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Abstract - This paper proposes the use of a thin-walled primitive for
modeling the geometry of inherently thin objects. The authors suggest a
topological invariant supporting both manifold and thin-walled non-
manifold objects based on this primitive. The paper establishes a general
topological invarians + e - v - gm+ m - f = Oregarding the number of
components, edges, vertices, holes, volumes, and faces, respectively.
Corresponding Euler operators are derived, providing a basis for a
modeling system for thin-walled objects. The validity of the proposed
invariant constitutes a necessary condition for the validity of a
geometrical representation of thin-walled products from a topological
point of view. The paper also discusses merging the proposed general
formula with standard manifold topology. It specifically proposes the use
of non-integer values in the standard Euler-Poicéormula for
representing non-manifold components, thus permitting the use of thin-
walled primitives with topological coherence to traditional solid geometry
schemes.

1. INTRODUCTION

Since Requicha formally introduced regularizedets [1], solid modeling has
developed rapidly, especially for manifold geometries. Various data structures for
solid modeling exist; most are based internally on manifold topology and manifold
operators. One example is the geometrical representation proposed by Mantyla [2].
However, many real solids do not comply with manifold topology. One such case is
that of a thin-walled object based on the fundamental thin-walled primitive, as
illustrated in Fig. 1. This paper discusses the topological properties of this type of
primitive and proposes a topological invariant which can be used as a basis for
modeling thin-walled constructions in combination with the standard constructive
solid geometry paradigm.



MOTIVATION

In contrast to boundary representation, thin-walled primitives are used to describe
objects which are inherently thin in reality and not as an alternative means of
representing boundaries of full solids. Thin-walled objects are prevalent in many
engineering disciplines, such as sheet metal, composite materials and injection
molding. Although geometrical models of such products can be represented by full
solid primitives, in many cases a thin-wall representation is more suitable. Thin-
walled representations more closely communicate the essence of the object geometry
as perceived by designers. Dedicated CAD systems often use a thin-walled
representation to describe the main geometry of thin objects, with a thickness
parameter to represent the third dimension as an additional attribute varying along the
main geometry. Shpitalni [3] and Lee [4] have shown that systems based on such a
representation are in general more efficient both for computation and for use.

Most systems support the definition and manipulation of thin-walled objects by
means of surfaces and boundary representation. These are combined with CSG
primitives in an internal hybrid representation. However, a unification of geometrical
representations could be achieved by using a skeletal scheme coherent with standard
topology. The purpose of this paper is to identify this fundamental representation and
propose a topological invariant as a basis for this unification. This invariant can then
be used as a basis for modeling, verifying and classifying geometry of both manifold
and thin-wall type.

Fig 1. A schematic thin-walled object

The paper first outlines previous work in the area of modeling non-standard
geometries. Next, it introduces the concept of a basic thin-wall primitive and
discusses the relationships among such primitives within a complex construction.
From these relationships, a topological invariant is derived that is applicable to a
general thin-walled object. The invariant relationship is demonstrated on some
examples. Finally, the paper discusses how this representation can be united with
standard manifold topology using the concept of fractions rather than integers in the
Euler-Poinca& formula.



The paper aims to propose the following:

A thin-walled primitive for representing thin-walled objects according to the CSG
paradigm.

A topological invariant for all thin-walled objects which may be used as a
necessary condition for verifying topological validity and for reasoning about
topological configurations.

» A set of topological ‘Euler operators’ which may be used as basic building blocks
for constructing and manipulating a thin-walled model representation.

» A unified basis for merging thin-walled representations with standard manifold
objects, using non-integer topological enumerators.

