
Automatic Reasoning for Design Under Geometric Constraints
M. Shpitalni, H. Lipson

Laboratory for Computer Graphics and CAD
Faculty of Mechanical Engineering

Technion, Haifa, Israel 32000
e-mail: shefi@tx.technion.ac.il

Abstract
Parametric design is very stable but requires a predefined dimensioning and ordering scheme, thus limiting
flexibility and precluding sketch input. Variational geometry design, while general and flexible, necessitates
intensive use of numerical solvers to solve many simultaneous nonlinear equations. Frequently the solvers
cannot solve these equations. A new system, based on an original theory for automatic constraint analysis,
has been developed for solving sets of two-dimensional geometric constraints in product design. The
proposed system offers the flexibility of variational based design along with the stability of parametric design.
The solution strategy is based upon breaking down the problem into a sequence of construction steps. When
no sequential construction is found, auxiliary geometrical constructions are automatically generated based
on rules for relocating constraints. Thus, an apparently simultaneous constraint set is converted into a set
that can be constructed sequentially by decomposing strongly connected components of the original
constraint graph. This new approach has been implemented in a system for designing sheet metal parts.
Keywords: CAD, Conceptual Design, Geometry Constraint

1. Introduction
Two design paradigms are used and explored for design
and manufacturing applications: feature-based design
and constraint-based design [3]. In constraint-based
design, shapes are specified by means of geometrical
constraints that relate shape features to shape
parameters. The constraints are typically specified
based on predefined topological arrangements of
features (sometimes entered by means of a sketch) to
provide a context for the problem. Studies of constraint
solution range from pure geometry, e.g., [1], to
kinematics [6], engineering constraints [5], and theorem
proving [2].
When solving geometrical constraint problems, a solver
must provide an instance of the given topology that
exactly satisfies the given constraints. Two major
approaches can be identified: (1) parametric geometry,
in which constraints are given so that the desired shape
can be constructed sequentially according to a
predefined scheme and order, and (2) variational
geometry, where constraints are given by an arbitrary
scheme in no particular order. The solver must then
derive a solution strategy automatically in order to
construct the desired shape.
Since the parametric approach uses a predefined
scheme of dimensions and a predefined evaluation
order, the solution process is more stable and
controllable, and is therefore more common in
commercial CAD systems. However, the need to adhere
to a prespecified dimensioning scheme and order limits
the freedom of the designer to modify the definition of
the shape. Moreover, the desire to allow more flexible
input methods for sketching [8] and conceptual design
necessitates that dimensioning of the design be
independent of a specific dimensioning scheme and
order. However, lack of a solution strategy makes
variational geometry problems more difficult to solve
because the solver must be capable of the following:
deriving a solution sequence; handling large sets of
simultaneous non-linear equations; managing multiple
solutions; and determining user intent as the most
plausible solution.

Variational geometry problems are usually solved by
using either numerical solvers or sequential construction
solvers based on applying precoded steps, which may
resort to numerical methods in special cases. In
essence, numeric solvers are more general but
construction solvers are more stable. This paper
describes a novel solution technique which allows
solving more complex problems using construction
solvers without resorting to numerical methods. The new
solver is based on automatic generation of auxiliary
geometrical constructions and constraints. While the
additional constraints do not actually add any new
mathematical information, they do simplify the automatic
search for a solution strategy as well as significantly
enhance the analytical capabilities of the sequential
solver. The new solver has been implemented
successfully in a CAD system [10] for design of sheet
metal parts.
This paper first describes existing techniques for solving
geometrical constraint problems and places the
proposed method in context. Then, the new method is
fully described and demonstrated through examples and
implementation.

