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Abstract 
Parametric design is very stable but requires a predefined dimensioning and ordering scheme, thus limiting 
flexibility and precluding sketch input. Variational geometry design, while general and flexible, necessitates 
intensive use of numerical solvers to solve many simultaneous nonlinear equations. Frequently the solvers 
cannot solve these equations. A new system, based on an original theory for automatic constraint analysis, 
has been developed for solving sets of two-dimensional geometric constraints in product design. The 
proposed system offers the flexibility of variational based design along with the stability of parametric design. 
The solution strategy is based upon breaking down the problem into a sequence of construction steps. When 
no sequential construction is found, auxiliary geometrical constructions are automatically generated based 
on rules for relocating constraints. Thus, an apparently simultaneous constraint set is converted into a set 
that can be constructed sequentially by decomposing strongly connected components of the original 
constraint graph. This new approach has been implemented in a system for designing sheet metal parts. 
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1.  Introduction 
Two design paradigms are used and explored for design 
and manufacturing applications: feature-based design 
and constraint-based design [3]. In constraint-based 
design, shapes are specified by means of geometrical 
constraints that relate shape features to shape 
parameters. The constraints are typically specified 
based on predefined topological arrangements of 
features (sometimes entered by means of a sketch) to 
provide a context for the problem. Studies of constraint 
solution range from pure geometry, e.g., [1], to 
kinematics [6], engineering constraints [5], and theorem 
proving [2].  
When solving geometrical constraint problems, a solver 
must provide an instance of the given topology that 
exactly satisfies the given constraints. Two major 
approaches can be identified: (1) parametric geometry, 
in which constraints are given so that the desired shape 
can be constructed sequentially according to a 
predefined scheme and order, and (2) variational 
geometry, where constraints are given by an arbitrary 
scheme in no particular order.  The solver must then 
derive a solution strategy automatically in order to 
construct the desired shape.  
Since the parametric approach uses a predefined 
scheme of dimensions and a predefined evaluation 
order, the solution process is more stable and 
controllable, and is therefore more common in 
commercial CAD systems. However, the need to adhere 
to a prespecified dimensioning scheme and order limits 
the freedom of the designer to modify the definition of 
the shape. Moreover, the desire to allow more flexible 
input methods for sketching [8] and conceptual design 
necessitates that dimensioning of the design be 
independent of a specific dimensioning scheme and 
order. However,  lack of a solution strategy makes 
variational geometry problems more difficult to solve 
because the solver must be capable of the following:  
deriving a solution sequence; handling large sets of 
simultaneous non-linear equations; managing multiple 
solutions; and determining user intent as the most 
plausible solution. 

Variational geometry problems are usually solved by 
using either numerical solvers or sequential construction 
solvers based on applying precoded steps, which may 
resort to numerical methods in special cases. In 
essence, numeric solvers are more general but 
construction solvers are more stable. This paper 
describes a novel solution technique which allows 
solving more complex problems using construction 
solvers without resorting to numerical methods. The new 
solver is based on automatic generation of auxiliary 
geometrical constructions and constraints. While the 
additional constraints do not actually add any new 
mathematical information, they do simplify the automatic 
search for a solution strategy as well as significantly 
enhance the analytical capabilities of the sequential 
solver. The new solver has been implemented 
successfully in a CAD system [10] for design of sheet 
metal parts. 
This paper first describes existing techniques for solving 
geometrical constraint problems and places the 
proposed method in context. Then, the new method is 
fully described and demonstrated through examples and 
implementation. 

2.  Geometrical constraint solvers 
Variational geometrical constraints are usually specified 
based on an initial sketch that reveals the topological 
relationships among the geometrical entities. Constraint 
problems are traditionally solved using a numeric 
approach, whereby geometrical constraints are 
translated into general algebraic expressions solved 
using iterative methods, such as Newton-Raphson or 
homotopy [7]. However, despite their generality, 
numerical solvers often prove to be inadequate for large 
sets of non-linear equations and rely to a great extent on 
the quality of the initial sketch. Numeric solvers are also 
unable to explore the solution space and provide almost 
no information upon failure. The alternative of  solving 
these equations using symbolic algebra does not appear 
to be practical [9]. Consequently, a different approach 
has been adopted, based on constructive constraint 
solvers used for satisfying constraints using a 
constructive sequence of steps. This process resembles 