2. PRIOR WORK

Thin-walled objects typically constitute non-manifold objects. A 2-manifold object is
defined as a surface on which every point has a neighborhood that is homeomorphic
to a 2-disk [2]. A manifold object can be classified as genus zero if it can be
deformed continuously into a sphere, that is, if ih@gneomorphido a sphere. A
manifold object of genus one can be deformed continuously into the shape of a torus,
and so on. Hence, objects containing any surface ‘forks’, as illustrated in Fig. 1, are
not 2-manifold and are generally termedn-manifoldobjects. A manifold with a
continuous boundary (homeomorphic to a semi-sphere) is referred tonasifald

with boundary

In the last two decades, solid modeling has developed rapidly, especially for manifold
geometries. Recently, interest in non-manifold topology has grown. Weiler [5], for
example, explored and generalized solid modeling schemes to include wireframes
and surfaces. Non-manifold extensions to solid modeling are usually considered in
the scope of newata structurer more generahvariant formulae with both these
topics usually yielding new sets of corresponditugpological operators Non
manifold data structures and operators, first introduced by Baugmart [6], are
reviewed in Hoffmaret al[7] and recently represented in Lopsal [8] using Morse
operators. In this paper we focus on a niewariant property rather than data
structures. Invariant formulae are typically implemented by using a more general
formulation that includes non-manifold elements, such asctisps, disks, zones,
regionsandwalls proposed by Gurscet al [9] or theshells, complexes, cavitiesd
holes of various types suggested by Maswetaal [10] and others. Application of
Euler characteristics and topology in design is also discussed by Lear [11] aed Lee



al [4]. A more detailed taxonomy of geometric and topological models is provided by
Hoffmann [7], Mantyla [2] and Takala [12]. While works on invariants tend to
provide increasingly general formulations, none has concentrated on specific
modeling tasks, such as modeling of thin-walled parts. These parts are usually non-
manifold and thus comply with general formulae such as those discussed by Gursoz
et al [9] and Masudeet al [10]; nonetheless, they are still confined to a relatively
narrow topological domain and may therefore use simpler relationships. For example,
they cannot directly include detached (‘dangling’) edges and vertices. In particular,
this relationship can be simplified by use of non-integer topology. Recently, we have
investigated the effect of these special conditions on the modeling of sheet metal
products [13] in a dedicated modeling environment. In this paper, we attempt to
generalize those findings to allow modeling of general thin-walled objects in
conjunction with standard CSG primitives on a unified topological basis. This
attempt introduces non-integer topological properties.

3. THE FUNDAMENTAL THIN-WALLED PRIMITIVE

A thin-walled object can be considered as consisting of one or more thin elements
that are joined together. Hence, the product is composed ofthiasigall primitives.

A thin-walled primitive, as illustrated in Fig. 2, can be planar or curved. However, its
topology always consists of a singkcet with a continuous single boundary. The
boundary is composed eflges linear or curved, joined aertices as shown in Fig.

2(a). The primitive also possesses metric attributes, such as thickness (variable),
curvature, and size, as illustrated in Fig. 2(b).

edge Thickness .

vertex

(@) (b)
Fig 2. Thin-walled primitives, (a) topological elements, (b) metric attributes

Thin-wall primitives join along common edges. The edges of the primitives can
always be arranged so that the junction occurs along a complete edge, between two
distinct vertices, by appropriately splitting or joining edges along the contour.



The following sections establish the existence of a constant relationship among these
three elements of a thin-wall primitive (facet, edges and vertices) within a model
composed of one or more primitives.

The relationship is developed according to the following steps:

1. A relationship based on Euler-Poinedormula is derived for a single primitive
and a set of separate primitives.

2. The concepts of non-manifold genus and volumes are defined. Corresponding
terms are added to the relationship, which retains its validity for a set of single
primitives.

3. This relationship is shown to remain valid during construction of a model by
assembling primitives and components together through systematic consideration
of the possible topological changes.

TOPOLOGICAL PROPERTIES OF THE PRIMITIVE

We proceed to analyze a single thin-wall primitive as a topological graph consisting
of edges (corresponding to free edges), vertices, and faces (corresponding to the
facets).