2. Geometrical constraint solvers
Variational geometrical constraints are usually specified
based on an initial sketch that reveals the topological
relationships among the geometrical entities. Constraint
problems are traditionally solved using a numeric
approach, whereby geometrical constraints are
translated into general algebraic expressions solved
using iterative methods, such as Newton-Raphson or
homotopy [7]. However, despite their generality,
numerical solvers often prove to be inadequate for large
sets of non-linear equations and rely to a great extent on
the quality of the initial sketch. Numeric solvers are also
unable to explore the solution space and provide almost
no information upon failure. The alternative of solving
these equations using symbolic algebra does not appear
to be practical [9]. Consequently, a different approach
has been adopted, based on constructive constraint
solvers used for satisfying constraints using a
constructive sequence of steps. This process resembles

building a shape with a compass and protractor [1,4].
Figure 1(a) illustrates a simple geometrical constraint
problem in which a triangle is sought under three
constraints specifying width, height and spanning angle.
Although a numerical system consisting of three
nonlinear equations can be formulated and solved (two
distances and one angle constraint), the problem can
also be solved using three simple construction steps.
Figure 1 (b) shows the solution generated automatically
by a constructive solver.
The problem illustrated in Fig. 1 is considered simple
because it can be solved by executing a sequence of
construction steps using the given constraints only,
applied one at a time. This capability is referred to as the
basic sequential construction solver, shown in Fig. 2.
This simple solver relies on executing step-by-step
operations on a case-specific basis. An operation is pre-
coded for each constraint type; for example a circular
locus is pre-coded for a point constrained by distance
from a known location. Loci intersections make it
possible to derive the exact point location or possible set
of locations. Table 1 lists the solution transcript for
solving the above problem. Note how the automated
solution process associates point loci with constraints
and then intersects these loci when possible. It also uses
three additional ground constraints that may be supplied
by the user or temporarily added by the system,
automatically and without loss of generality.

4

3
60°

(a) (b)
Fig 1. A problem that can be solved using a sequential
process: (a) initial problem; (b) solution.

Contrary to numerical solvers, a simple constructive
solver is completely stable and controllable. Precoded
formulations make it possible to derive solutions
efficiently while handling all possible singularities and
explicitly considering alternative solutions. Therefore, the
process is also less dependent on the initial sketch. The
apparent drawback of this approach is that only
precoded constraints can be handled. This drawback is
less conspicuous in light of the fact that the repertoire of
supported constraints is in any case limited by the user
interface of modern CAD systems. However, the real
restriction on the basic solver is that the constraints of
the given problem do not always permit a direct
sequential step-by-step solution. In such cases, some
solvers try using more deductive rules or resort to a
numeric solution, as illustrated in Fig. 2.
Graph constructive solvers use a graph representing the
constraint dependencies to analyze and find a valid
sequence to the solution using the given constraints, as
in [1]. Several techniques for performing this analysis
were suggested, some called constraint propagation
methods [11]. Such an analysis can yield a sequential
path to the solution if one exists, or allow identification of
isolated problem components that can be solved
independently and then viewed as a single substructure.
When the given constraints do not facilitate finding a
path or substructuring, rule constructive solvers use
rewrite rules to discover new steps.

Given:
 C0:P0.X=6.0 C3:D(P2,(P0;P1))=-3.00
 C1:P0.Y=8.0 C4:D(P0,P1)=4.00
 C2:P1.X=6.0 C5:A(P1,P2,P0)=60`
Solving:
Using ground-x constraint C0:
 Locus P0L0: Point P0 is on line 1.00x+0.00y+-6.00=0
Using ground-y constraint C1:
 Locus P0L1: Point P0 is on line 0.00x+1.00y+-8.00=0
Combining locus P0L0 and P0L1, point P0 is at
6.00;8.00
Using ground-x constraint C2:
 Locus P1L0: Point P1 is on line 1.00x+0.00y+-6.00=0
Using point-point distance constraint C4 and point P0:
 Locus P1L1: Point P1 is on circle at 6.00;8.00 with
R=4.00
Combining locus P1L0 and P1L1, point P1 is at
6.00;12.00 or 6.00;4.00 (Selected 1st)
Using angle constraint C5 and pointsP1, P0:
 Locus P2L0: Point P2 is on circle at 7.15;10.00 with
R=2.31
Using point-line distance constraint C3 and points P0,
P1:
 Locus P2L1: Point P2 is on line 1.00x+0.00y+-9.00=0
Combining locus P2L0 and P2L1, point P2 is at
9.00;11.39 or 9.00;8.61 (Selected 1st)

Table 1. Transcript for problem in Fig. 1. Note that no
additional constraints were derived.