building a shape with a compass and protractor [1,4].  
Figure 1(a) illustrates a simple geometrical constraint 
problem in which a triangle is sought under three 
constraints specifying width, height and spanning angle. 
Although a numerical  system consisting of three 
nonlinear equations can be formulated and solved (two 
distances and one angle constraint), the problem can 
also be solved using three simple construction steps. 
Figure 1 (b) shows the solution generated automatically 
by a constructive solver. 
The problem illustrated in Fig. 1 is considered simple 
because it can be solved by executing a sequence of 
construction steps using the given constraints only, 
applied one at a time. This capability is referred to as the 
basic sequential construction solver, shown in Fig. 2. 
This simple solver relies on executing step-by-step 
operations on a case-specific basis. An operation is pre-
coded for each constraint type; for example a circular 
locus is pre-coded for a point constrained by distance 
from a known location. Loci intersections make it 
possible to derive the exact point location or possible set 
of locations. Table 1 lists the solution transcript for 
solving the above problem. Note how the automated 
solution process associates point loci with constraints 
and then intersects these loci when possible. It also uses 
three additional ground constraints that may be supplied 
by the user or temporarily added by the system, 
automatically and without loss of generality. 
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(a) (b) 
Fig 1. A problem that can be solved using a sequential 
process: (a) initial problem; (b) solution. 

Contrary to numerical solvers, a simple constructive 
solver is completely stable and controllable. Precoded 
formulations make it possible to derive solutions 
efficiently while handling all possible singularities and 
explicitly considering alternative solutions. Therefore, the 
process is also less dependent on the initial sketch. The 
apparent drawback of this approach is that only 
precoded constraints can be handled. This drawback is 
less conspicuous in light of the fact that the repertoire of 
supported constraints is in any case limited by the user 
interface of modern CAD systems. However, the real 
restriction on the basic solver is that the constraints of 
the given problem do not always permit a direct 
sequential step-by-step solution. In such cases, some 
solvers try using more deductive rules or resort to a 
numeric solution, as illustrated in Fig. 2. 
Graph constructive solvers use a graph representing the 
constraint dependencies to analyze and find a valid 
sequence to the solution using the given constraints, as 
in [1]. Several techniques for performing this analysis 
were suggested, some called constraint propagation 
methods [11]. Such an analysis can yield a sequential 
path to the solution if one exists, or allow identification of 
isolated problem components that can be solved 
independently and then viewed as a single substructure. 
When the given constraints do not facilitate finding a 
path or substructuring, rule constructive solvers use 
rewrite rules to discover new steps. 
 

Given: 
 C0:P0.X=6.0 C3:D(P2,(P0;P1))=-3.00 
 C1:P0.Y=8.0 C4:D(P0,P1)=4.00 
 C2:P1.X=6.0 C5:A(P1,P2,P0)=60` 
Solving: 
Using ground-x constraint C0: 
 Locus P0L0: Point P0 is on line 1.00x+0.00y+-6.00=0 
Using ground-y constraint C1: 
 Locus P0L1: Point P0 is on line 0.00x+1.00y+-8.00=0 
Combining locus P0L0 and P0L1, point P0 is at 
6.00;8.00  
Using ground-x constraint C2: 
 Locus P1L0: Point P1 is on line 1.00x+0.00y+-6.00=0 
Using point-point distance constraint C4 and point P0:  
 Locus P1L1: Point P1 is on circle at 6.00;8.00 with 
R=4.00 
Combining locus P1L0 and P1L1, point P1 is at 
6.00;12.00 or 6.00;4.00 (Selected 1st)  
Using angle constraint C5 and pointsP1, P0: 
 Locus P2L0: Point P2 is on circle at 7.15;10.00 with 
R=2.31 
Using point-line distance constraint C3 and points P0, 
P1:  
 Locus P2L1: Point P2 is on line 1.00x+0.00y+-9.00=0 
Combining locus P2L0 and P2L1, point P2 is at 
9.00;11.39 or 9.00;8.61 (Selected 1st)  

Table 1. Transcript for problem in Fig. 1.  Note that no 
additional constraints were derived. 

Basic Sequencial 
Construction 
Solver

Numerical Solver

Propagation 
Rewriting Rules 
Substructuring 

Auxiliary 
Constructions 
and Constraints  

Fig 2: The variational constraint solver system:  
Basic Sequential Construction Solver and its related 
components. The proposed technique is encapsulated 
in the Auxiliary Construction Component. 