Since, by definition, the single primitive contains a single facet surrounded by a
single boundary of edges, it obeys the Euler-Poinftamula for a single component
planar graph [2], which asserts that

f+v-e=2 (1)

wheref represents the number of faces of the graph (including the exterior face),

the number of vertices, amdthe number of edges. In a single primitive, the exterior
face does not represent a facet. The corresponding formula for a graph representing a
single primitive would therefore take the form

f+v-e=1 (2)

We now consider a set of detached primitives. A more general version of the Euler-
Poinca#é formula for a multiple component planar graph states that

f+v-e=2s (3)

wheres is the number of graph components gbells as often termed in the solid
modeling context [2]). A graph is said to have several components if it consists of



disconnected subgraphs. Since each component contains an exterior face which is to
be ignored for thin-walled components, we arrive at the corresponding relationship:

f+v-e=s (4)

wheres represents the number of disconnected primitiveee total number of facets
in the primitivesy the total number of vertices, aadhe total number of edges.

HOLES AND VOLUMES

Assembly of the individual primitives into structures gives risediesandvolumes.
These holes and volumes must be defined before discussing assembly.

A primitive can contain two types of interior loops, as illustrated in Fig. 3. The first
type is aring: an edge loop interior to a primitive facet disconnected from the
external boundary of the facet. Traditionally, rings are considered as special
topological elements and are counted explicitly in a modified Euler-Péifimanula

for manifold objects [2]. Since a ring is local to its facet and is disconnected from the
main component topology, it can either be ignored and modeled as a separate
component or "artificially” connected to the external boundary using a pair of free
edges; thus, rings can be ignored in the discussion. The second type of opening, one
that crosses or touches one or more of the component's edges, is generated when two
or more primitives are joined together, leaving a ‘gap’ between them. This type of
hole is represented by an interior edge circuit in the graph. The number of such holes
is thegenusof the structure. The original Euler-Poinedormula uses a definition

for genus suitable for manifold objects and is often denoted by the sgnba

make the following discussion more clear, we label the non-manifold genugngith

Later on we will encounter other holes formed as edges join during assembly of the
primitives; they will also be counted gam

A

Hole Ring
(Genus) (Local)

Fig 3. An assembly of two thin-wall primitives with a hole and a ring.

The following definition for non-manifold genus is proposed:



Definition. The non-manifold genusnpg of a single component is the
maximum number of non-intersecting closed curves that can be drawn on the
part surface before partitioning its surface into two previously connected
disconnected regions.

For a multi-component part, the genus is the sum of the genuses of the individual
components. Note that for the purpose of this definition, a surface is considered two-
sided, and the sides meet at free edges. For example, a flat plate has one surface that
spans both sides of the plate, since the two sides are connected along the free edges.
If it has no holes, then no closed curve may be drawn on it without partitioning the
surface into two disconnected regions. Its genus is therefore zero. A hollow sphere,
on the other hand, has two surfaces, internal and external, which are separate because
they have no common edge. Consequently, in the case of the sphere as well, no non-
partitioning curve can be drawn, and hence its non-manifold ggss zero as

well. By the above definition, the genus of an object corresponds ttimectivity

of its surface, where connectivity is a topological quality which measures the number
of topologically different paths connecting any two regions on a surface. Using this
criterion, it is easy to verify that for a torugzm would be 2, because one closed
curve could be drawn on the external surface and another on the internal surface and
still no previously connected surface points would be partitioned.

Any hole is a face of the graph but does not represent a facet of the part; therefore, it
is not counted as a facet, and hence

f=s+e-v-gm (5)

When thin-wall primitives are joined, some volumes may be sealed off. We define a
volume as follows:

Definition. A volume corresponds to a closed surface from which no curve
can be cast to the exterior (infinity or another interior surface).

Volumes are counted using the temm

Initially, in the set of detached primitives, there are no weld holes,nw&0gand no
volumes, i.em=0. Hence, Eq. (5) can be modified to include volumes and Eq. (6)
holds true for a flat pattern

ste-v-gm+tm-f=0 (6)



ASSEMBLING THIN-WALLED PRIMITIVES TOGETHER

Our analysis so far has applied to a set of detached primitives. We now proceed to
join the primitives into a full structure, following [13] to show that Eq. (6), including
terms for holes and volumes, still holds true.

As the primitives are assembled, some edges and vertices may join together and unite
in various ways, causing the topology to change. We denote the charfigesenv,

Onm and m by <Af, Ass, Ae, Av, *Agnm and «Am, respectively. Any assembly
operation can be decomposed into a sequential set of operations in which exactly two
edges at a time are joined together.