Basic Sequencial
Construction
Solver

Numerical Solver

Propagation
Rewriting Rules
Substructuring

Auxiliary
Constructions
and Constraints

Fig 2: The variational constraint solver system:
Basic Sequential Construction Solver and its related
components. The proposed technique is encapsulated
in the Auxiliary Construction Component.

3. Constraint generator using rewriting rules
The simplest approach to unlocking dead-end situations
in the basic sequential construction solver is to generate
additional constraints dependent on given ones that
have the potential to allow the solver to proceed.
Constraints are derived by standard geometrical rules.
Our solver uses the following three well known rules:
Accumulation rule: If the angle between lines A and B
is known or constrained to α and the angle between lines
B and C is known or constrained to β, then the angle
between A and C is constrained to α+β. To implement
this rule, angles must be manipulated with their proper
arithmetic signs denoting clockwise and counter-
clockwise directions. Similarly, the accumulation rule can
be applied to distance ratios. The accumulation rule
automatically accounts for higher rules, such as: (a) the
angles around a polygon amount to 180*(n-2) degrees
where n is the number of vertices; (b) if line A is
perpendicular to line B and line B is parallel to line C,
then line C is also perpendicular to line A; etc.
Law of sines and law of cosines between the angles
and sides of a triangle.
Consider, for example, the variational geometry problem
illustrated in Fig. 3. In contrast to to the previous
example, this problem cannot be solved sequentially by
applying only the given constraints one at a time.
However, applying the above rules will make a solution

possible.
The transcript of the solution process for the above
problem, excluded due to space restrictions, indicates
that the cosine, sine and angle accumulation laws have
been used.
By using these rules and re-analyzing the constraint
graph to find paths to the solution or to substructures,
the constructive solver can to handle a wider variety of
problems. Nevertheless, faced by constraints requiring
simultaneous solution, the solver may exhaust all
possibilities for progressing. In such cases, a method of
auxiliary constructions or constraint relocation is
proposed.

8

6

90*
65*

45*

 (a) (b)

Fig 3: Using rewriting rules: (a) Initial constraint
problem; (b) solution.

4. Auxiliary construction and constraint relocation
The auxiliary construction and constraint relocation
approach involves relocating existing constraints to a
more effective location on the constraint graph, thus
permitting sequential advance and breaking up strongly
connected components of the constraint graph so they
can be resolved sequentially.

10

5

7 8

 (a) (b)

Fig 4. Constraint relocation: (a) Initial problem;
(b) solution. Note the automatic generation of point 4.

First, consider an auxiliary construction used to solve the
problem illustrated in Fig. 4. The given constraints
cannot be applied sequentially to yield a solution, nor
can the constraints provided by the above rewriting
rules. However, construction of an auxiliary line (p2-p4)
parallel to the left side of the trapezoid makes the
problem solvable using sequential steps only. The
solution process transcript is presented in Table 2.
Refer to Figure 5. The constraint relocation process is
described here for a simple case of three points in two
dimensions and a single-step relocation. Consider a set
of three points as follows: point p1 is known, and points
p2 and p3 are unknown. In addition, there is a constraint
c1 between points p1 and p2, and two constraints, c2 and
c3, between p2 and p3. Theoretically, this is a sequential
dead-end: point p2 cannot be determined because there
is only one constraint relating it to a known point.
Similarly, point p3 cannot be determined because p2 is
unknown, even though point p3 is well constrained to p2.
In fact, p2 together with p3 constitute a substructure
which is fully resolved internally. For certain constraint
type configurations, the following procedure will allow
relocating constraint c1 (which currently constrains p2 to
the known point p1) to p3, thus constraining p3 to a
known point. The addition of a constraint for p3 may
improve the sovability of p3 or otherwise revitalize the
constraint pool.
Given:

