
Dot Products

Next we learn some vector operations that will be useful to us in doing some
geometry. In many ways, vector algebra is the right language for geometry,
particularly if we’re using functions. In a way, vector algebra is a language and
we’re using it to express things we’ve known since childhood. Having a notation
for these things will make them more straightforward.

A dot product is a way of multiplying two vectors to get a number, or
scalar. Algebraically, suppose A = 〈a1, a2, a3〉 and B = 〈b1, b2, b3〉. We find
the dot product A · B by multiplying the first component of A by the first
component of B, the second component of A by the second component of B,
and so on, and then adding together all these products. So for our sample
vectors, A · B = a1b1 + a2b2 + a3b3. If our vectors have N components, the
definition of the dot product becomes:

A ·B =

N∑
i=1

aibi.

It is very important to remember that A ·B is a scalar, not a vector. Also, when
writing a dot product we always put a dot symbol between the two vectors to
indicate what kind of product we’re calculating.

What is it good for? The answer to this question will be clearer after we see
a geometric description of the dot product.

Geometrically, the dot product of A and B equals the length of A times the
length of B times the cosine of the angle between them:

A ·B = |A||B| cos(θ).
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Figure 1: A ·B = |A||B| cos(θ).

This may seem complicated and artificial at first, but we’ll find that the dot
product gives us useful information about angles and lengths simultaneously. If
we’ve described our vectors using components, the dot product is also easy to
calculate.
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Equivalence of Descriptions of the Dot Product

We now have two descriptions of the dot product:

A ·B = |A||B| cos(θ) and A ·B =

N∑
i=1

aibi.

In mathematics, one tries to justify every statement by proving theorems. The
first theorem in 18.02 is to verify that if the dot product is defined to be

A ·B =

N∑
i=1

aibi then it’s also true that A ·B = |A||B| cos(θ).

We start by multiplying a vector times itself to gain understanding of the
geometric definition:

A ·A = |A|2 cos(0) = |A|2.
From the definition of the dot product we get:

A ·A = a21 + a22 + a23 = |A|2.

The two definitions are equivalent if A and B are the same vector.
If A and B are different vectors, we can use the law of cosines to show that

our geometric description of the dot product of two different vectors is equivalent
to its algebraic definition. You may recall that the law of cosines tells you the
length of the third side of a triangle given the length of the other two sides and
the angle between them.

A

B

Cθ

Figure 2: The law of cosines describes the length of C in terms of |A|, |B| and
θ.

In terms of vectors, the two known sides of our triangle are formed by A
and B. The third side is described by C = A−B. The law of cosines then tells
us that:

|C|2 = |A|2 + |B|2 − 2|A||B| cos θ.

(If you haven’t seen this before, then consider what you are about to see to be
a proof of the law of cosines based on the assumption that our two descriptions
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of the dot product are equivalent. If you have seen the law of cosines before,
it’s the other way around.)

How is the law of cosines related to the dot product?

|C|2 = C ·C
= (A−B) · (A−B)

= A ·A−A ·B−B ·A + B ·B
|C|2 = |A|2 + |B|2 − 2A ·B

Are we allowed to expand (A − B) · (A − B) in this way? Is it true that
A ·B = B ·A? Yes; it is possible to prove from the definition of the dot product
that commuting, factoring and expanding work with dot products the same way
they do with scalar products. (This is where we use the definition of the dot
product in this proof.)

Comparing this formula for the length of C with the one given by the law
of cosines, we see that we must have 2A ·B = 2|A||B| cos θ, and so we conclude
that:

A ·B = |A||B| cos(θ).

Now we have either used the law of cosines to prove that our algebraic and
geometric descriptions of the dot product are equivalent, or we have proven the
law of cosines based on the assumption that those descriptions are equivalent.
A mathematician wold say that the law of cosines is logically equivalent to the
statement A ·B = |A||B| cos θ.
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