1. During the joining operation, two lines merge into one. The joining effect is
that Ye = -1always.

2. The two joining lines may have originally had no common vertices, shared
one vertex, or shared both vertices. We shall consider each case separately
(refer to Fig. 4).

2.1  No common vertices:If the lines shared no common vertices, then merging
the two lines causes two vertices to vanish, thus= -2. The two original
lines may have belonged either to one component or to two separate
components.
2.1.1 If the two lines belonged to two separate components (Fig 4(a)), then the
merge united them, so thas = -1 Any partitioning curve across the joint
will partition the component back into two parts and therefore cannot
contribute to the genus; thusgnm = 0.
2.1.2 If the two lines belong to the same component (Fig 4(b)),4Akef but
the genus is increased because, according to the definitgya,0d single
closed partitioning-curve can now be traced around the two-sided merged
line without partitioning the component; thgnm= +1.
The number of volumes is left unmodified in this case, because any ray cast

out between the two original lines can still be cast out between their adjacent
continuations; thudm = 0. Collectively,As-Av-Agnn+Am = +1.

2.2. One common vertex:If the lines shared one common vertex (Fig 4(c)), then
merging the two lines caused one vertex to vanish; fiwus -1. The two
original lines must have originated from the same component because they
shared a vertex; thereforss=0. Also, the genus does not change because
connectivity is not modified, i.e. no existing paths were removed or new paths
formed; thereforedgnm = 0. The number of volumes is also left unmodified



in this case because any ray cast out between the two original lines can still be
cast out between their adjacent continuations on the side of the vanishing
vertex; thusAm = 0. Collectively,As-Av-Agnnt Am = +1.

2.3.  Two common vertices:If the lines shared two common vertices, then they
originally formed a hole. Merging the two lines causes no vertex to vanish;
thus Av = 0. The two original lines must have originated from the same
component because they shared vertices; therefsr®. Any partitioning
curves on the surface can be arranged so that not more than one passes
through the hole created by the two lines. Two cases must be distinguished:

2.3.1 If a closed partitioning curve on the surface passed between the lines once
(Fig 4(d)), then joining the lines would eliminate that curve; therefore by
the definition of non-manifold genudgnm = -1. In this case, the number
of volumes does not change because if a ray is cast through, it can still be
cast by following the curve continuation afoh = Q.

2.3.2 If, on the other hand, no closed curve on the surface could pass once
between the lines (Fig. 4(e)) then the two lines must have formed a single
entry into a volume. Therefore, joining the lines did not change the genus,
Agnm = 0, but did create a volumém = +1.

Collectively, As-Av-AgnmAm = +1.

3. The number of facets does not change by joining the lines; thedéfore.

CombiningAf = 0 with Ae = -1 andAs-Av-Agnmt Am = 1yields no overall change in
the value of Eq. (6).
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Fig 4. Alternatives in joining two lines.

It can therefore be concluded that Eq. (6) holds true both for final assembly and
intermediate stages. Moreover, from the preceding analysis it is evident that a
collection of objects composed of facets, edges, vertices and volumes can form a
valid schematic model if and only if the number of these elements satisfies Eq. (6).
Hence, Eq. (6) can be considered as a necessary integrity criterion for such schematic
models.

EXAMPLES

First, consider the product illustrated in Fig. 1. It has 12 vertices, 17 edges and 6
faces. It has one component, so teal, no holes, so thagh=0, and no closed

volumes, san=0. Substituting into Eq. (6), we obtain

s+te-v-gm+tm-f=1+17-12-0+0-6=0

thus, Eq. (6) holds true for this product.
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Fig 5. A schematic sheet object with three holes