 C0:P0.X=6.0 C4:D(P2,P3)=5.00
 C1:P0.Y=7.0 C5:A(P2,P3,P0,P1)=0'
 C2:P1.Y=7.0 C6:D(P1,P2)=8.00
 C3:D(P0,P1)=10.00 C7:D(P0,P3)=7.00
Solving:
Using ground-x constraint C0:
Locus P0L0: Point P0 is on line 1.00x+0.00y+-6.00=0
Using ground-y constraint C1:
 Locus P0L1: Point P0 is on line 0.00x+1.00y+-7.00=0
Combining locus P0L0 and P0L1, point P0 is at
6.00;7.00
Using ground-y constraint C2:
 Locus P1L0: Point P1 is on line 0.00x+1.00y+-7.00=0
Using point-point distance constraint C3 and point P0:
Locus P1L1: Point P1 is on circle at 6.00;7.00 with
R=10.00
Combining locus P1L0 and P1L1, point P1 is at
16.00;7.00 or -4.00;7.00 (Selected 1st)
Using point-point distance constraint C6 and point P1:
 Locus P2L0: Point P2 is on circle at 16.00;7.00 with
R=8.00
Using point-point distance constraint C7 and point P0:
 Locus P3L0: Point P3 is on circle at 6.00;7.00 with
R=7.00
Translocating constraints using the parallelogram
principle
Added point P4 at (roughly) 10.90;7.30
Translocating C7 into C8:D(P2,P4)=7.00
Translocating C4 into C9:D(P0,P4)=5.00
From parallelogram principle:
C11:A(P2,P3,P0,P4)=0' C10:A(P0,P3,P2,P4)=0'
Using point-point distance constraint C9 and point P0:
Locus P4L0: Point P4 is on circle at 6.00;7.00 with
R=5.00
Deriving from C5, C11: C12:A(P1,P0,P4)=0`
Using angle constraint C12 and points P0, P1, P0: Locus
P4L1: Point P4 is on line 0.00x+1.00y+-7.00=0
Combining locus P4L0 and P4L1, point P4 is at
11.00;7.00 or 1.00;7.00 (Selected 1st)
Using point-point distance constraint C8 and point P4:
 Locus P2L1: Point P2 is on circle at 11.00;7.00 with
R=7.00
Combining locus P2L0 and P2L1, point P2 is at
12.00;0.07 or 12.00;13.93 (Selected 2nd)
Using angle constraint C10 and points P3, P2, P4:
Locus P3L1: Point P3 is on line 0.99x+-0.14y+-
4.94=0
Combining locus P3L0 and P3L1, point P3 is at
7.00;13.93 or 5.00;0.07 (Selected 1st)

Table 2: Transcript of solution for Fig. 4. Note the use
of constraint relocation.

First, an auxiliary point p4 is constructed, and relative
constraints c2 and c3 relating p2 and p3 are copied as c2'
and c3' relating p1 to the new point p4. At the same time,
constraint c1 relating p1 and p2 is copied as c1' between
p3 and p4. The second step is allowed only for certain
configurations of constraints (c1, c2, c3) that retain their
validity across this relocation. Now, p4 can be derived
since it is constrained by two constraints to the known
point p1, and point p3 is now constrained by c1' to the
known point p4.
This principle can be applied, for example, when
constraints c1, c2 and c3 are distance, distance ratio and
angle constraints, thus generating a parallelogram
(p1,p2,p3,p4), as in Fig. 4. Figure 6 demonstrates a
second application of the parallelogram, where the
relocated constraint is a distance-ratio constraint. In that
sequence, two relocations must take place before the
problem can be solved sequentially.

P1

P2

P3

P4

c2, c3

c2', c3'

c1

c1'

Fig 5: The constraint relocation sequence.

