for every standard manifold component.

However, a second approach can be taken whereby the number of components and

the genus in the standard relationship of Eq. (8) is not restricted to integer numbers.

We propose a modified number of components s* defined to be the average of the

number of components and volumes, i.e. s* ≡ ò (s+m), and a modified genus g*

defined to be half of the non-manifold genus, i.e., g* ≡ ò gnm. Using these modified

values, non-manifold topology of thin-walled objects complies with the standard
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Euler-Poincarp formula for standard solids, because

v - e + f = 2(s* - g*) = s + m -  gnm (9)

Furthermore, this notation provides a more intuitive interpretation for non-manifold

objects; for example, a manifold with boundary, topologically equivalent to a semi-

sphere, is considered as half a component, since s*=ò(1+0)=ò, and similarly, an

open cylinder will be ranked with half a genus, g*=ò, which intuitively corresponds

to placing it somewhere between a torus (g*=1)  and a sphere (g*=0).

6. SUMMARY

In this paper, we have proposed the use of a thin-walled primitive for modeling the

geometry of inherently thin objects and provided a topological invariant supporting

both manifold and non manifold objects. The validity of the proposed invariant

constitutes a necessary condition for the validity of a geometrical representation of

thin-walled products from a topological point of view. Based on this invariant, we

have defined a reduced basis of Euler operators which can serve as the fundamental

tool set required in managing the topological representation of a part in a modeling

system. The paper also discussed merging the proposed general formula with

standard manifold topology; we specifically propose the use of non-integer values in

the standard Euler-Poincarp formula for representing non-manifold components, thus

permitting the use of thin-walled primitives in coherence with traditional solid

geometry schemes.
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