The object shown in Fig 5 is one unit, isel, and its non-manifold genus is 3. It has
10 faces, 28 edges, no volumes and 16 vertices. Thus, according to Eq. (6),

ste-v-gm+tm-f=1+28-16-3+0-10=0

Fig 6 A rectangular box with an internal partition

Finally, consider the assembly of primitives shown in Fig. 6, representing a
rectangular box with an internal partition. This box has 11 faces, one component, 20
edges, 12 vertices, genus 0 and 2 volumes. Applying Eg. (6), it can be verified that

s+te-v-gm+tm-f=1+20-12-0+2-11=0

4. EULER OPERATORS FOR THIN-WALLED PARTS

The existence of a topological invariant for thin-walled structures lays the foundation
for defining sets of ‘Euler operators’. A necessary condition for a valid topological
operation is to maintain the validity of Eqg. (6). However, this only ensures that the
number of topological entities is correct; their specific configuration must also satisfy
additional criteria, such as non-existence of dangling edges, incomplete boundaries
and faces without boundaries. In general additional criteria for validity, such as
completeness of cycles and various restrictions on operators, as well as metric criteria
such as collisions and continuity, depend on the data structure used to describe the
model. However, these criteria are often local and cannot be formulated into a global
invariant, and are therefore beyond the scope of this paper. See [8] and [14] for a
discussion of some of these local topological restrictions.
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In the original Euler-Poincérequation for manifold solids, the basic topological
manipulations complying with the equation are terraeder operators. They were
originally introduced by Baumgart [6] and are discussed in detail by Mantyla [2] and
Braid et al [15]. The same notion can be carried over to analyze thin-walled parts
using Eq. (7).

By historical convention, the operators are denoted by mnemonic names. The key to
the names used here is as follows:

M = Make V = Vertex G = Genus (Non-Manifold)
K =Kill E = Edge U = Volume (7)
F = Facet

C = Component

For example, the operator MEV is translated as "Make Edge and Vertex". These
operators can be implemented on top of a data structure describing a thin-walled part.
Numerous valid operators can be established. However, only a few of them are
essential in that they are sufficient to allow any manipulation or creation leading to
construction of a part. A fundamental set of operators provides the basic tools in an
implementation of a thin-walled modeling system in the same way that the original
manifold operators provided the basis for solid modeling.

There are many possible sets of operators; the following is a description of one such
set. The most basic operation is creation of a primitive. The operation MCV creates a
new component comprised of one vertex. Here we adopt a more abstract definition of
a thin-walled product, one also allowing for null creations, such as a product with
zero facets. Fig.7 (a) shows how a vertex is created by the MCV operator. Fig. 7(b)
shows the split operator also realized by the MCV operation. The operator KCV is
the reverse operator, undoing any effects of MCV.

ST

(@) (b)

Fig 7. The MCV operator (a) vertex from nil, (b) split operation

The next two operators are MEV and MEF (with the corresponding undo's, KEV and
KEF). These operators correspond exactly to polygon and vertex splitting operations
for plane models [2]. In essence, MEV "splits" a vertex into two vertices joined with
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an edge. The MEF operator joins two vertices while creating an additional facet.
Their effect is demonstrated in Fig. 8.
o« — ()

(@) (b)
Fig 8. The operator (a) MEV, (b) MEF

The next operator, MGE (KGE), provides a means for manipulating the non-

manifold genus of a model and for joining and merging circuits. In Fig. 9, a single

component composed of a face with a local ring is transformed to single component
with a genus. This operator provides a mechanism for handling local rings and
incorporating them into the main topology, as discussed previously.

Fig 9. The operator MGB

The MUKE (KUME) operator allows sealing off volumes by merging edges, as
illustrated in Fig. 10.

Fig 10. Merging two edges to seal off a volume

It is possible to analyze a given structure and determine the sequence of operators
necessary to reach that topology. This is achieved by noting that within a six-
dimensional topological space, Eq. (6) defines a five-dimensional hypegplane

E:ste-v-gm+tm-f=0 (6)

Each schematic model of a thin-walled part is represented by aRbomtiyperplane
E, and the set of operators span a lattice on the [aletermining a sequence of
operators to construct a particular topology is thus equivalent to finding a path on the
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lattice leading from the origin to the poiRt This can be done by representing point
P in terms of the lattice basis, following the technique discussed by &raldi15].