5. Implementation
A two dimensional sequential construction solver has
been implemented using the above techniques. The
solver uses points as its basic elements. To completely
solve a two-dimensional constraint problem pertaining to
n points, exactly 2n independent constraints must be
supplied since there are 2n degrees of freedom related
to point positioning. This is a necessary but not sufficient
condition since the given constraints may specify
impossible geometry or may not adequately cover all the
points. Of these 2n constraints, 3 constraints must be
absolute to fix the rigid body in space, while the rest may
be relative. If only shape structure is required and not
absolute position, then only 2n-3 independent
constraints are necessary, and the remaining 3 ground
constraints can be added anywhere as convenient.
The following two-dimensional constraints types are
supported:
• Point-to-point distance (among two points)
• Point-to-line distance (among three points)
• Angle between two lines (among four/three points)
• Distance/length ratio (among four/three points).
• Ground x or y coordinate (constraining one point).
These five constraints are sufficient to specify most two-
dimensional constraint problems involving points, lines
and arcs produced by standard CAD/CAM systems.
The solver has been implemented as part of a CAD
system for designing and manufacturing sheet metal
products [10].
The solver accepts a two-dimensional freehand sketch,
shown in Fig. 6(a), that was acquired and transformed
into a two-dimensional graph. The user may explicitly
place constraints, or the system may try to infer these
constraints automatically according to geometrical
regularities evident in the sketch. Regardless of their
source, the constraints are reformulated as constraints
between points, as shown in Fig. 6(b). The geometry is
then grounded and resolved using the above methods to
yield the solution shown in Fig. 6(c). The final product
can then be manufactured, as illustrated in Fig. 6(d).

11. Conclusions
A constructive geometrical constraint solver has been
described which provides a stable and controllable
means for solving problems consisting of a fixed
repertoire of constraint types. The solver incorporates a
new technique for relocating constraints using auxiliary
constructions that allow the solver to proceed using
sequential steps without resorting to numerical solutions,
thus retaining solver stability.
We intend to further develop the constraint relocation
approach using more auxiliary constructions such as the
parallelogram structure. We also intend to explore the
possibilities of applying these principles to solving
variational geometry problems in three dimensions.

Acknowledgment
This research has been supported in part by the Fund for
the Promotion of Research at the Technion, Research
No. 033-028.

3

9
 (a) (b)

 (c) (d)

Fig 6: A constraint problem with triple symmetry: (a)
Initial sketch; (b) schematic drawing of constraints; (c)
solution; (d) image of product.

References
[1] Bouma W., Fudos I., Hoffmann C. M., Cai J., Paige

R., 1995, Geometric constraint solver, Computer
Aided Design, 27(6): 487-501.

[2] Chou C. S., 1987, Mechanical Theorem Proving, D.
Reidel Publishing.

[3] Hoffmann C. M., Rossingnac, J. R., 1996, A
roadmap to solid modeling, IEEE Transactions on
visualization and computer graphics, 2(1): 3-10.

[4] Joan-Arinyo R., Soto A., 1996, A ruler-and-
compass geometric constraint solver, 5th IFIP
Workshop on Geometric Modeling in CAD, Airlie,
VA, May 19-23, 1996.

[5] Kimura F., Suzuki H., Ando H., Sato T., Kinosada
A., 1987, Variational geometry based on logical
constraints and its applications to product
modeling, Annals of the CIRP 36(1): 75-78.

[6] Kramer G., 1992, Solving geometric constraint
systems, MIT Press, Cambridge, MA.

[7] Lamure H., Michelucci D., 1996, Solving geometric
constraints by homotopy, IEEE Transactions on
Visualization and Computer Graphics, 2(1): 28-34.

[8] Lipson H., Shpitalni M., 1995, A new interface for
conceptual design based on object reconstruction
from a single freehand sketch, Annals of the CIRP,
45(1): 133-136.

[9] Manocha D., 1994, Solving systems of polynomial
Equations, IEEE Computer Graphics and
Applications, 3: 46-55.

[10] Shpitalni, M., 1993, A new concept for design of
sheet metal products, Annals of the CIRP,
42(1):123-126.

[11] Sridhar N., Agrawal R., Kinzerl G., 1996, Algorithms
for the structural diagnosis and decomposition of
sparse, underconstrained design systems,
Computer Aided Design, 28(4): 237-249.