3.  Constraint generator using rewriting rules 
The simplest approach to unlocking dead-end situations 
in the basic sequential construction solver is to generate 
additional constraints dependent on given ones that 
have the potential to allow the solver to proceed. 
Constraints are derived by standard geometrical rules. 
Our solver uses the following three well known rules: 
Accumulation rule: If the angle between lines A and B 
is known or constrained to α and the angle between lines 
B and C is known or constrained to β, then the angle 
between A and C is constrained to α+β. To implement 
this rule, angles must be manipulated with their proper 
arithmetic signs denoting clockwise and counter-
clockwise directions. Similarly, the accumulation rule can 
be applied to distance ratios.  The accumulation rule 
automatically accounts for higher rules, such as: (a) the 
angles around a polygon amount to 180*(n-2) degrees 
where n is the number of vertices; (b) if line A is 
perpendicular to line B and line B is parallel to line C, 
then line C is also perpendicular to line A; etc.  
Law of sines and law of cosines between the angles 
and sides of a triangle.  
Consider, for example, the variational geometry problem 
illustrated in Fig. 3. In contrast to to the previous 
example, this problem cannot be solved sequentially by 
applying only the given constraints one at a time. 
However, applying the above rules will make a solution 



possible. 
The transcript of the solution process for the above 
problem, excluded due to space restrictions, indicates 
that the cosine, sine and angle accumulation laws have 
been used. 
By using these rules and re-analyzing the constraint 
graph to find paths to the solution or to substructures, 
the constructive solver can to handle a wider variety of 
problems. Nevertheless, faced by constraints requiring 
simultaneous solution, the solver may exhaust all 
possibilities for progressing. In such cases, a method of 
auxiliary constructions or constraint relocation is 
proposed. 
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Fig 3: Using rewriting rules: (a) Initial constraint 
problem; (b) solution. 

4. Auxiliary construction and constraint relocation 
The auxiliary construction and constraint relocation 
approach involves relocating existing constraints to a 
more effective location on the constraint graph, thus 
permitting sequential advance and breaking up strongly 
connected components of the constraint graph so they 
can be resolved sequentially. 
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 (a) (b)  

Fig 4. Constraint relocation: (a) Initial problem;  
(b) solution. Note the automatic generation of point 4. 

First, consider an auxiliary construction used to solve the 
problem illustrated in Fig. 4.  The given constraints 
cannot be applied sequentially to yield a solution, nor 
can the constraints provided by the above rewriting 
rules. However, construction of an auxiliary line (p2-p4) 
parallel to the left side of the trapezoid makes the 
problem solvable using sequential steps only. The 
solution process transcript is presented in Table 2. 
Refer to Figure 5. The constraint relocation process is 
described here for a simple case of three points in two 
dimensions and a single-step relocation. Consider a set 
of three points as follows: point p1 is known, and points 
p2 and p3 are unknown. In addition, there is a constraint 
c1 between points p1 and p2, and two constraints, c2 and 
c3, between p2 and p3. Theoretically, this is a sequential 
dead-end:  point p2 cannot be determined because there 
is only one constraint relating it to a known point. 
Similarly, point p3 cannot be determined because p2 is 
unknown, even though point p3 is well constrained to p2. 
In fact, p2 together with p3 constitute a substructure 
which is fully resolved internally. For certain constraint 
type configurations, the following procedure will allow 
relocating constraint c1 (which currently constrains p2 to 
the known point p1) to p3, thus constraining p3 to a 
known point. The addition of a constraint for p3 may 
improve the sovability of p3 or otherwise revitalize the 
constraint pool. 
Given: 

 C0:P0.X=6.0  C4:D(P2,P3)=5.00 
 C1:P0.Y=7.0  C5:A(P2,P3,P0,P1)=0' 
 C2:P1.Y=7.0  C6:D(P1,P2)=8.00 
 C3:D(P0,P1)=10.00 C7:D(P0,P3)=7.00 
Solving: 
Using ground-x constraint C0: 
Locus P0L0: Point P0 is on line 1.00x+0.00y+-6.00=0 
Using ground-y constraint C1: 
 Locus P0L1: Point P0 is on line 0.00x+1.00y+-7.00=0  
Combining locus P0L0 and P0L1, point P0 is at 
6.00;7.00  
Using ground-y constraint C2: 
 Locus P1L0: Point P1 is on line 0.00x+1.00y+-7.00=0  
Using point-point distance constraint C3 and point P0:  
Locus P1L1: Point P1 is on circle at 6.00;7.00 with 
R=10.00 
Combining locus P1L0 and P1L1, point P1 is at 
16.00;7.00 or -4.00;7.00 (Selected 1st)  
Using point-point distance constraint C6 and point P1: 
 Locus P2L0: Point P2 is on circle at 16.00;7.00 with 
R=8.00 
Using point-point distance constraint C7 and point P0: 
 Locus P3L0: Point P3 is on circle at 6.00;7.00 with 
R=7.00 
Translocating constraints using the parallelogram 
principle  
Added point P4 at (roughly) 10.90;7.30 
Translocating C7 into  C8:D(P2,P4)=7.00 
Translocating C4 into  C9:D(P0,P4)=5.00  
From parallelogram principle: 
C11:A(P2,P3,P0,P4)=0' C10:A(P0,P3,P2,P4)=0' 
Using point-point distance constraint C9 and point P0:  
Locus P4L0: Point P4 is on circle at 6.00;7.00 with 
R=5.00 
Deriving from C5, C11: C12:A(P1,P0,P4)=0` 
Using angle constraint C12 and points P0, P1, P0: Locus 
P4L1: Point P4 is on line 0.00x+1.00y+-7.00=0 
Combining locus P4L0 and P4L1, point P4 is at 
11.00;7.00 or 1.00;7.00 (Selected 1st)  
Using point-point distance constraint C8 and point P4: 
 Locus P2L1: Point P2 is on circle at 11.00;7.00 with 
R=7.00 
Combining locus P2L0 and P2L1, point P2 is at 
12.00;0.07 or 12.00;13.93 (Selected 2nd) 
Using angle constraint C10 and points P3, P2, P4:  
Locus P3L1: Point P3 is on line 0.99x+-0.14y+-
4.94=0 
Combining locus P3L0 and P3L1, point P3 is at 
7.00;13.93 or 5.00;0.07 (Selected 1st) 