5. UNIFICATION WITH STANDARD MANIFOLD TOPOLOGY BY NON-
INTEGER ENUMERATORS

The general manifold topology used as the underlying basis of geometrical modeling
data structures is given by the Euler-PoiAdavariant

v-e+f=2(s-0q) (8)

whereas the proposed invariant, for both manifold and non-manifold topologies, is
given by Eq.(6)

v-e+f=s+m-gm (6)

The difference between Eq. (6) and Eq. (8) is in the right hand side of the equality
and can be explained as follows. First, in a manifold object, each component
corresponds to a single volume, whereas in a non-manifold object, a component can
correspond to an arbitrary number of volumes (including O volumes). Hence the term
2sin Eqg. (8) corresponds ®min Eq. (8). Second, the tergsandgnm (genus) are
defined differently in the two equations. Each genus unit of a manifold dfgject
corresponds to two genus units in the non-manifold definiggr)( For example, a

torus has genus 1 under the classical manifold definition of genus. However, the
genus of a torus is 2 in the non-manifold (general) sense because two closed curves
can be drawn on its surface, one on the internal side and another on the external side,
and still no previously connected points will be partitioned. However, an open
cylinder has one surface on which only one closed curve can be drawn (in the
longitudinal direction). Such situations cannot be captured by the original manifold
definition of genus This fundamental difference in the meaningyehusis rooted in

the concept that a manifold object has an inner side and an outer side, whereas a non-
manifold object has no "sides". Therefore for strictly manifold objests)=2s and

gnnm=29, and Eq. (6) is reduced to the Euler-Poiddarmula.

The following two examples illustrate this point.
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Fig 11. Two general objects

The object illustrated in Fig. 11(a) (a squared torus) consists of 16 vertices, 28 edges,
12 faces, one volume and one component, and a genus of 2 (two non-partitioning
curves). For this object, according to Eq. (8),

16-28+12=1+1-2

Eq. (8) handles this object correctly becagsen, and the traditional meaning of
genusapplies to this object.

Fig. 11(b) illustrates a non-manifold object, an extruded hexagon with three
alternating longitudinal facets removed. This object consists of 12 vertices, 18 edges,
5 faces, 1 component but 0 volumes, and a ggags2. Consequently, according to

Eq. (16),
12-18+5=1+0-2

which is correct. On the other hand, Eq. (8) for manifold objects cannot describe this
object correctly, because

12-18+5#2(1-9q)
no matter hovg is counted.

Based on these observations, there are two approaches to unifying the topological
representations of standard manifold and thin-walled objects. The first approach is
simply adopting the more general formula, Eq. (6), and substitotisgnd gnm=29

for every standard manifold component.

However, a second approach can be taken whereby the number of components and
the genus in the standard relationship of Eq. (8) is not restricted to integer numbers.
We propose a modified number of componesttslefined to be the average of the
number of components and volumes, g&.= /2 (s+m), and a modified genug*

defined to be half of the non-manifold genus, g&.= 2 gym. Using these modified

values, non-manifold topology of thin-walled objects complies with the standard
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Euler-Poincaé formula for standard solids, because
v-e+f=2(s*-g*)=s+m- gnm (9)

Furthermore, this notation provides a more intuitive interpretation for non-manifold
objects; for example, a manifold with boundary, topologically equivalent to a semi-
sphere, is considered as half a component, sfreé2(1+0)=12, and similarly, an
open cylinder will be ranked with half a gengs$s 42, which intuitively corresponds

to placing it somewhere between a tofgrs=1) and a spher@*=0).

6. SUMMARY

In this paper, we have proposed the use of a thin-walled primitive for modeling the
geometry of inherently thin objects and provided a topological invariant supporting
both manifold and non manifold objects. The validity of the proposed invariant
constitutes a necessary condition for the validity of a geometrical representation of
thin-walled products from a topological point of view. Based on this invariant, we
have defined a reduced basis of Euler operators which can serve as the fundamental
tool set required in managing the topological representation of a part in a modeling
system. The paper also discussed merging the proposed general formula with
standard manifold topology; we specifically propose the use of non-integer values in
the standard Euler-Poinéaformula for representing non-manifold components, thus
permitting the use of thin-walled primitives in coherence with traditional solid
geometry schemes.
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