Table 2: Transcript of solution for Fig. 4. Note the use 
of constraint relocation. 

First, an auxiliary point p4 is constructed, and relative 
constraints c2 and c3 relating p2 and p3 are copied as c2' 
and c3' relating p1 to the new point p4. At the same time, 
constraint c1 relating p1 and p2 is copied as c1' between 
p3 and p4. The second step is allowed only for certain 
configurations of constraints (c1, c2, c3) that retain their 
validity across this relocation. Now, p4 can be derived 
since it is constrained by two constraints to the known 
point p1, and point p3 is now constrained by c1' to the 
known point p4. 
This principle can be applied, for example, when 
constraints c1, c2 and c3 are distance, distance ratio and 
angle constraints, thus generating a parallelogram 
(p1,p2,p3,p4), as in Fig. 4. Figure 6 demonstrates a 
second application of the parallelogram, where the 
relocated constraint is a distance-ratio constraint. In that 
sequence, two relocations must take place before the 
problem can be solved sequentially. 
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Fig 5: The constraint relocation sequence. 

5.  Implementation 
A two dimensional sequential construction solver has 
been implemented using the above techniques. The 
solver uses points as its basic elements. To completely 
solve a two-dimensional constraint problem pertaining to 
n points, exactly 2n independent constraints must be 
supplied since there are 2n degrees of freedom related 
to point positioning. This is a necessary but not sufficient 
condition since the given constraints may specify 
impossible geometry or may not adequately cover all the 
points. Of these 2n constraints, 3 constraints must be 
absolute to fix the rigid body in space, while the rest may 
be relative. If only shape structure is required and not 
absolute position, then only 2n-3 independent 
constraints are necessary, and the remaining 3 ground 
constraints can be added anywhere as convenient. 
The following two-dimensional constraints types are 
supported: 
• Point-to-point distance (among two points) 
• Point-to-line distance (among three points) 
• Angle between two lines (among four/three points) 
• Distance/length ratio (among four/three points). 
• Ground x or y coordinate (constraining one point). 
These five constraints are sufficient to specify most two-
dimensional constraint problems involving points, lines 
and arcs produced by standard CAD/CAM systems.  
The solver has been implemented as part of a CAD 
system for designing and manufacturing sheet metal 
products [10].   
The solver accepts a two-dimensional freehand sketch, 
shown in Fig. 6(a), that was acquired and transformed 
into a two-dimensional graph. The user may explicitly 
place constraints, or the system may try to infer these 
constraints automatically according to geometrical 
regularities evident in the sketch. Regardless of their 
source, the constraints are reformulated as constraints 
between points, as shown in Fig. 6(b). The geometry is 
then grounded and resolved using the above methods to 
yield the solution shown in Fig. 6(c). The final product 
can then be manufactured, as illustrated in Fig. 6(d). 

11.  Conclusions 
A constructive geometrical constraint solver has been 
described which provides a stable and controllable 
means for solving problems consisting of a fixed 
repertoire of constraint types. The solver incorporates a 
new technique for relocating constraints using auxiliary 
constructions that allow the solver to proceed using 
sequential steps without resorting to numerical solutions, 
thus retaining solver stability. 
We intend to further develop the constraint relocation 
approach using more auxiliary constructions such as the 
parallelogram structure. We also intend to explore the 
possibilities of applying these principles to solving 
variational geometry problems in three dimensions. 
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Fig 6: A constraint problem with triple symmetry: (a) 
Initial sketch; (b) schematic drawing of constraints; (c) 
solution; (d) image of  product. 
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